

Lower Ricci curvature bounds via optimal transport

Brendan Pass (U. Alberta)

July 11, 2025

Plan of the lectures

Today: introductory material.

- What is optimal transport?
- What is known? What sort of mathematics is involved?
- Why should I care? What can I do with it? Applications?

Friday: a deeper look at one selected topic. At the end of today's talk, we can vote to decide on the topic. Choices include:

- Matching theory (economics): what sort of patterns emerge when agents match together (for instance, workers and firms on the labour market, or husbands and wives on the marriage market).
- Density functional theory (physics/chemistry): how does a system of electrons organize itself to minimize interaction energy.
- Curvature and entropy (geometry): How does curvature relate to the behavior of densities along interpolations?

Both talks will focus on **ideas** and we will try to avoid getting bogged down in too many details.

Plan of the lectures

Today: introductory material.

- What is optimal transport?
- What is known? What sort of mathematics is involved?
- Why should I care? What can I do with it? Applications?

Friday: a deeper look at one selected topic. At the end of today's talk, we can vote to decide on the topic. Choices include:

- Matching theory (economics): what sort of patterns emerge when agents match together (for instance, workers and firms on the labour market, or husbands and wives on the marriage market).
- Density functional theory (physics/chemistry): how does a system of electrons organize itself to minimize interaction energy.
- Curvature and entropy (geometry): How does curvature relate to the behavior of densities along interpolations?

Both talks will focus on **ideas** and we will try to avoid getting bogged down in too many details.

Example 1: A C^2 function $f : [0, 1] \rightarrow \mathbb{R}$ is convex if

① $\frac{d^2f}{dx^2} \geq 0, \forall x \in (0, 1)$ (**analytic** definition)

Analytic vs synthetic

Example 1: A C^2 function $f : [0, 1] \rightarrow \mathbb{R}$ is convex if

- ① $\frac{d^2f}{dx^2} \geq 0, \forall x \in (0, 1)$ (**analytic** definition)

or, equivalently,

- ② $f((1 - t)x_0 + tx_1) \leq (1 - t)f(x_0) + tf(x_1), \forall x_0, x_1, t \in (0, 1)$ (**synthetic** definition)

Example 1: A C^2 function $f : [0, 1] \rightarrow \mathbb{R}$ is convex if

① $\frac{d^2f}{dx^2} \geq 0, \forall x \in (0, 1)$ (**analytic** definition)

or, equivalently,

② $f((1-t)x_0 + tx_1) \leq (1-t)f(x_0) + tf(x_1), \forall x_0, x_1, t \in (0, 1)$
(**synthetic** definition)

Properties:

- ① local, easy to check
- ② general (does not *require* smoothness), stable (under pointwise convergence), *implies* some smoothness

Alexandrov's theorem:

② $\implies \frac{d^2f}{dx^2}$ exists a.e.

Example 2: *Nonnegative sectional curvature on a Riemannian manifold*

On a Riemannian manifold M (curved surface), sectional curvature measures how quickly geodesics (shortest paths) spread out, relative to Euclidean space:

Example 2: Nonnegative sectional curvature on a Riemannian manifold

On a Riemannian manifold M (curved surface), sectional curvature measures how quickly geodesics (shortest paths) spread out, relative to Euclidean space: $K(u, v)$ represents the curvature in the direction of tangent vectors u and v (how quickly two geodesics in those directions move apart). The precise definition depends on the smooth structure of the space.

$$d(\gamma(t), \sigma(t)) = \sqrt{2}t\left(1 - \frac{K(u, v)}{12}t^2 + O(t^4)\right)$$

(if u and v are orthogonal).

Example 2: Nonnegative sectional curvature on a Riemannian manifold

On a Riemannian manifold M (curved surface), sectional curvature measures how quickly geodesics (shortest paths) spread out, relative to Euclidean space: $K(u, v)$ represents the curvature in the direction of tangent vectors u and v (how quickly two geodesics in those directions move apart). The precise definition depends on the smooth structure of the space.

$$d(\gamma(t), \sigma(t)) = \sqrt{2}t\left(1 - \frac{K(u, v)}{12}t^2 + O(t^4)\right)$$

(if u and v are orthogonal). Non-negative sectional curvature $K(u, v) \geq 0 \iff$ geodesics stay closer together than in Euclidean space.

