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Elementary Calculus

@ A farmer wishes to enclose a rectangular region R with a fence.
@ The fence has total length L = const > 0.

@ Show that the area A that can be enclosed obeys

L2

A< —

— 16

and that 2
A= —

16

if and only if R is a square.

This simple problem has a serious flaw: why should the region R be a rectangle?

. . 2 2 2
@ A circle of perimeter L encloses area A =1 ()" = & > L.
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The isoperimetric problem

@ In the plane:

o Let / C R be a connected interval of the real line.
o Let v:/ — R be a simple closed curve of arclength L, enclosing a
region R of area A.
o Show that
[> —4rA>0

and that L? = 47 A if and only if ~ is a circle.
@ In the 2-sphere of radius a:

o Show that )

A
[ —47rA+ = >0
a

and that [? = 47 A if and only if v is a great circle.

We will prove the first of these two statements, but first we have to define
everything. The key tools are differential geometry and geometric analysis.
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Parametrized curves

Definition
A parametrized curve is a map v : | — R", where | is a connected interval of R. J

@ Example: It's very easy to parametrize a graph y = f(x).

e Just choose x to be the parameter; i.e., write
x(t) =t,
y(t) =£(t).
@ Don't forget to choose domain; for example, perhaps

tel

for some interval | C R.
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More examples

@ The parametrized curve < y(t)
te
x(t)
@ The parametrized curve { y(t)
te

counter-clockwise.

@ The parametrized curve < y(t)
te

counter-clockwise.

t,
a2 — t2 , is a semi-circle.

[_ava] s

cost ,
sint, s a circle, traversed once

[0,27) ,

cost ,
sint, is a circle, traversed twice

[0,47) ,

Notice the parametrization carries extra information not available from the

graphical description of a curve.
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N
Example: The astroid

© The parametrized curve v(t) = (cos® t,sin’ t),
t € [0,27), is called an astroid.

x(t) = cos® t
@ Can write it as { y(t) = sin®t
t € [0,2m)
@ Then x¥/3 = cos?t and y?/3 =sin’t,
so x?/3 4 y2/3 = 1.
; Ly 2/3)3/2
@ Graphical form: y =+ (1 — X ) :
@ Level set form:

o Let z= f(x,y) = x?° + y?I3,
e Then the astroid is the level set
z=f(xy) =1

@ Graphical and level set forms have less information than parametrized form.
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Tangent vectors

@ Recall tangent line to graph y = f(x) at (xo, Y0)
is y —yo = f'(x0) (x — x0)-

@ Tangent vector: Any (non-zero) vector parallel to tangent line.

@ Parametrized form of line: Take s € R and
x(s)=x0+s
y(s) = yo + f'(x0)s

o Differentiate wrt s: x'(s) =1, y'(s) = f'(xo).

@ Tangent vectors to line are the vectors parallel to (1, f'(x)).
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Tangent vectors to parametrized curves

@ Parametrized curve v : | — R" is a vector-valued function.

o Y(t) = (7(t), 1x(2); -, 7n(2)) = (xa(2), x2(2), - -, xa(2)).

Definition

dX]_ dX2 dX,,
! — — —
(8 =3(t) = dt_<dt dt’ "dt)
At A — ()
At—0 At

Then +/(t) is a tangent vector to curve « at t provided 7/(t) # (0,...,

0).

(Generally, we will just write 0 even if we mean the O-vector (0,0, ...

Eric Woolgar (University of Alberta) IUSEP: Isoperimetric inequality

,0).)



Example

o (t) = t%e; + t?ep, t € R,
{e1, e} = orthonormal basis (ONB).

t) =13

. x(t) b=y
y(t) =t

@ Chain rule:

dy __ dydx __dy 2 dy __ 2t
o F =% = 2t=F -3t° = F = 35 undefined at t = 0.

Definition
A parametrized curve v : | — R" is
@ smooth at ty € | if all derivatives of all components x;(t) exist at t = ty, and

® regular at ty € | if it is smooth at t; and Z—Z(to) # (0,...,0); otherwise ty is
a singular point.

