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Elementary Calculus

A farmer wishes to enclose a rectangular region R with a fence.

The fence has total length L = const > 0.

Show that the area A that can be enclosed obeys

A ≤ L2

16

and that

A =
L2

16

if and only if R is a square.

This simple problem has a serious flaw: why should the region R be a rectangle?

A circle of perimeter L encloses area A = π ·
(

L
2π

)2
= L2

4π > L2

16 .
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The isoperimetric problem

1 In the plane:

Let I ⊂ R be a connected interval of the real line.
Let γ : I → R be a simple closed curve of arclength L, enclosing a
region R of area A.
Show that

L2 − 4πA ≥ 0

and that L2 = 4πA if and only if γ is a circle.

2 In the 2-sphere of radius a:

Show that

L2 − 4πA+
A2

a2
≥ 0

and that L2 = 4πA if and only if γ is a great circle.

We will prove the first of these two statements, but first we have to define
everything. The key tools are differential geometry and geometric analysis.
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Parametrized curves

Definition

A parametrized curve is a map γ : I → Rn, where I is a connected interval of R.

Example: It’s very easy to parametrize a graph y = f (x).

Just choose x to be the parameter; i.e., write

x(t) = t,

y(t) = f (t).

Don’t forget to choose domain; for example, perhaps

t ∈ I

for some interval I ⊂ R.
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More examples

The parametrized curve


x(t) = t ,

y(t) =
√
a2 − t2 ,

t ∈ [−a, a] ,

is a semi-circle.

The parametrized curve


x(t) = cos t ,

y(t) = sin t ,

t ∈ [0, 2π) ,

is a circle, traversed once

counter-clockwise.

The parametrized curve


x(t) = cos t ,

y(t) = sin t ,

t ∈ [0, 4π) ,

is a circle, traversed twice

counter-clockwise.

Notice the parametrization carries extra information not available from the
graphical description of a curve.
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Example: The astroid

The parametrized curve γ(t) =
(
cos3 t, sin3 t

)
,

t ∈ [0, 2π), is called an astroid.

Can write it as


x(t) = cos3 t

y(t) = sin3t

t ∈ [0, 2π)

Then x2/3 = cos2 t and y2/3 = sin2 t,
so x2/3 + y2/3 = 1.

Graphical form: y = ±
(
1− x2/3

)3/2
.

Level set form:

Let z = f (x , y) = x2/3 + y2/3.
Then the astroid is the level set
z = f (x , y) = 1.

Graphical and level set forms have less information than parametrized form.
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Tangent vectors

Recall tangent line to graph y = f (x) at (x0, y0)
is y − y0 = f ′(x0) (x − x0).

Tangent vector: Any (non-zero) vector parallel to tangent line.

Parametrized form of line: Take s ∈ R and
x(s) = x0 + s
y(s) = y0 + f ′(x0)s

Differentiate wrt s: x ′(s) = 1, y ′(s) = f ′(x0).

Tangent vectors to line are the vectors parallel to (1, f ′(x0)).
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Tangent vectors to parametrized curves

Parametrized curve γ : I → Rn is a vector-valued function.

γ(t) = (γ1(t), γx(t), . . . , γn(t)) = (x1(t), x2(t), . . . , xn(t)).

Definition

γ′(t) = γ̇(t) =
dγ

dt
=

(
dx1
dt

,
dx2
dt

, . . . ,
dxn
dt

)
= lim

∆t→0

γ(t +∆t)− γ(t)

∆t

Then γ′(t) is a tangent vector to curve γ at t provided γ′(t) ̸= (0, . . . , 0).

(Generally, we will just write 0 even if we mean the 0-vector (0, 0, . . . , 0).)
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Example

γ(t) = t3e1 + t2e2, t ∈ R,
{e1, e2} = orthonormal basis (ONB).

x(t) = t3

y(t) = t2

}
=⇒ y = x2/3.

Chain rule:
dy
dt = dy

dx
dx
dt =⇒ 2t = dy

dx · 3t2 =⇒ dy
dx = 2t

3t2 undefined at t = 0.

Definition

A parametrized curve γ : I → Rn is

smooth at t0 ∈ I if all derivatives of all components xi (t) exist at t = t0, and

regular at t0 ∈ I if it is smooth at t0 and dγ
dt (t0) ̸= (0, . . . , 0); otherwise t0 is

a singular point.

