

An introduction to optimal transport

Brendan Pass (U. Alberta)

July 9, 2025

Plan of the lectures

Today: introductory material.

- What is optimal transport?
- What is known? What sort of mathematics is involved?
- Why should I care? What can I do with it? Applications?

Plan of the lectures

Today: introductory material.

- What is optimal transport?
- What is known? What sort of mathematics is involved?
- Why should I care? What can I do with it? Applications?

Friday: a deeper look at one selected topic. At the end of today's talk, we can vote to decide on the topic. Choices include:

Plan of the lectures

Today: introductory material.

- What is optimal transport?
- What is known? What sort of mathematics is involved?
- Why should I care? What can I do with it? Applications?

Friday: a deeper look at one selected topic. At the end of today's talk, we can vote to decide on the topic. Choices include:

- Matching theory (economics): what sort of patterns emerge when agents match together (for instance, workers and firms on the labour market, or husbands and wives on the marriage market).
- Density functional theory (physics/chemistry): how does a system of electrons organize itself to minimize interaction energy.
- Curvature and entropy (geometry): How does curvature relate to the behavior of densities along interpolations?

Plan of the lectures

Today: introductory material.

- What is optimal transport?
- What is known? What sort of mathematics is involved?
- Why should I care? What can I do with it? Applications?

Friday: a deeper look at one selected topic. At the end of today's talk, we can vote to decide on the topic. Choices include:

- Matching theory (economics): what sort of patterns emerge when agents match together (for instance, workers and firms on the labour market, or husbands and wives on the marriage market).
- Density functional theory (physics/chemistry): how does a system of electrons organize itself to minimize interaction energy.
- Curvature and entropy (geometry): How does curvature relate to the behavior of densities along interpolations?

Both talks will focus on **ideas** and we will try to avoid getting bogged down in too many details.

- Gaspard Monge (1781): How do I fill a hole with dirt as efficiently as possible?

Monge's optimal transport problem

- Data: two positive functions, $f(x)$ and $g(y)$ on regions $X, Y \subset \mathbb{R}^n$, (the height of the dirt pile and depth of the hole) and a cost function, $c(x, y)$ (the cost per unit to transport dirt from x to y).

Monge's optimal transport problem

- Data: two positive functions, $f(x)$ and $g(y)$ on regions $X, Y \subset \mathbb{R}^n$, (the height of the dirt pile and depth of the hole) and a cost function, $c(x, y)$ (the cost per unit to transport dirt from x to y).
- Assume $\int_X f(x)dx = \int_Y g(y)dy = 1$ (ie, the total volume of the pile and the hole are the same).

Monge's optimal transport problem

- Data: two positive functions, $f(x)$ and $g(y)$ on regions $X, Y \subset \mathbb{R}^n$, (the height of the dirt pile and depth of the hole) and a cost function, $c(x, y)$ (the cost per unit to transport dirt from x to y).
- Assume $\int_X f(x)dx = \int_Y g(y)dy = 1$ (ie, the total volume of the pile and the hole are the same).
- We look for a transport map $T : X \rightarrow Y$ so that, for each $A \subseteq Y$, $\int_{T^{-1}(A)} f(x)dx = \int_A g(y)dy$ (the total amount of dirt moved into the set A is the same as the volume of that part of the hole). In this case, we write $T\#f = g$.

Monge's optimal transport problem

- Data: two positive functions, $f(x)$ and $g(y)$ on regions $X, Y \subset \mathbb{R}^n$, (the height of the dirt pile and depth of the hole) and a cost function, $c(x, y)$ (the cost per unit to transport dirt from x to y).
- Assume $\int_X f(x)dx = \int_Y g(y)dy = 1$ (ie, the total volume of the pile and the hole are the same).
- We look for a transport map $T : X \rightarrow Y$ so that, for each $A \subseteq Y$, $\int_{T^{-1}(A)} f(x)dx = \int_A g(y)dy$ (the total amount of dirt moved into the set A is the same as the volume of that part of the hole). In this case, we write $T_{\#}f = g$.
- If T is a diffeomorphism, (ie. 1 – 1, onto, smooth with a smooth inverse), this means T satisfies the change of variables equation: $f(x) = |\det DT(x)|g(T(x))$.