Theorem (Alexandrov)

M has non-negative sectional curvature iff, for all small geodesic triangles p, q, r , and any $x \in [r, q]$, we have

$$d(x, p) \geq d(X, P) = |X - P|$$

- P,Q,R is the Euclidean comparision triangle.
- extends notion of non-negative sectional curvature to geodesic spaces. Geodesics spaces with non-negative sectional curvature are called **Alexandrov spaces**.
- Gromov-Hausdorff stable
- Theory of Alexandrov spaces developed by Burago, Perelman, Petrunin, Ohta (and Alexandrov):
 - *almost smooth* structure (like a manifold with convex-concave transition maps); singular points have measure zero.

What about Ricci curvature?

There are many other types of curvature. Are there synthetic formulations?

What about Ricci curvature?

There are many other types of curvature. Are there synthetic formulations?

Ricci curvature measures *volume* distortion along geodesic cones (relative to Euclidian space).

What about Ricci curvature?

There are many other types of curvature. Are there synthetic formulations?

Ricci curvature measures *volume* distortion along geodesic cones (relative to Euclidian space). For an angular region

$|A(x, v, \theta, r)| \sim \frac{1}{2}\theta r^2 - \textcolor{red}{Ric(v, v)} \frac{1}{24}\theta r^4$ (in two dimensions, with $|v| = 1$ and small r, θ)

What about Ricci curvature?

There are many other types of curvature. Are there synthetic formulations?

Ricci curvature measures *volume* distortion along geodesic cones (relative to Euclidian space). For an angular region

$|A(x, v, \theta, r)| \sim \frac{1}{2}\theta r^2 - \textcolor{red}{Ric(v, v)} \frac{1}{24}\theta r^4$ (in two dimensions, with $|v| = 1$ and small r, θ)

$Ric \geq 0$ (ie $Ric(v, v) \geq 0$ for all v) means that objects look bigger than they are (light test).

Motivation

$Ric \geq 0$ implies:

- 1 Bonnet-Myers theorem (bounds on diameter) (need strict inequality)
- 2 Bishop-Gromov inequality (volume distortion of geodesic balls).
- 3 Isoperimetric inequalities
- 4 Brunn-Minkowski inequalities
- 5 Li-Yau estimates on heat kernels

Theorem (Gromov)

The set of compact manifolds with diameter $\leq D$ with $Ric \geq 0$ is precompact (Gromov-Hausdorff distance)

Limit points may not be smooth....do they satisfy $Ric \geq 0$ (in some sense)?

Monge's optimal transport problem

- $f(x), g(y)$ probability densities on a compact Riemannian manifold M .

Monge's optimal transport problem

- $f(x), g(y)$ probability densities on a compact Riemannian manifold M .
- $c : M \times M \rightarrow \mathbb{R}$ a transport *cost* function.

- $f(x), g(y)$ probability densities on a compact Riemannian manifold M .
- $c : M \times M \rightarrow \mathbb{R}$ a transport *cost* function.

Monge Problem:

minimize:

$$\int_M c(x, \mathcal{F}(x))f(x)dx$$

among maps $\mathcal{F} : M \mapsto M$ pushing f to g .

- $f(x), g(y)$ probability densities on a compact Riemannian manifold M .
- $c : M \times M \rightarrow \mathbb{R}$ a transport *cost* function.

Monge Problem:

minimize:

$$\int_M c(x, F(x))f(x)dx$$

among maps $F : M \mapsto M$ pushing f to g .

If F is smooth and injective, we have the **change of variables** formula:

$$|\det(DF(x))| = f(x)/g(F(x))$$

For $c(x, y) = |x - y|^2$ (on \mathbb{R}^n) or $d^2(x, y)$ (on M):

Theorem (Brenier/McCann)

There exists a unique solution F to Monge's problem.

- When $M \subseteq \mathbb{R}^n$, $F(x) = \nabla u(x)$, u convex.
- More generally, $F(x) = \exp_x(\nabla u(x))$, where u is d^2 -convex.

Note: $\exp_x(v)$ starts at x and then moves distance $|v|$ along the tangent vector v . In \mathbb{R}^n , $\exp_x(v) = x + v$

Optimal transport formulation of Ricci curvature ≥ 0

Optimal transport gives a nonlinear **interpolation** between measures:

$$f_t(x)dx := \exp_x(t\nabla u)_\#(f(x)dx)$$

The **entropy** functional, along these interpolations detects Ricci curvature:

$$H(f) := \int \ln(f(x))f(x)dx$$

The physical entropy, $-H$, measures how spread out, or random, the density is.