The above example is smooth but not regular at t = 0.
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Arclength

Recall arclength in R2:

s =
∫
ds =

∫ √
dx2 + dy2 =

t1∫
t0

√(
dx
dt

)2
+
(

dy
dt

)2
dt

In Rn: s =
t1∫
t0

√(
dx1
dt

)2
+ · · ·+

(
dxn
dt

)2
dt =

t1∫
t0

√
dγ
dt · dγ

dt dt =
t1∫
t0

∥∥∥ dγ
dt

∥∥∥ dt
Definition

The arclength function of a curve γ : [t0, t1] → Rn is

s :=
t∫
t0

∥∥∥ dγ(t′)
dt′

∥∥∥ dt ′
for t ∈ [t0, t1].

Fundamental Theorem of Calculus =⇒ ds
dt =

∥∥∥ dγ(t)
dt

∥∥∥ .
This is called the speed of the curve.
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Example: Log spiral

The logarithmic spiral is the curve
γ(t) = et (cos t, sin t).

γ′(t) = et (cos t − sin t, sin t + cos t)

∥γ′∥ = et
√

(cos t − sin t)2 + (sin t + cos t)2 =
√
2et .

s(t) =
t∫
t0

√
2eτdτ =

√
2 (et − et0).

t0 → −∞ =⇒ γ(t0) → (0, 0), s(t) →
√
2et .

γ : (−∞, t] → R2 has finite arclength,
but no initial endpoint.
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Unit speed curves

If ∥γ̇(t)∥ = 1, γ is unit speed and t is an arclength parameter or unit speed
parameter.

If ∥γ̇(t)∥ = k = const > 0, γ is constant speed and t is an affine parameter.

Fact:

Let v be any unit vector field v · v = ∥v∥2 = 1.
Let γ(t) be a unit speed curve.
d
dt (v · v) =

d
dt (1) = 0.

But then d
dt (γ̇ · γ̇) = 0.

Chain rule: γ̇ · γ̈ = 0.
Conclude that γ̇ ⊥ γ̈ along any unit speed curve whenever acceleration
γ̈ ̸= 0.
For unit speed curves, write t := γ̇ = unit tangent vector. Note that
∥t∥ =

√
t · t = 1.
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Reparametrization

Say γ : (a, b) → Rn is a curve, and

Say γ̃ : (ã, b̃) → Rn is a curve.

Definition

If

there is a smooth map ϕ : (ã, b̃) → (a, b)

with smooth inverse ϕ−1 : (a, b) → (ã, b̃), such that

γ̃(t̃) = γ(ϕ(t̃)) = (γ ◦ ϕ)(t̃) = γ(t) for all t̃ ∈
(
ã, b̃
)
,

then γ̃ = γ ◦ ϕ is a reparametrization of γ.
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Theorem

Theorem

Any reparametrization of a regular curve is also a regular curve.

Proof.

Let t = ϕ(t̃) and γ̃(t̃) = γ(t).

Then t̃ = ϕ−1(t) so t = ϕ(t̃) = ϕ(ϕ−1(t)).

Chain rule: dϕ
dt̃

d(ϕ−1)
dt = 1, so dϕ

dt̃
̸= 0.

d γ̃
dt̃

= d
dt̃
(γ(t)) = dγ

dt
dϕ
dt̃
.

Now γ is regular so dγ
dt ̸= 0, and dϕ

dt̃
̸= 0.

Thus d γ̃
dt̃

̸= 0.

Works because the reparametrization ϕ is smooth with smooth inverse.
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The arclength function of a regular curve is smooth

Say γ : I → R2 : t → (x(t), y(t)) is a regular curve.

Then x(t) and y(t) are smooth functions.

The square root function f (w) =
√
w is smooth if w ̸= 0.

Since γ is regular, ẋ2 + ẏ2 ̸= 0.

Thus ds
dt (t) =

√
ẋ2 + ẏ2 is smooth.

Therefore s(t) =
t∫
t0

ds
dt′ (t

′)dt ′ is smooth.
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Regular curves have unit speed parametrizations

Theorem

A parametrized curve has an arclength parametrization iff it is regular.

Proof.

Curve γ̃ : Ĩ → R2 and reparametrization t = ϕ(t̃), such that γ(t) = γ̃(t̃).