Monge's optimal transport problem

- Data: two positive functions, $f(x)$ and $g(y)$ on regions $X, Y \subset \mathbb{R}^n$, (the height of the dirt pile and depth of the hole) and a cost function, $c(x, y)$ (the cost per unit to transport dirt from x to y).
- Assume $\int_X f(x)dx = \int_Y g(y)dy = 1$ (ie, the total volume of the pile and the hole are the same).
- We look for a transport map $T : X \rightarrow Y$ so that, for each $A \subseteq Y$, $\int_{T^{-1}(A)} f(x)dx = \int_A g(y)dy$ (the total amount of dirt moved into the set A is the same as the volume of that part of the hole). In this case, we write $T_{\#}f = g$.
- If T is a diffeomorphism, (ie. 1 – 1, onto, smooth with a smooth inverse), this means T satisfies the change of variables equation: $f(x) = |\det DT(x)|g(T(x))$.
- Among all T 's with this property, we seek to minimize

$$\int_X c(x, T(x))f(x)dx.$$

One dimensional optimal transport

- Suppose $n = 1$: $X, Y \subset \mathbb{R}$.

One dimensional optimal transport

- Suppose $n = 1$: $X, Y \subset \mathbb{R}$.
- Assume $\frac{\partial^2 c}{\partial x \partial y} < 0$ (e.g. $c(x, y) = (x - y)^2$).

One dimensional optimal transport

- Suppose $n = 1$: $X, Y \subset \mathbb{R}$.
- Assume $\frac{\partial^2 c}{\partial x \partial y} < 0$ (e.g. $c(x, y) = (x - y)^2$).
- The solution must satisfy
 $c(x_0, T(x_0)) + c(x_1, T(x_1)) \leq c(x_0, T(x_1)) + c(x_1, T(x_0))$.
Why?

One dimensional optimal transport

- Suppose $n = 1$: $X, Y \subset \mathbb{R}$.
- Assume $\frac{\partial^2 c}{\partial x \partial y} < 0$ (e.g. $c(x, y) = (x - y)^2$).
- The solution must satisfy
$$c(x_0, T(x_0)) + c(x_1, T(x_1)) \leq c(x_0, T(x_1)) + c(x_1, T(x_0)).$$
Why?
- This means that if $x_1 > x_0$, then $T(x_1) \geq T(x_0)$. So T is a **monotone increasing** function.

One dimensional optimal transport

- Suppose $n = 1$: $X, Y \subset \mathbb{R}$.
- Assume $\frac{\partial^2 c}{\partial x \partial y} < 0$ (e.g. $c(x, y) = (x - y)^2$).
- The solution must satisfy
$$c(x_0, T(x_0)) + c(x_1, T(x_1)) \leq c(x_0, T(x_1)) + c(x_1, T(x_0)).$$
Why?
- This means that if $x_1 > x_0$, then $T(x_1) \geq T(x_0)$. So T is a **monotone increasing** function.
- Therefore, choose $T(x)$ so that

$$\int_{-\infty}^x f(t)dt = \int_{-\infty}^{T(x)} g(s)ds$$

For probabilistically minded people, this is $T = (F_g)^{-1} \circ F_f$, where F_g and F_f are the cumulative distribution functions.

Higher dimensions

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.

Higher dimensions

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.
- To state a higher dimensional analog of this result, we need to review a bit about **convex functions**.

Higher dimensions

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.
- To state a higher dimensional analog of this result, we need to review a bit about **convex functions**.
- Recall: a function $u : \mathbb{R} \rightarrow \mathbb{R}$ is **convex** if $\frac{d^2u}{dx^2}(x) \geq 0$ for all x .

Higher dimensions

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.
- To state a higher dimensional analog of this result, we need to review a bit about **convex functions**.
- Recall: a function $u : \mathbb{R} \rightarrow \mathbb{R}$ is **convex** if $\frac{d^2u}{dx^2}(x) \geq 0$ for all x .
- What about a function $u : \mathbb{R}^n \rightarrow \mathbb{R}$?

Higher dimensions

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.
- To state a higher dimensional analog of this result, we need to review a bit about **convex functions**.
- Recall: a function $u : \mathbb{R} \rightarrow \mathbb{R}$ is **convex** if $\frac{d^2u}{dx^2}(x) \geq 0$ for all x .
- What about a function $u : \mathbb{R}^n \rightarrow \mathbb{R}$?
- In this case, the **gradient** $\nabla u(x) := (\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n})(x)$ gives us a **vector** at each $x = (x_1, x_2, \dots, x_n)$. We can think of this as a function $\nabla u : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

Higher dimensions

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.
- To state a higher dimensional analog of this result, we need to review a bit about **convex functions**.
- Recall: a function $u : \mathbb{R} \rightarrow \mathbb{R}$ is **convex** if $\frac{d^2u}{dx^2}(x) \geq 0$ for all x .
- What about a function $u : \mathbb{R}^n \rightarrow \mathbb{R}$?
- In this case, the **gradient** $\nabla u(x) := (\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n})(x)$ gives us a **vector** at each $x = (x_1, x_2, \dots, x_n)$. We can think of this as a function $\nabla u : \mathbb{R}^n \rightarrow \mathbb{R}^n$.
- The **Hessian**, $D^2u := (\frac{\partial^2 u}{\partial x_i \partial x_j})_{ij}$ is the symmetric $n \times n$ matrix whose entries are the second derivatives of u .