The above example is smooth but not regular at t = 0.
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N
Arclength

@ Recall arclength in R?:

s= [ds= [ /2T dy? —f (%) + (%) e
@ InR™ s:f\/ D) (dx") t} dg}dt f‘

d
at dt

Definition
The arclength function of a curve 7 : [ty, t1] — R" is

s :_f dz(tf ‘dt’
to
for t € [to, t1].
Fundamental Theorem of Calculus — % = Hﬁdtﬂ .

This is called the speed of the curve.

Eric Woolgar (University of Alberta) IUSEP: Isoperimetric inequality 10/ 42



|
Example: Log spiral

@ The logarithmic spiral is the curve
~(t) = e (cos t,sin t).

@ +/(t) = ef(cost —sint,sint + cost)

o ||7/|| = et\/(cost —sint)2 + (sint + cos t)2 = v/2e’.
t

o s(t) = [V2eTdr = V2 (et — eP).
to

@ty — —oo = 7(to) — (0,0), s(t) — v2et.

@ 7 :(—o00,t] — R2 has finite arclength,
but no initial endpoint.
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Unit speed curves

o If ||3(t)|| =1, v is unit speed and t is an arclength parameter or unit speed
parameter.

o If ||4(t)|| = k = const > 0, 7y is constant speed and t is an affine parameter.

@ Fact:

Let v be any unit vector field v - v = |jv||?> = 1.

Let (t) be a unit speed curve.

d d

But then < (5 -+) = 0.

Chain rule: -4 =0.

Conclude that 4 L % along any unit speed curve whenever acceleration
5 # 0.

For unit speed curves, write t := y = unit tangent vector. Note that

It] = vE-t=1.
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|
Reparametrization

@ Say v : (a,b) - R" is a curve, and
@ Say 7 :(4,b) = R"is a curve.
Definition
If
@ there is a smooth map ¢ : (4, b) — (a, b)
@ with smooth inverse ¢~ : (a, b) — (4, b), such that
o 4(8) = 2(&(B)) = (v 0 6)(F) = (1) for all £ & (5,5),

then 4 = vy o ¢ is a reparametrization of .
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Theorem

Theorem

Any reparametrization of a regular curve is also a regular curve.

Proof.
o Let t = ¢(f) and F(f) = (t).
@ Then t = ¢~ 1(t) so t = () = p(d71(1)).

@ Chain rule: F?JTZ =1, so —? #0.

vy _ d __dvd
od—z—d—f(w(r»—d—:d—%’.

@ Now + is regular so ;é 0, and # 0.
o Thus 21 #0.

Works because the reparametrization ¢ is smooth with smooth inverse.

Eric Woolgar (University of Alberta) IUSEP: Isoperimetric inequality 14 /42



The arclength function of a regular curve is smooth

@ Say v:/ —R2:t— (x(t),y(t)) is a regular curve.

Then x(t) and y(t) are smooth functions.
@ The square root function f(w) = y/w is smooth if w # 0.

@ Since 7 is regular, X2 + y? # 0.

Thus £(t) = /X2 + y2 is smooth.
t

Therefore s(t) = [ 2 (t')dt’ is smooth.
to
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Regular curves have unit speed parametrizations

Theorem

A parametrized curve has an arclength parametrization iff it is regular.

Proof.

@ Curve 5 : | — R? and reparametrization t = ¢(£), such that v(t) = 5(f).

i c 4y dydt N — || 9]l |4t
o Chainrule: 3 = 3 7 = ‘ dt || = ” a | g
~ . dy || _ dv - .
= If t is arclength, then HE =1, so 5! is never zero. Then ~(t) is regular.
dy ds _ ||dv . . . .
= o If 51 #0, then 2 = H 7|l # 0, so s is smooth and strictly increasing.
dy _ dvds o |ldv||l — || dT|||ds| — ||9%|| s
o Then ‘& =3 G 2| =2l % =2 %

° But5:f‘

dy — ds _ ||dy
dt H dt dt — || dt
o Compare last two lines. Then H?