Chain rule: d γ̃
dt̃

= dγ
dt

dt
dt̃

=⇒
∥∥∥ d γ̃

dt̃

∥∥∥ =
∥∥∥ dγ

dt

∥∥∥ ∣∣ dtdt̃ ∣∣.
⇒ If t̃ is arclength, then

∥∥∥ d γ̃
dt̃

∥∥∥ = 1, so dγ
dt is never zero. Then γ(t) is regular.

⇐ If dγ
dt ̸= 0, then ds

dt =
∥∥∥ dγ

dt

∥∥∥ ̸= 0, so s is smooth and strictly increasing.

Then dγ
dt = d γ̃

ds
ds
dt =⇒

∥∥∥ dγ
dt

∥∥∥ =
∥∥∥ d γ̃

ds

∥∥∥ ∣∣ dsdt ∣∣ = ∥∥∥ d γ̃
ds

∥∥∥ ds
dt .

But s =
∫ ∥∥∥ dγ

dt

∥∥∥ dt =⇒ ds
dt =

∥∥∥ dγ
dt

∥∥∥.
Compare last two lines. Then

∥∥∥ d γ̃
ds

∥∥∥ = 1, so γ̃(s) is unit speed.
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Closed curves

Example:

Ellipse x2

p2 +
y2

q2 = 1, p, q > 0 are constants.

Parametrize as γ(t) = (p cos t, q sin t), t ∈ R.

Then γ(t + 2π) = γ(t) for all t ∈ R.

γ is 2π-periodic.

Definition

If γ(t + T ) = γ(t) for all t and for some T > 0, then γ is T-periodic.

If γ(t) = p for all t (where p ∈ Rn is a point), then γ is a constant curve.

If γ is T -periodic and not constant, then γ is a closed curve.

A simple closed curve has no self-intersections: γ(t1) ̸= γ(t2) whenever
|t2 − t1| < T .
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Jordan curve theorem

Simple closed curves, also called Jordan curves, are closed plane curves that do
not self-intersect.

Theorem (Jordan curve theorem)

Every simple closed curve separates R2 into two disjoint regions,
called the interior and exterior regions.
The interior region is bounded (contained within a circle).
The exterior region is unbounded.

Simple statement, surprisingly difficult to prove:
see graduate level algebraic topology texts for proof.
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The isoperimetric inequality

Theorem

Let γ : I → R2 be a simple closed curve of length L(γ), enclosing a region of area
A(γ). Then

A(γ) ≤ 1

4π
(L(γ))2 .

Equality holds iff γ is a circle.

This simple theorem has motivated a great many proofs and almost as many
profound ideas. The most common proof uses

Theorem (Wirtinger’s inequality)

Let F : [0, π] → R be a smooth function with F (0) = F (π) = 0. Then

π∫
0

(
dF

dt

)2

dt ≥
π∫

0

(F (t))2 dt,

and equality holds iff F (t) = C sin t, C = const.
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Proof of Wirtinger’s inequality

Set-up:

Define G (t) = F (t)/ sin t, t ∈ (0, π).

limt→0+ G (t) = limt→0+
F (t)
sin t = limt→0+

F ′(t)
cos t = limt→0+ F

′(t). Exists
because F is smooth. Likewise, limt→π− G (t) exists. So define G (0), G (π)
by continuity (i.e., G (0) := limt→0+ G (t)).

Then G : [0, π] → R is smooth.

Then F (t) = G (t) sin t, so Ḟ (t) = Ġ (t) sin t + G (t) cos t.

Use this and integration by parts to compute

π∫
0

(
Ḟ 2(t)− F 2(t)

)
dt =

π∫
0

Ġ 2(t) sin2 tdt ≥ 0.

This proves the inequality.
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Equality case

Last slide:
π∫
0

(
Ḟ 2(t)− F 2(t)

)
dt =

π∫
0

Ġ 2(t) sin2 tdt ≥ 0.

From this, if
π∫
0

(
Ḟ 2(t)− F 2(t)

)
dt = 0, then necessarily

π∫
0

Ġ 2(t) sin2 tdt = 0.

Because the integrand is nonnegative, the integral is zero only if
Ġ (t) sin t = 0 for all t ∈ [0, π].

Then Ġ (t) = 0, so G (t) = C = const.

Since G (t) = F (t)/ sin t, we have F (t) = C sin t, as required.
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Proof of isoperimetric inequality

Unit speed closed curve γ, arclength L, positioned so that γ(0) = 0.

