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Plan of the lectures

Today: introductory material.

@ What is optimal transport?

@ What is known? What sort of mathematics is involved?

@ Why should | care? What can | do with it? Applications?
Friday: a deeper look at one selected topic. At the end of today's
talk, we can vote to decide on the topic. Choices include:

@ Matching theory (economics): what sort of patterns emerge
when agents match together (for instance, workers and firms
on the labour market, or husbands and wives on the marriage
market).

@ Density functional theory (physics/chemistry): how does a
system of electrons organize itself to minimize interaction
energy.

e Curvature and entropy (geometry): How does curvature relate
to the behavior of densities along interpolations?

Both talks will focus on ideas and we will try to avoid getting
bogged down in too many details.
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Analytic vs synthetic

Example 1: A C? function f : [0,1] — R is convex if

(1) % >0, Vx € (0,1) (analytic definition)
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Analytic vs synthetic

Example 1: A C? function f : [0,1] — R is convex if
(1) % >0, Vx € (0,1) (analytic definition)

or, equivalently,

Q f((]. — t)xo0 + tXl) <(1- t)f(Xo) + l'f(Xl), Vxo,x1,t € (0,1)
(synthetic definition)
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Analytic vs synthetic

Example 1: A C? function f : [0,1] — R is convex if
o £ >0, ¥x € (0,1) (analytic definition)

or, equivalently,

Q f((]. — t)xo0 + tXl) <(1- t)f(Xo) + l'f(Xl), Vxo,x1,t € (0,1)
(synthetic definition)
Properties:
@ local, easy to check

@ general (does not require smoothness), stable (under
pointwise convergence), implies some smoothness
Alexandrov's theorem:

Qo — ‘:,gexstsae
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Analytic vs synthetic

Example 2: Nonnegative sectional curvature on a Riemannian
manifold

On a Riemannian manifold M (curved surface), sectional curvature
measures how quickly geodesics (shortest paths) spread out,
relative to Euclidean space:
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Analytic vs synthetic

Example 2: Nonnegative sectional curvature on a Riemannian
manifold

On a Riemannian manifold M (curved surface), sectional curvature
measures how quickly geodesics (shortest paths) spread out,
relative to Euclidean space: K(u, v) represents the curvatuve in
the direction of tangent vectors u and v (how quickly to geodesics
in those direction move apart). The precise definition depends on
the smooth structure of the space.

d(y(t),o(t)) = V2t (1 - (12 )t +0(t%))

(if v and v are orthogonal).

Brendan Pass (U. Alberta) Lower Ricci curvature bounds via optimal transport



Analytic vs synthetic

Example 2: Nonnegative sectional curvature on a Riemannian
manifold

On a Riemannian manifold M (curved surface), sectional curvature
measures how quickly geodesics (shortest paths) spread out,
relative to Euclidean space: K(u, v) represents the curvatuve in
the direction of tangent vectors u and v (how quickly to geodesics
in those direction move apart). The precise definition depends on
the smooth structure of the space.

d(y(t),o(t)) = V2t (1 - (12 )t +0(t%))

(if u and v are orthogonal). Non-negative sectional curvature
K(u,v) >0 <= geodesics stay closer together than in Euclidean
space.

Brendan Pass (U. Alberta) Lower Ricci curvature bounds via optimal transport



Synthetic formulation: Alexandrov spaces

Theorem (Alexandrov)

M has non-negative sectional curvature iff, for all small geodesic
triangles p, q,r, and any x € [r, q], we have

d(x,p) > d(X,P)=|X — P|

e P,Q,R is the Euclidean comparision triangle.

@ extends notion of non-negative sectional curvature to geodesic
spaces. Geodesics spaces with non-negative sectional
curvature are called Alexandrov spaces.

@ Gromov-Hausdorff stable

@ Theory of Alexandrov spaces developed by Burago, Perelman,
Petrunin, Ohta (and Alexandrov):

o almost smooth structure (like a manifold with convex-concave
transition maps); singluar points have measure zero.
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What about Ricci curvature?

There are many other types of curvature. Are there synthetic
formulations?
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What about Ricci curvature?

There are many other types of curvature. Are there synthetic
formulations?

Ricci curvature measures volume distortion along geodesic cones
(relative to Euclidian space).
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What about Ricci curvature?

There are many other types of curvature. Are there synthetic
formulations?

Ricci curvature measures volume distortion along geodesic cones
(relative to Euclidian space). For an angular region

|A(x,v,0,r)| ~ 20r> — Ric(v, v)40r* (in two dimensions, with
|v| =1 and small r, )
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What about Ricci curvature?

There are many other types of curvature. Are there synthetic
formulations?