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.
- To state a higher dimensional analog of this result, we need to review a bit about **convex functions**.
- Recall: a function $u : \mathbb{R} \rightarrow \mathbb{R}$ is **convex** if $\frac{d^2u}{dx^2}(x) \geq 0$ for all x .
- What about a function $u : \mathbb{R}^n \rightarrow \mathbb{R}$?
- In this case, the **gradient** $\nabla u(x) := (\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n})(x)$ gives us a **vector** at each $x = (x_1, x_2, \dots, x_n)$. We can think of this as a function $\nabla u : \mathbb{R}^n \rightarrow \mathbb{R}^n$.
- The **Hessian**, $D^2u := (\frac{\partial^2 u}{\partial x_i \partial x_j})_{ij}$ is the symmetric $n \times n$ matrix whose entries are the second derivatives of u .
- A symmetric $n \times n$ matrix A is said to be **positive definite** if $V^T A V \geq 0$ for all $V \in \mathbb{R}^n$.

- Like a lot of mathematics, optimal transport is harder in higher dimensions than one.
- To state a higher dimensional analog of this result, we need to review a bit about **convex functions**.
- Recall: a function $u : \mathbb{R} \rightarrow \mathbb{R}$ is **convex** if $\frac{d^2u}{dx^2}(x) \geq 0$ for all x .
- What about a function $u : \mathbb{R}^n \rightarrow \mathbb{R}$?
- In this case, the **gradient** $\nabla u(x) := (\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n})(x)$ gives us a **vector** at each $x = (x_1, x_2, \dots, x_n)$. We can think of this as a function $\nabla u : \mathbb{R}^n \rightarrow \mathbb{R}^n$.
- The **Hessian**, $D^2u := (\frac{\partial^2 u}{\partial x_i \partial x_j})_{ij}$ is the symmetric $n \times n$ matrix whose entries are the second derivatives of u .
- A symmetric $n \times n$ matrix A is said to be **positive definite** if $V^T A V \geq 0$ for all $V \in \mathbb{R}^n$.
- We say $u : \mathbb{R}^n \rightarrow \mathbb{R}$ is **convex** if $D^2u(x)$ is positive definite for each $x \in \mathbb{R}^n$.

Optimal transport in higher dimensions: Brenier's theorem

- Suppose $X, Y \subseteq \mathbb{R}^n$ and $c(x, y) = |x - y|^2 = \sum_{i=1}^n (x_i - y_i)^2$ (this is the cost function that turns out to give the cleanest theory, and is also the most useful in applications).

Theorem (Brenier 1987)

There exists a unique solution T to Monge's problem.

*Furthermore, $T(x) = \nabla u(x)$ is the **gradient of a convex function**.*

- Note: in one dimension, this just means $T(x) = \frac{du}{dx}(x)$, implying $T'(x) = \frac{d^2u}{dx^2}(x) \geq 0$. So T is **increasing**, as we saw before.
- It is not even obvious beforehand that there **exists** a map of this form satisfying the constraint $T_{\#}f = g$. This fact alone (a **consequence** of Brenier's theorem) is important in some applications (in these situations the optimization problem doesn't even show up; it is just the existence of the map T that matters).

Isoperimetric inequality: The surface area of any set $M \subseteq \mathbb{R}^n$ is greater than or equal to the surface area of a ball with the same volume.

$$\text{Vol}(M) = \text{Vol}(B_R(0)) \implies S(M) \geq S(B_R(0))$$

Isoperimetric inequality: The surface area of any set $M \subseteq \mathbb{R}^n$ is greater than or equal to the surface area of a ball with the same volume.

$$\text{Vol}(M) = \text{Vol}(B_R(0)) \implies S(M) \geq S(B_R(0))$$

Proof:

- Take $f(x) = \chi_M$, $g(y) = \chi_{B_R(0)}$.
- $\nabla u(x)$ the Brenier map
 $\implies \det(D^2 u(x)) = f(x)/g(\nabla u(x)) = 1$ (change of variables).
- Arithmetic mean dominates geometric mean (as u is convex, $D^2 u$ has positive eigenvalues)
 $\implies \det^{1/n}(D^2 u(x)) \leq \frac{1}{n} \Delta u(x)$

$$\begin{aligned}\frac{1}{n}S(B_R(0))R &= Vol(B_R(0)) = Vol(M) \\ &= \int_M 1 d^n x \\ &= \int_M \det^{1/n}(D^2 u(x)) dx \\ &\leq \int_M \frac{1}{n} \Delta u(x) dx \\ &= \frac{1}{n} \int_{\partial M} \nabla u(x) \cdot \vec{N} d^{n-1} S(x) \\ &\leq \frac{1}{n} \int_{\partial M} R d^{n-1} S(x) \\ &= \frac{1}{n} S(M) R\end{aligned}$$

Comments on the proof

- The isoperimetric inequality is a very classical, but proving it using conventional or elementary methods is pretty **difficult**.

Comments on the proof

- The isoperimetric inequality is a very classical, but proving it using conventional or elementary methods is pretty **difficult**.
- The optimal transport proof is **easy**; everything in the proof is first or second year mathematics (*except* Brenier's theorem)!

Comments on the proof

- The isoperimetric inequality is a very classical, but proving it using conventional or elementary methods is pretty **difficult**.
- The optimal transport proof is **easy**; everything in the proof is first or second year mathematics (**except** Brenier's theorem)!
- We prove an inequality about surfaces/curves/bodies in \mathbb{R}^n by working with **simple** inequalities under the integral sign (geometric-arithmetic mean, Cauchy-Schwartz on \mathbb{R}^n).

Comments on the proof

- The isoperimetric inequality is a very classical, but proving it using conventional or elementary methods is pretty **difficult**.
- The optimal transport proof is **easy**; everything in the proof is first or second year mathematics (**except** Brenier's theorem)!
- We prove an inequality about surfaces/curves/bodies in \mathbb{R}^n by working with **simple** inequalities under the integral sign (geometric-arithmetic mean, Cauchy-Schwartz on \mathbb{R}^n).
- This is a **common theme** in applications of optimal transport in geometry.

Some background on the theory

- How do we prove Brenier's theorem?
- More generally, what tools do we use to understand solutions to optimal transport problems?

Kantorovich's relaxed version

- Kantorovich (1942) was interested in the optimal allocation of resources. Given a distribution of mines $f(x)$ producing iron and a distribution $g(y)$ of factories consuming iron, and a cost $c(x, y)$ to move iron from point x to y , which mine should supply which factory to minimize the total transport cost?

Kantorovich's relaxed version

- Kantorovich (1942) was interested in the optimal allocation of resources. Given a distribution of mines $f(x)$ producing iron and a distribution $g(y)$ of factories consuming iron, and a cost $c(x, y)$ to move iron from point x to y , which mine should supply which factory to minimize the total transport cost?
- Monge-Kantorovich problem: Minimize

$$\int_{X \times Y} c(x, y) \gamma(x, y) dx dy$$

among functions (actually, a generalization of functions)
 $\gamma(x, y) \geq 0$ such that $\int_X \gamma(x, y) dx = g(y)$ and
 $\int_Y \gamma(x, y) dy = f(x)$.

Kantorovich's relaxed version

- Kantorovich (1942) was interested in the optimal allocation of resources. Given a distribution of mines $f(x)$ producing iron and a distribution $g(y)$ of factories consuming iron, and a cost $c(x, y)$ to move iron from point x to y , which mine should supply which factory to minimize the total transport cost?
- Monge-Kantorovich problem: Minimize

$$\int_{X \times Y} c(x, y) \gamma(x, y) dx dy$$

among functions (actually, a generalization of functions)
 $\gamma(x, y) \geq 0$ such that $\int_X \gamma(x, y) dx = g(y)$ and
 $\int_Y \gamma(x, y) dy = f(x)$.

- Interpretation: $\gamma(x, y)$ represents the amount of iron that goes from mine x to factory y . In Monge's version, each mine x can supply **only one** factory $y = T(x)$, but that is not true here: mine x can **split** its iron among **several**, or even **infinitely many**, factories. This is a *relaxation of Monge's problem*.