Reparametrize by t = πs
L . Then t ∈ [0, π], speed is ∥γ̇(t)∥ = L

π = const.

Polar coordinates: γ(t) = (r(t), θ(t)). Then

L2 = π2 ∥γ̇(t)∥2 = π

π∫
0

∥γ̇(t)∥2 dt = π

π∫
0

(
ṙ2 + r2θ̇2

)
dt. (1)

From Calculus, area enclosed by a polar curve is

A =
1

2

π∫
0

(xẏ − ẋy) dt =
1

2

π∫
0

r2(t)θ̇(t)dt. (2)

Combine (1) and (2):

L2

4π
− A =

1

4

π∫
0

(
ṙ2 + r2θ̇2 − 2r2θ̇

)
dt =

1

4

π∫
0

[
ṙ2 + r2

(
θ̇2 − 2θ̇

)]
dt.
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Isoperimetric inequality continued

Complete the square:

L2

4π
− A =

1

4

π∫
0

[
ṙ2 − r2 + r2

(
θ̇ − 1

)2]
dt

≥ 1

4

π∫
0

[
ṙ2 − r2

]
dt

≥ 0

(3)

by Wirtinger’s inequality, which we recall says that
π∫
0

ṙ2dt ≥
π∫
0

r2dt for any

smooth function r(t) such that r(0) = r(π) = 0.

This proves the inequality.
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Case of equality

We still have to show that L2

4π = A iff γ is a circle.

If γ is a circle, then L = 2πr so L2

4π = πr2.

But if γ is a circle, then A = πr2. Hence L2

4π = A.

Must prove converse: that if L2

4π = A then γ is a circle.

Use L2

4π − A = 0 in first line of (3):

0 =
L2

4π
− A =

1

4

π∫
0

[
ṙ2 − r2 + r2

(
θ̇ − 1

)2]
dt

=
1

4

π∫
0

[
ṙ2 − r2

]
dt +

1

4

π∫
0

r2
(
θ̇ − 1

)2
dt
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Equality case continued

Last slide: 0 = 1
4

π∫
0

[
ṙ2 − r2

]
dt + 1

4

π∫
0

r2
(
θ̇ − 1

)2
dt.

By Wirtinger, first integral on right is nonnegative. Second integral on right
is obviously nonnegative. Thus, each integral must vanish:

π∫
0

[
ṙ2 − r2

]
dt = 0 and

π∫
0

r2
(
θ̇ − 1

)2
dt = 0.

But
π∫
0

r2
(
θ̇ − 1

)2
dt = 0 =⇒ θ̇ = 1 =⇒ θ = t + θ0 for θ0 = const.

Simplify: Rotate axes to get θ0 = 0, then θ = t.

And 1
4

π∫
0

[
ṙ2 − r2

]
dt = 0 =⇒ r = C sin t by the equality case of Wirtinger.

So r = C sin θ, which is polar equation of circle that passes through the

origin. (Exercise: Obtain the Cartesian form x2 +
(
y − C

2

)2
= C 2

4 .)
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Curvature

When is a curve ...curved?

Definition

If γ : I → Rn is a unit speed curve, then its curvature is κ := ∥γ̈∥.

Interpretation: Curvature as quadratic coefficient in Taylor’s theorem:

γ(t0 +∆t) = γ(t0) + γ̇(t0)∆t +
1

2
γ̈(t0)(∆t)2 +O(∆t3).

Can replace γ̇(t0) by unit tangent t(t0) = γ̇(t0).

γ̇(t0) · γ̇(t0) = 1 =⇒ 2γ̇(t0) · γ̈(t0) = 0, so γ̈ ⊥ γ̇ for a unit speed curve (if
γ̈ ̸= 0).

Then γ̈ = ±κn where n is unit normal vector (orthogonal to t).

Get γ(t0 +∆t) = γ(t0) + t(t0)∆t ± 1
2κ(t0)n(t0)(∆t)2 +O(∆t3)

Two choices for n: we choose it so that {t,n} is right-handed.
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Curvature formulas: general parametrization

Say t is a general parameter for γ, and s is an arclength parameter.

Chain rule dγ
dt = dγ

ds
ds
dt =⇒ dγ

ds = dγ/dt
ds/dt .