=1, so A(s) is unit speed.
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Closed curves

Example:
@ Ellipse ;fé + f;; =1, p,q > 0 are constants.
@ Parametrize as y(t) = (pcost,gsint), t € R.
@ Then y(t +27) = ~(t) for all t € R.

@ 7 is 2m-periodic.

Definition
@ If v(t+ T) = ~(t) for all ¢t and for some T > 0, then v is T-periodic.
@ If y(t) = p for all t (where p € R" is a point), then v is a constant curve.
@ If v is T-periodic and not constant, then ~ is a closed curve.

@ A simple closed curve has no self-intersections: ~y(t1) # v(t2) whenever
|t —t1] < T.
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Jordan curve theorem

Simple closed curves, also called Jordan curves, are closed plane curves that do
not self-intersect.

Theorem (Jordan curve theorem)

Every simple closed curve separates R? into two disjoint regions,
called the interior and exterior regions.

The interior region is bounded (contained within a circle).

The exterior region is unbounded.

Simple statement, surprisingly difficult to prove:
see graduate level algebraic topology texts for proof.
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The isoperimetric inequality

Theorem

Let v : | — R? be a simple closed curve of length L(7y), enclosing a region of area
A(v). Then

AR) < o (L)

Equality holds iff ~ is a circle.

This simple theorem has motivated a great many proofs and almost as many
profound ideas. The most common proof uses

Theorem (Wirtinger's inequality)
Let F : [0,7] — R be a smooth function with F(0) = F(m) = 0. Then

] (%)2 dt > ](F(t))2 dt,
0 0

and equality holds iff F(t) = Csint, C = const.

4
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-
Proof of Wirtinger's inequality

Set-up:
@ Define G(t) = F(t)/sint, t € (0, ).

o limyor G(£) = limeor 28 = limeor 28 = lim,_ o+ F'(t). Exists

sin t cos t

because F is smooth. Likewise, lim;_,.— G(t) exists. So define G(0), G()
by continuity (i.e., G(0) := lim;_ 0+ G(t)).

@ Then G : [0,7] — R is smooth.
@ Then F(t) = G(t)sint, so F(t) = G(t)sint + G(t)cost.
@ Use this and integration by parts to compute

™

F2(t) — F3(t)) dt = [ G2(t)sin® tdt > 0.
[#o-roya- |

0

@ This proves the inequality.
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N
Equality case

o Last slide: [ (F2(t) - F2(t)) dt = [ G?(t)sin® tdt > 0.
0 0

o From this, if [ (F’2(t) - F2(t)) dt = 0, then necessarily
0
[ G2(t)sin® tdt = 0.
0

@ Because the integrand is nonnegative, the integral is zero only if

G(t)sint =0 for all t € [0, 7].
@ Then G(t) =0, so G(t) = C = const.
@ Since G(t) = F(t)/sint, we have F(t) = Csint, as required.
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Proof of isoperimetric inequality

Unit speed closed curve v, arclength L, positioned so that (0

s

Reparametrize by t = 7. Then t € [0, 7], speed is ||¥(t)| =
Polar coordinates: y(t) = (r(t),8(t)). Then

)=
L— = const.
™

U

2= 3@ =7 [I3@Pde=r [ (#+02F) & @

0

@ From Calculus, area enclosed by a polar curve is

A= E/(xy'_x'y) dt — E/ﬂ(r)@(r)dr. @)
0 0
@ Combine (1) and (2):
L2 _17r 2242 2 _1ﬂ-2 2 (42 _ ng
E_A_Z/(r +rogc —2r 0>dt_z/[r +r (0 —20)}dt.
0 0
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Isoperimetric inequality continued

@ Complete the square:

L? 1 T o o (s 2
E—A—Z/[r—r—kr (9—1)}&
0
7 (3)
21/[r'2—r2]dt
4
0

by Wirtinger's inequality, which we recall says that [ rdt > [ r?dt for any
0 0
smooth function r(t) such that r(0) = r(7) = 0.