Ricci curvature measures volume distortion along geodesic cones
(relative to Euclidian space). For an angular region

|A(x,v,0,r)| ~ 20r> — Ric(v, v)40r* (in two dimensions, with
|v| =1 and small r, )

Ric > 0 (ie Ric(v,v) > 0 for all v) means that objects look bigger
than they are (light test).
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Ric > 0 implies:
@ Bonnet-Myers theorem (bounds on diameter) (need strict
inequality)

@ Bishop-Gromov inequality (volume distortion of geodesic
balls).

© Isoperimetric inequalities
© Brunn-Minkowski inequalities

@ Li-Yau estimates on heat kernels

Theorem (Gromov)

The set of compact manifolds with diameter < D with Ric > 0 is
precompact (Gromov-Hausdorff distance)

Limit points may not be smooth....do they satisfy Ric > 0 (in some
sense)?
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Monge's optimal transport problem

e f(x),g(y) probability densities on a compact Riemannian
manifold M.
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Monge's optimal transport problem

e f(x),g(y) probability densities on a compact Riemannian
manifold M.

@ c: Mx M — R a transport cost function.
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Monge's optimal transport problem

e f(x),g(y) probability densities on a compact Riemannian
manifold M.

@ c: Mx M — R a transport cost function.
Monge Problem:
minimize:

/ c(x, F(x))f(x)dx
M

among maps F : M +— M pushing f to g.
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Monge's optimal transport problem

e f(x),g(y) probability densities on a compact Riemannian
manifold M.

@ c: Mx M — R a transport cost function.
Monge Problem:

minimize:

/ c(x, F(x))f(x)dx
M

among maps F : M +— M pushing f to g.
If F is smooth and injective, we have the change of variables

formula:
|det(DF(x))| = f(x)/g(F(x))
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Existence and uniqueness of a solution

For c(x,y) = |x — y|? (on R™) or d?(x,y) (on M):

Theorem (Brenier/McCann)

There exists a unique solution F to Monge's problem.

@ When M C R", F(x) = Vu(x), u convex.
e More generally, F(x) = expx(Vu(x)), where u is d-convex.

Note: exp,(v) starts at x and then moves distance |v| along the
tangent vector v. In R”, exp,(v) =x+ v
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Optimal transport formulation of Ricci curvature > 0

Optimal transport gives a nonlinear interpolation between
measures:
fe(x)dx 1= expx(tVu)(f(x)dx)

The entropy functional, along these interpolations detects Ricci
curvature:

H(F) = /In(f(x))f(x)dx

The physical entropy, —H, measures how spread out, or random,
the density is.
The lazy gas experiment:

Theorem (Otto-Villani/Cordero-Erausquin-McCann-

Schmuckenschlager/Sturm-von Renesse)

Ric > 0 iff t — H(f;) is convex for any f,g.

Optimal transport makes sense on very general spaces, and this
definition extends to metric measured length spaces.
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Sketch of part of the proof

(=)

@ p—In(p™") is convex and decreasing.
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Sketch of part of the proof

(=)
@ p—In(p™") is convex and decreasing.
@ Set Fi(x) = exp(tVu(x)).
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Sketch of part of the proof

(=)
@ p—In(p™") is convex and decreasing.
@ Set Fi(x) = exp(tVu(x)).
@ Ric > 0 and optimal transport imply concavity of
t — Ji/"(x) := det!/"(DF¢(x)).
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Sketch of part of the proof

(=)
@ p—In(p™") is convex and decreasing.
@ Set Fi(x) = exp(tVu(x)).
@ Ric > 0 and optimal transport imply concavity of
t — Ji/"(x) := det!/"(DF¢(x)).

H(F) = /M fu(2) In(fi(2))dz
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Sketch of part of the proof

(=)
@ p—In(p™") is convex and decreasing.

@ Set Fi(x) = exp(tVu(x)).
@ Ric > 0 and optimal transport imply concavity of

t s JH7(x) := det}/"(DF.(x)).

H(F) = /M fu(2) In(fi(2))dz

fo(x) ,  fo(x)
v Je(x) In Jt(X))Jt(X)dX

_ fo(x)
= /Mln ((J;”(X))n)ﬁ)(x)dx

@ Apply convexity under the integral sign. The composition of a

concave and convex-decreasing function is convex.




Consequences of optimal transport formulation

@ Stable under measured Gromov-Hausdorff convergence
(Lott-Villani/Sturm)

@ Brunn-Minkowski, isoperimetric inequalities, Poincare
inequalities (Lott-Villani/Sturm)

@ Bishop-Gromov, Bonnet-Myers type comparison theorems
(Lott-Villani/Sturm)

o Compatibility with Alexandrov space: weak sectional
curvature bounds imply weak Ricci curvature bounds (an
Alexandrov space is a Lott-Villani/Sturm space) (Petrunin)
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