Chain rule again d2γ
ds2 = d

ds

(
dγ/dt
ds/dt

)
= dt

ds
d
dt

(
dγ/dt
ds/dt

)
= γ̈(t)ṡ(t)−γ̇(t)s̈(t)

(ṡ(t))3
.

Now use κ =
∥∥∥ d2γ

ds2

∥∥∥.
Then κ = ∥γ̈ ṡ−γ̇ s̈∥

|ṡ|3 .

Then κ =
∥γ̈ ṡ2−γ̇ ṡ s̈∥

|ṡ|4 = ∥γ̈(γ̇·γ̇)−γ̇(γ̇·γ̈)∥
(∥γ̇∥2)2

, using that ṡ2 =
(
ds
dt

)2
= ∥γ̇∥2 = γ̇ · γ̇

and therefore ṡ s̈ = γ̇ · γ̈.

Finally, the “BAC-CAB rule” B(A · C)− C(A · B) = A× (B× C) yields

κ = ∥γ̇×(γ̈×γ̇)∥
∥γ̇∥4 .

Notice that γ̇ ⊥ γ̈ × γ̇. Thus ∥γ̇ × (γ̈ × γ̇)∥ = ∥γ̇∥ ∥γ̈ × γ̇∥, so κ = ∥γ̈×γ̇∥
∥γ̇∥3 .
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Example: Circle

Circle in R2: γ(t) = (x0 + a cos t, y0 + a sin t), t ∈ [0, 2π).

γ̇ = a(− sin t, cos t), γ̈ = −a(cos t, sin t).

Use κ = ∥γ̈×γ̇∥
∥γ̇∥3 . Think of R2 as z = 0 plane in R3.

γ̇ × γ̈ =

∣∣∣∣∣∣
e1 e2 e3

−a sin t a cos t 0
−a cos t −a sin t 0

∣∣∣∣∣∣
= e1

∣∣∣∣ a cos t 0
−a sin t 0

∣∣∣∣− e2

∣∣∣∣ −a sin t 0
−a cos t 0

∣∣∣∣+ e3

∣∣∣∣ −a sin t a cos t
−a cos t −a sin t

∣∣∣∣
= e3

(
a2 sin2 t + a2 cos2 t

)
= a2e3.

Also, ∥γ̇∥ =
√
a2 sin2 t + a2 cos2 t = a.

Then κ = a2∥e3∥
a3 = 1

a . Circles have constant curvature = 1/radius.
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Osculating circles

Definition

If a curve γ : I → R2 has curvature κ(t) ̸= 0 at point p = γ(t), we define its
radius of curvature at p to be ρ(t) = 1/κ(t).

The osculating circle to γ at p
is the circle that

passes through p,

has the same tangent line as γ at p,

has radius ρ = 1
κ , and

lies on the concave side of γ.
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Signed curvature

Parametrize the curve γ(t) in R2.

The direction of increasing parameter is the orientation.

Define the unit tangent vector t = γ̇/ ∥γ̇∥.

Define the unit normal n by rotating t by π
2 counter-clockwise (also called

the right-handed sense).

Then the signed curvature κS is defined by

γ̈(s) = κSn

where s is an arclength parameter with ds/dt > 0 (i.e., same orientation as
t).

Relation to (ordinary) curvature is κ := |κS |.
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Interpretation: turning angle

Theorem (The turning angle)

There is a unique smooth function ϕ, called the turning angle, along the regular
curve γ such that ϕ(s0) = ϕ0 and t = (cosϕ(s), sinϕ(s)).

Tangent vector in {e1, e2} basis:
t = γ̇(s) = (cosϕ(s), sinϕ(s))

Calculate: ṫ = γ̈(s) = ϕ̇(s) (− sinϕ(s), cosϕ(s))

Normal vector in {e1, e2} basis:
n =

(
cos
(
ϕ(s) + π

2

)
, sin

(
ϕ(s) + π

2

))
= (− sinϕ(s), cosϕ(s))

Conclude that γ̈(s) = ϕ̇(s)n.

Compare to γ̈(s) = κSn to get κS(s) = ϕ̇(s).

The signed curvature is the rate of change of the turning angle with respect
to arclength.
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Hopf’s Umlaufsatz (rotation rate)

Integrate κS(s) = ϕ̇(s) over curve γ.

s∫
s0

κS(u)du =
s∫
s0

ϕ̇(u)du = ϕ(s)− ϕ(s0).