- This is now a **linear** minimization problem (an infinite dimensional linear program), and is much easier to deal with technically than Monge's functional, $\int_X c(x, T(x))f(x)dx$ and constraint $T_\#f = g$ (ie, $f(x) = |\det DT(x)|g(T(x))$).

- This is now a **linear** minimization problem (an infinite dimensional linear program), and is much easier to deal with technically than Monge's functional, $\int_X c(x, T(x))f(x)dx$ and constraint $T_\#f = g$ (ie, $f(x) = |\det DT(x)|g(T(x))$).
- Kantorovich duality: the Kantorovich problem is equivalent (*dual*) to maximizing

$$\int_X u(x)f(x)dx + \int_Y v(y)g(y)dy$$

among functions $u(x)$ and $v(y)$ that satisfy
 $u(x) + v(y) \leq c(x, y)$.

Kantorovich's relaxed version (cont'd)

- This is now a **linear** minimization problem (an infinite dimensional linear program), and is much easier to deal with technically than Monge's functional, $\int_X c(x, T(x))f(x)dx$ and constraint $T_\#f = g$ (ie, $f(x) = |\det DT(x)|g(T(x))$).
- Kantorovich duality: the Kantorovich problem is equivalent (*dual*) to maximizing

$$\int_X u(x)f(x)dx + \int_Y v(y)g(y)dy$$

among functions $u(x)$ and $v(y)$ that satisfy
 $u(x) + v(y) \leq c(x, y)$.

- Kantorovich shared the Nobel prize in 1975 with Tjalling Koopmans for developing this theory.

Idea of proof of Brenier's Theorem

- For $c(x, y) = |x - y|^2$, the solutions to the dual problem turn out to be (more or less) **convex** functions. The constraint is **saturated** along the solutions (ie, $u(x) + v(y) = c(x, y)$ when x and y are coupled together).

- For $c(x, y) = |x - y|^2$, the solutions to the dual problem turn out to be (more or less) **convex** functions. The constraint is **saturated** along the solutions (ie, $u(x) + v(y) = c(x, y)$ when x and y are coupled together).
- Differentiating, after some manipulation, yields,

$$\nabla u(x) = y$$

which basically means there is only one $y = \nabla u(x) := T(x)$ which gets coupled to x .

Some applications

- Optimal transport has **many diverse** applications, in PDE, fluid mechanics, statistics, image recognition, operations research, functional/geometric inequalities, meteorology, finance...
- I'll briefly describe three selected applications here. At the end of the lecture, we'll vote on which one is the most interesting, and discuss the winner in more depth on Wednesday.

- **Matching theory with transferable utility:** How do (for instance) workers and firms match together on the labour market? Assume that payments of any amount can be negotiated between agents. What **patterns** emerge when we look for stable matchings?

- **Matching theory with transferable utility:** How do (for instance) workers and firms match together on the labour market? Assume that payments of any amount can be negotiated between agents. What **patterns** emerge when we look for stable matchings?
- Here, **stability** means that no pair of unmatched agents would both be better off if they left their current partners and teamed up together.

- **Matching theory with transferable utility:** How do (for instance) workers and firms match together on the labour market? Assume that payments of any amount can be negotiated between agents. What **patterns** emerge when we look for stable matchings?
- Here, **stability** means that no pair of unmatched agents would both be better off if they left their current partners and teamed up together.
- *What on earth does this have to do with optimal transport?*

- Briefly, stable matching is a sort of **balancing** problem....these are often related to *variational*, or **minimization/maximization** problems (like optimal transport).

- Briefly, stable matching is a sort of **balancing** problem....these are often related to *variational*, or **minimization/maximization** problems (like optimal transport).
- As a simple example, trying to **minimize** a function $f(x)$ of one variable is related to finding a point where it's derivative vanishes, $f'(x) = 0$ (a sort of balancing).

- Briefly, stable matching is a sort of **balancing** problem....these are often related to *variational*, or **minimization/maximization** problems (like optimal transport).
- As a simple example, trying to **minimize** a function $f(x)$ of one variable is related to finding a point where it's derivative vanishes, $f'(x) = 0$ (a sort of balancing).
- As another example, finding an **equilibrium** point in a physical system (ie, a point where the forces balance) is related to finding a point that **minimizes** the potential energy.

- Briefly, stable matching is a sort of **balancing** problem....these are often related to *variational*, or **minimization/maximization** problems (like optimal transport).
- As a simple example, trying to **minimize** a function $f(x)$ of one variable is related to finding a point where it's derivative vanishes, $f'(x) = 0$ (a sort of balancing).
- As another example, finding an **equilibrium** point in a physical system (ie, a point where the forces balance) is related to finding a point that **minimizes** the potential energy.
- According to the late Nobel laureate Gary Becker, most important problems in economics can be viewed as matching problems.