@ This proves the inequality.
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N
Case of equality

. 2 . . .
We still have to show that i—ﬂ = Aiff v is a circle.
. . 2
@ If vis a circle, then L = 27r so L— =7r2.

But if 7 is a circle, then A = 7r?. Hence i = A

Must prove converse: that if £ E = A then 7 is a circle.

Use % — A =0 in first line of (3):

12 1 [T a0 ol \2
O—E—A—Z/[r—r—f—r(e—l)]dt

0
:%/[r —r]dt—l—l/rz(é—l) dt
0 0
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Equality case continued

T 2
oLastinde:O:%f[r—r]dt—i— fr( 1) dt.

@ By Wirtinger, first integral on right is nonnegative. Second integral on right
is obviously nonnegative. Thus, each integral must vanish:

s s

/[r’z—rz]dtzo and /rz(é—l)zdtzo.

0 0

oButfr( 1) dt=0 = =1 = 0 =t+0 for Oy = const.
Slmpllfy Rotate axes to get 8y = 0, then 6 = t.

© And 1 [[F?=r?]dt =0 = r = Csint by the equality case of Wirtinger.
0

@ So r = Csin#, which is polar equation of circle that passes through the

origin. (Exercise: Obtain the Cartesian form x* + (y — %)2 = CTZ)
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R
Curvature
When is a curve ...curved?
Definition

If v : 1 — R" is a unit speed curve, then its curvature is x := ||¥/|. J

Interpretation: Curvature as quadratic coefficient in Taylor's theorem:

v(to + At) = v(to) + F(to) At + %*y(to)(At)2 +0(At).

Can replace §(tp) by unit tangent t(tp) = ¥(to).

A(to) - ¥(to) =1 = 2%(to) - H(to) = 0, so ¥ L # for a unit speed curve (if
540).

Then 4 = +xn where n is unit normal vector (orthogonal to t).
Get v(to + At) = y(to) + t(to) At + 2r(to)n(to)(AL)? + O(AL3)

@ Two choices for n: we choose it so that {t,n} is right-handed.
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Curvature formulas: general parametrization

@ Say t is a general parameter for v, and s is an arclength parameter.

@ Chain rule Z—Z = %% - Z—Z = CCI;Z//:/I:-
. codly _d (dy/dt) _ ded (dy/dt _ F(0)s(t)—¥(8)3(2)
@ Chain rule again d—s} =% (dZ/dt) = d_zﬁ (dZ/dt) =1 s(s'(t)’;s =4,
2

@ Now use k = ’ ZTZ
® Then = 13235l

Is* -

262 Ass W N are s . ) 2 -2 ..
o Then = I T - HW(V(T\)&HZ)(Q A, using that 82 = (%) = [I31I* =4 ¥

and therefore $5 =+ - 4.

@ Notice that % L % x 4. Thus [|5 x (% x )| = |7l |5 x 4l, so k= Hmvg\l_
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Example: Circle

Circle in R?: v(t) = (xo + acost,yo + asint), t € [0,2m).
@ 4 =a(—sint,cost), ¥ = —a(cost,sint).

Use k = L3I Think of R2 as z = 0 plane in R3.

°
ET
e (<)) e3
@ yxy=| —asint acost 0
—acost —asint 0
_ e | A€ot 0 e —asint 0 te —asint acost
e —asint 0 2| —acost 0 3| —acost —asint
= e3 (2 sin’ t + a% cos? t) = a%e;.
o Also, ||| = Va?sin®t + a2cos? t = a.
@ Then k = —Hf‘—‘l = 2. Circles have constant curvature = 1/radius.
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Osculating circles

Definition
If a curve v : I — R? has curvature x(t) # 0 at point p = (t), we define its
radius of curvature at p to be p(t) = 1/x(t).