Take γ closed, with period T .

s0+T∫
s0

κS(u)du = ϕ(s0 + T )− ϕ(s0).

But ϕ(s0 + T )− ϕ(s0) = 2πk , k ∈ Z.

In fact, can argue that k = ±1 if curve traversed once; k is the winding
number.

Theorem (Hopf’s Umlaufsatz)

The total curvature of a closed curve of period T is
s0+T∫
s0

κS(u)du = ±2π.
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A useful formula

t = ∂γ
∂s = unit tangent vector.

Last slide: ∂2γ
∂s2 = κSn.

Then ∂3γ
∂s3 = κS

∂n
∂s +

∂κS

∂s n.

And then ∂γ
∂s · ∂3γ

∂s3 = κSt · ∂n
∂s +

∂κS

∂s t · n = κSt · ∂n
∂s = κS

∂γ
∂s · ∂n

∂s .

But ∂γ
∂s · ∂3γ

∂s3 = ∂
∂s

(
∂γ
∂s · ∂2γ

∂s2

)
− ∂2γ

∂s2 · ∂2γ
∂s2 = −∂2γ

∂s2 · ∂2γ
∂s2 = −κ2

S .

Comparing the last two lines, then

∂γ

∂s
· ∂n
∂s

= −κS .
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Application: Curve shortening flow (CSF)

From here on, I will write κ when I mean κS .

Let γ(u) be a parametrized curve. Let N(u) be the normal vector to the
curve. Let γ(t, s) be a smooth family of such curves, one for each value of
t ∈ (−T ,T ) for some T ∈ (0,∞]. The curve shortening flow is

∂γ

∂t
= κN(t).

A more useful definition uses the arclength parametrization and the inner
product ⟨·, ·⟩ (dot product on R2):〈

N,
∂γ

∂t

〉
= κ.

Online demonstration at https://a.carapetis.com/csf/
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A simple curve shortening flow: Circle

γ(s) = a
(
cos s

a , sin
s
a

)
(we’ll let a = a(t)).

γ′(s) = T =
(
− sin s

a , cos
s
a

)
.

γ′′(s) = κN = − 1
a

(
cos s

a , sin
s
a

)
.

γ̇ = ∂γ
∂t = ȧ

(
cos s

a , sin
s
a

)
− sȧ

a

(
− sin s

a , cos
s
a

)
.

⟨N, γ̇⟩ = −ȧ.

But by CSF, ⟨N, γ̇⟩ = κ = 1
a .

Therefore −ȧ = 1
a , so 2aȧ ≡ ∂

∂t

(
a2
)
= −2.

If the initial radius is a(0) = a0, then we get a2(t) = a20 − 2t.

The flow is γ(s, t) =
√
a20 − 2t

(
cos s√

a20−2t
, sin s√

a20−2t

)
The circle disappears at time t =

a20
2 .
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A CSF soliton: the “grim reaper”

γ(u, t) = (u, t − log cos u).

γ′ = (1, tan u), so ds
du = ∥γ′∥ = sec u.

T = (1,tan u)√
1+tan2 u

= (cos u, sin u).

N = (− sin u, cos u).

γ̇ = (0, 1) (velocity is vertical and constant).

⟨N, γ̇⟩ = cos u.

So this is a CSF if κ = cos u.

By direct computation, we have κN = ∂
∂sT = ∂u

∂s
∂T
∂u = cos u(− sin u, cos u)

so indeed κ = cos u!
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How to prove the isoperimetric inequality with CSF

Say that for each t ∈ [0,T ), γ(u, t) is a closed curve with arclength function
s = s(u, t) and say that ∂γ

∂t = κN.

Four claims:

1 The length L(t) of the curve obeys dL
dt = −

∫
κ2ds.

2 The enclosed area A(t) obeys dA
dt = −

∫
κds.

Then dA
dt = −2π by Hopf’s Umlaufsatz.