- Briefly, stable matching is a sort of **balancing** problem....these are often related to *variational*, or **minimization/maximization** problems (like optimal transport).
- As a simple example, trying to **minimize** a function $f(x)$ of one variable is related to finding a point where it's derivative vanishes, $f'(x) = 0$ (a sort of balancing).
- As another example, finding an **equilibrium** point in a physical system (ie, a point where the forces balance) is related to finding a point that **minimizes** the potential energy.
- According to the late Nobel laureate Gary Becker, most important problems in economics can be viewed as matching problems.
- Their work on matching theory garnered Alvin Roth and Lloyd Shapley the 2012 Nobel Prize in economics.

Choice two: density functional theory in physics

- Consider a system of interacting electrons (for example, an atom). Semi-classically, the position of each electron can be thought of as a **probability density**. Given the probability density of each individual electron, what **correlation**, or alignment of the densities leads to the lowest total energy?

Choice two: density functional theory in physics

- Consider a system of interacting electrons (for example, an atom). Semi-classically, the position of each electron can be thought of as a **probability density**. Given the probability density of each individual electron, what **correlation**, or alignment of the densities leads to the lowest total energy?
- This **semi-classical density functional theory** problem turns out to be an optimal transport problem, with the cost function given by the Coulomb interaction energy, $c(x, y) = \frac{1}{|x-y|}$.

Choice two: density functional theory in physics

- Consider a system of interacting electrons (for example, an atom). Semi-classically, the position of each electron can be thought of as a **probability density**. Given the probability density of each individual electron, what **correlation**, or alignment of the densities leads to the lowest total energy?
- This **semi-classical density functional theory** problem turns out to be an optimal transport problem, with the cost function given by the Coulomb interaction energy, $c(x, y) = \frac{1}{|x-y|}$.
- The development of density functional theory earned Walter Kohn the Nobel prize in chemistry in 1998. 12 of the 100 most cited papers in the history of science are on this topic (and two of the top 10).

Choice three: Ricci curvature and entropy in geometry

- **Curvature** quantifies how geometric spaces (for example, curved surfaces) differ from flat spaces. How do **distances** and **volumes** change as we move along straight lines (geodesics)?

- **Curvature** quantifies how geometric spaces (for example, curved surfaces) differ from flat spaces. How do **distances** and **volumes** change as we move along straight lines (geodesics)?
- Where does optimal transport fit in? Well, it gives a way to **measure the distance** between two probability densities sitting on one of these spaces. This in turn, gives us a notion of geometry on the space of all probability densities on a curved space (this is a new extra fancy, extra abstract curved space). The behaviour of certain functionals as we continuously **interpolate** between probability densities in this fancy, abstract geometry is intimately linked with curvature. One of the important functionals is **entropy**, which measures how spread out the density is.

- **Curvature** quantifies how geometric spaces (for example, curved surfaces) differ from flat spaces. How do **distances** and **volumes** change as we move along straight lines (geodesics)?
- Where does optimal transport fit in? Well, it gives a way to **measure the distance** between two probability densities sitting on one of these spaces. This in turn, gives us a notion of geometry on the space of all probability densities on a curved space (this is a new extra fancy, extra abstract curved space). The behaviour of certain functionals as we continuously **interpolate** between probability densities in this fancy, abstract geometry is intimately linked with curvature. One of the important functionals is **entropy**, which measures how spread out the density is.
- One of the pioneers of this field, Cedric Villani, won the Fields medal in 2010.

- Matching theory (economics).

- Density functional theory (physics/chemistry).

- Ricci curvature and entropy (geometry).

Some references

- C. Villani. *Topics in optimal transportation*. AMS, 2003.
- C. Villani. *Optimal transport: old and new*. Springer, 2009.
- F. Santambrogio. *Optimal transport for applied mathematicians*. Birkhauser, 2015.
- L.C. Evans. *Partial differential equations and the Monge-Kantorovich mass transfer*. In "Current developments in mathematics," (ed. by S.T. Yau et al). Int. Press, 1997.
- N. Guillen and R. McCann. *Five lectures on optimal transportation: geometry, regularity and applications*. In "Analysis and Geometry of Metric Measure Spaces: Lecture Notes of the Seminaire de Mathematiques Superieure (SMS) Montreal 2011," (ed. by G. Dafni et al). AMS, 2013.