The osculating circle to v at p
is the circle that

@ passes through p,
@ has the same tangent line as vy at p,
@ has radius p = % and

@ lies on the concave side of ~.
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Signed curvature

@ Parametrize the curve y(t) in R2.
@ The direction of increasing parameter is the orientation.
@ Define the unit tangent vector t = 7/ ||7]|.

@ Define the unit normal n by rotating t by 5 counter-clockwise (also called
the right-handed sense).

@ Then the signed curvature ks is defined by
Y(s) = ksn

where s is an arclength parameter with ds/dt > 0 (i.e., same orientation as
t).

@ Relation to (ordinary) curvature is x := |ks|.
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Interpretation: turning angle

Theorem (The turning angle)

There is a unique smooth function ¢, called the turning angle, along the regular
curve v such that ¢(sg) = ¢o and t = (cos ¢(s),sin ¢(s)).

Tangent vector in {ej, e} basis:

t = (s) = (cos ¢(s),sin ¢(s))

Calculate: t = %(s) = ¢(s) (— sin ¢(s), cos B(s))
Normal vector in {e;,e,} basis:

n = (cos (¢(s) + %) ,sin (¢(s) + 3))

= (=sin ¢(s), cos ¢(s))

Conclude that 5(s) = ¢(s)n.

Compare to 4(s) = ksn to get | ks(s) = ¢(s).

The signed curvature is the rate of change of the turning angle with respect
to arclength.
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Hopf's Umlaufsatz (rotation rate)

Integrate ks(s) = ¢(s) over curve 7.

s

[ s(u)du = [ o(u)du = 6(s) — d(s0).

So

Take ~y closed, with period T.
so+T
J rs(u)du=(so+ T) — d(s0).
S0
But ¢(so + T) — ¢(s0) = 27k, k € Z.

In fact, can argue that k = +1 if curve traversed once; k is the winding
number.

Theorem (Hopf's Umlaufsatz)

so+T

The total curvature of a closed curve of period T is [ ks(u)du = £27.

S0
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A useful formula

o t= ‘37 = unit tangent vector.
S
. o2
@ Last slide: 57 = rsn.
&y _ Ons
@ Then g Ks 85 + n.
OAndthenQZa kst - +a—”5tn kst - Ks2Y . On
os 98 — IS = Rs as—Sas ds
o But 2.0 _ 0 m.& Ly oy 0y Py 2
s 0s3 = 0s \ s 0s? 0s2  0s? 0s2  0s? S
@ Comparing the last two lines, then
0y On
— - — = —Ks.
Os Os
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N
Application: Curve shortening flow (CSF)

@ From here on, | will write k when | mean xs.

@ Let y(u) be a parametrized curve. Let N(u) be the normal vector to the
curve. Let y(t,s) be a smooth family of such curves, one for each value of
t e (=T,T) for some T € (0,00]. The curve shortening flow is

oy
E = K,N(t).

@ A more useful definition uses the arclength parametrization and the inner
product (-,-) (dot product on R?):

o\ _
<N,E> = K.

Online demonstration at https://a.carapetis.com/csf/
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A simple curve shortening flow: Circle

@ (s) = a(cos 2,sin2) (we'll let a = a(t)).

® 7/(s)=T=(—sin2,cos2).

® 7"(s) = kN = —1 (cos £ sin $).
o 4=2%1=3(cos2,sin2) — 2 (—sin, coss).
o (N,%) = —a

@ But by CSF, (N,4) =k = %
@ Therefore —a = % so 2aa = % (32) = -2.

o If the initial radius is a(0) = ao, then we get a*(t) = a3 — 2t.

. _ /2 s i >
© The flow is v(s, t) = \/a3 — 2t (cos \/ag—2t’sm \/a§—2f)

2
@ The circle disappears at time t = %1
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N
A CSF soliton: the “grim reaper”

¥(u, t) = (u, t — log cos u).

v = (1,tanu), so £ = ||7/| = secu.