The **lazy gas** experiment:

Theorem (Otto-Villani/Cordero-Erausquin-McCann-Schmuckenschlager/Sturm-von Renesse)

$Ric \geq 0$ iff $t \mapsto H(f_t)$ is convex for any f, g .

Optimal transport makes sense on very general spaces, and this definition extends to **metric measured length spaces**.

Sketch of part of the proof

(\implies)

- $\rho \mapsto \ln(\rho^{-n})$ is **convex and decreasing**.

Sketch of part of the proof

(\implies)

- $\rho \mapsto \ln(\rho^{-n})$ is **convex and decreasing**.
- Set $F_t(x) = \exp(t\nabla u(x))$.

Sketch of part of the proof

(\implies)

- $\rho \mapsto \ln(\rho^{-n})$ is **convex and decreasing**.
- Set $F_t(x) = \exp(t \nabla u(x))$.
- $Ric \geq 0$ and optimal transport imply **concavity** of $t \mapsto J_t^{1/n}(x) := \det^{1/n}(DF_t(x))$.

Sketch of part of the proof

(\implies)

- $\rho \mapsto \ln(\rho^{-n})$ is **convex and decreasing**.
- Set $F_t(x) = \exp(t \nabla u(x))$.
- $Ric \geq 0$ and optimal transport imply **concavity** of $t \mapsto J_t^{1/n}(x) := \det^{1/n}(DF_t(x))$.
-

$$\begin{aligned} H(f_t) &= \int_M f_t(z) \ln(f_t(z)) dz \\ &= \int_M \frac{f_0(x)}{J_t(x)} \ln\left(\frac{f_0(x)}{J_t(x)}\right) J_t(x) dx \\ &= \int_M \ln\left(\frac{f_0(x)}{(J_t^{1/n}(x))^n}\right) f_0(x) dx \end{aligned}$$

Sketch of part of the proof

(\implies)

- $\rho \mapsto \ln(\rho^{-n})$ is **convex and decreasing**.
- Set $F_t(x) = \exp(t \nabla u(x))$.
- $Ric \geq 0$ and optimal transport imply **concavity** of $t \mapsto J_t^{1/n}(x) := \det^{1/n}(DF_t(x))$.
-

$$\begin{aligned} H(f_t) &= \int_M f_t(z) \ln(f_t(z)) dz \\ &= \int_M \frac{f_0(x)}{J_t(x)} \ln\left(\frac{f_0(x)}{J_t(x)}\right) J_t(x) dx \\ &= \int_M \ln\left(\frac{f_0(x)}{(J_t^{1/n}(x))^n}\right) f_0(x) dx \end{aligned}$$

- Apply convexity under the integral sign. The composition of a concave and convex-decreasing function is convex.

Consequences of optimal transport formulation

- Stable under measured Gromov-Hausdorff convergence (Lott-Villani/Sturm)
- Brunn-Minkowski, isoperimetric inequalities, Poincare inequalities (Lott-Villani/Sturm)
- Bishop-Gromov, Bonnet-Myers type comparison theorems (Lott-Villani/Sturm)
- Compatibility with Alexandrov space: weak sectional curvature bounds imply weak Ricci curvature bounds (an Alexandrov space is a Lott-Villani/Sturm space) (Petrunin)

References

- F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. *J. Funct. Anal.*, 173: 361 -400, 2000.
- J. Lott and C. Villani. Ricci curvature for metric measure spaces via optimal transport. *Annals Math.* (2), 169: 903 - 991, 2009.
- M.-K. von Renesse and K.-T. Sturm. Transport inequalities, gradient estimates, entropy and Ricci curvature. *Comm. Pure Appl. Math.*, 58: 923-940, 2005.
- K.-T. Sturm. On the geometry of metric measure spaces, I and II. *Acta Math.*, 196: 65 - 177, 2006.
- D. Cordero-Erausquin, R.J. McCann and M. Schmuckenschlager. A Riemannian interpolation inequality a la Borell, Brascamp and Lieb. *Invent. Math.*, 146: 219-257, 2001.