3 Any such flow ends in finite time, say T .

4 As t ↗ T , the curvature approaches a uniform function of time:
κ(s, t) ↗ k(t) → ∞.

Then the curve becomes a circle of radius 1
k(t) .
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Sketch of proof

If the Claims are true, then

d

dt

(
L2 − 4πA

)
=2L

dL

dt
− 4π

dA

dt

= − 2L

∫
γ

κ2ds + 4π

∫
γ

κds

≤ − 2

(∫
γ

κds

)2

+ 4π

∫
γ

κds (Hölder inequality)

= − 2

(∫
γ

κds

)2

+ 2

(∫
γ

κds

)2

(Umlaufsatz)

= 0.

and since L2(t)− 4πA(t) → 0 as t ↗ T by Claim 3, then at every 0 ≤ t < T we
have L2 − 4πA ≥ 0. So L2 − 4πA ≥ 0 for the initial curve γ(u, 0).

This is the isoperimetric inequality. Now we must prove the Claims, which
are facts about CSF.

Eric Woolgar (University of Alberta) IUSEP: Isoperimetric inequality 38 / 42



Claim 1: dL
dt = −

∫
κ2ds

If u is a parameter for the curve γ(u) = (x(u), y(u)) and s is an arclength

parameter then ds =

√(
dx
du

)2
+
(

dy
du

)2
du = ∥γ′(u)∥ du. Then

∂

∂t

(∥∥∥∥∂γ∂u
∥∥∥∥2
)

=2
∂γ

∂u
· ∂

∂u

∂γ

∂t

=2
∂γ

∂u
· ∂

∂u
(κn) by the CSF equation

=2

∥∥∥∥∂γ∂u
∥∥∥∥2 ∂γ∂s · ∂

∂s
(κn) since

∂

∂u
=

∥∥∥∥∂γ∂u
∥∥∥∥ ∂

∂s

= − 2κ2

∥∥∥∥∂γ∂u
∥∥∥∥2 ,

using that ∂γ
∂s · ∂

∂s (κn) = t ·
(
∂κ
∂s n+ κ∂n

∂s

)
= −κ2 since t · n = 0 and

t · ∂n
∂s = −κ by our earlier “useful equation”.
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Claim 1 continued: dL
dt = −

∫
κ2ds

Then
∂

∂t

(∥∥∥∥∂γ∂u
∥∥∥∥) = −κ2

∥∥∥∥∂γ∂u
∥∥∥∥ ,

and so

dL

dt
=

d

dt

∫
ds

=
d

dt

∫ ∥∥∥∥∂γ∂u
∥∥∥∥ du

=

∫
∂

∂t

∥∥∥∥∂γ∂u
∥∥∥∥ du

= −
∫

κ2

∥∥∥∥∂γ∂u
∥∥∥∥ du

= −
∫

κ2ds.

QED
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Claim 2: dA
dt = −

∫
κds

Begin with A = 1
2

∫
R
(xdy − ydx) = 1

2

∫
γ
(x , y) ·

(
∂y
∂s ,−

∂x
∂s

)
ds = 1

2

∫
γ
γ · nds.

Then dA
dt = 1

2

∫
γ

(
∂γ
∂t · n+ γ · ∂n

∂t

)
ds − 1

2

∫
γ · nκ2ds, where the −κ2 arises

in the same way it did when proving Claim 1.

Now ∂γ
∂t · n = −κ from the CSF equation.

Can show that ∂n
∂t = ∂κ

∂s t by differentiating the flow equation.

Then

dA

dt
=

1

2

∫
γ

(
−κ+

∂κ

∂s
γ · t− γ · nκ2

)
ds

=
1

2

∫
γ

(
−κ− κ

∂γ

∂s
· t− κγ · ∂t

∂s
− γ · nκ2

)
ds

=
1

2

∫
γ

(
−2κ+ κ2γ · n− γ · nκ2

)
ds using

∂2γ

∂s2
=

∂t

∂s
= −κn

= −
∫
γ

κds QED

(4)

Eric Woolgar (University of Alberta) IUSEP: Isoperimetric inequality 41 / 42



Conclusion

I will omit the proof of Claim 3. See

ME Gage, An isoperimetric inequality with applications to
curve-shortening, Duke Math J 50 (1983) 1225–1229.
MA Grayson, The heat equation shrinks embedded plane curves to
round points, Journal of Differential Geometry 26(2) (1987) 285–314.
B Andrews, B Chow, C Guenther, and M Langford, Extrinsic geometric
flows, Graduate Studies in Mathematics 206 (American Mathematical
Society, Providence, 2020).

There are many other problems that can be treated using curvature flows.

One example: Can the isoperimetric inequality on the sphere be proved
this way?
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