(1,tan u) .
o = =0~ = .
T T (cos u, sin u)

@ N = (—sinu,cosu).

@ 4 = (0,1) (velocity is vertical and constant).

@ (N,¥) = cosu.

@ So this is a CSF if k = cos u.

@ By direct computation, we have kN = 2T = 249T — cos u(— sin u, cos u)

so indeed k = cos u!
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How to prove the isoperimetric inequality with CSF

Say that for each t € [0, T), v(u, t) is a closed curve with arclength function
s = s(u, t) and say that % = kN.

Four claims:
@ The length L(t) of the curve obeys % = — [ K%ds.
@ The enclosed area A(t) obeys 94 = — [ kds.
e Then % = —27 by Hopf’s Umlaufsatz.
© Any such flow ends in finite time, say T.

Q@ Ast 7T, the curvature approaches a uniform function of time:
k(s,t) S k(t) — co.

o Then the curve becomes a circle of radius ﬁ
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N
Sketch of proof

If the Claims are true, then

d, ., dl  dA

= —2L//{2ds+47r/nds
g v
2
-2 </ nds) +47r/ kds (Holder inequality)
g v

-2 (A ;-@ds)2 +2 (/7 mds)2 (Umlaufsatz)

=0.

IN

and since L?(t) — 47A(t) - 0ast /T by Claim 3, then at every 0 < t < T we
have L2 — 471A > 0. So L% — 47 A > 0 for the initial curve y(u,0).

@ This is the isoperimetric inequality. Now we must prove the Claims, which
are facts about CSF.
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N
Claim 1: % = —f/ﬁ;2ds

@ If uis a parameter for the curve y(u) = (x(u), y(u)) and s is an arclength

2
parameter then ds = 4/ (%)2 + (%) du = |7/ (u)|| du. Then

0 0y 2 _287 0 Ov
ot \ ||Ju - "0u Ou Ot
:2% . % (xn) by the CSF equation
L lov|Poy o 9 |ov| @
—2'5 g&(ﬂn) smce%— % &
oy 2
= —2x%2||ZL
"l oul
using that 21 - 2 (kn) =t - (2n+ k) = —«? since t-n = 0 and
t % = —k by our earlier “useful equation”.
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Claim 1 continued: % = — [ K3ds
hen
9 (v = _,2||2Y
ot \||[ou||) oul|’
and so
dL d
E —E/ds
_d [|ov
T dt ou
/81‘ du du
v
_ 2|27
= /K aquu
= —/nzds.
QED
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N
Claim 2: % = —f/fds

@ Begin with A= 1 [(xdy — ydx) = 2f x,y) - (E’__) ds = 2f v - nds.

© Then 4 =1 f ( n4y- 6t) ds — 3 [~ - nk%ds, where the —x? arises
in the same way it did when proving Clalm 1.

o Now % -n = —x from the CSF equation.

@ Can show that % = %t by differentiating the flow equation.
@ Then

ﬁ—1/ —Ii—f—% ‘t—7y-nk?|ds
a2/, Os Tone

1 oy ot ’
—5/7</£ /-cgi my'&—fwmi)ds
1 2 2 . 62')/ 8t (4)
ZEL(—Z@—I—/{ y-n—~-nk?)ds using — il el
:—//ids QED
~
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Conclusion

@ | will omit the proof of Claim 3. See

o ME Gage, An isoperimetric inequality with applications to
curve-shortening, Duke Math J 50 (1983) 1225-1229.

o MA Grayson, The heat equation shrinks embedded plane curves to
round points, Journal of Differential Geometry 26(2) (1987) 285-314.

e B Andrews, B Chow, C Guenther, and M Langford, Extrinsic geometric
flows, Graduate Studies in Mathematics 206 (American Mathematical
Society, Providence, 2020).

@ There are many other problems that can be treated using curvature flows.

e One example: Can the isoperimetric inequality on the sphere be proved
this way?
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