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Some examples of differential equations

A one-dimensional differential equation(
a(x)u′

)′
+ κ2(x)u = f (x), x ∈ Ω := (0, 1)

λL0u(0) + λL1u
′(0) = g0, λ

R
0 u(1) + λR1 u

′(1) = g1.

The 2D Poisson equation with a variable coefficient

−∇ · (a(x)∇u(x)) = f (x), x ∈ Ω := (0, 1)2,

u(x) = 0, x ∈ ∂Ω.

The 2D Helmholtz equation

−∆u − κ2u = f , in Ω := (0, 1)2,

∂u

∂ν
− iκu = g , on ∂Ω.
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Some examples of differential equations

The 1D heat equation

∂u(x , t)

∂t
= k

∂2u(x , t)

∂x2
, x ∈ (0, L), t > 0,

u(0, t) = u(L, t) = 0, t > 0,

u(x , 0) = f (x), x ∈ (0, L).

The 1D wave equation

∂2u(x , t)

∂t2
= a2

∂2u(x , t)

∂x2
, x ∈ (0, L), t > 0,

u(0, t) = u(L, t) = 0, t > 0,

u(x , 0) = f (x), x ∈ (0, L),

ut(x , 0) = g(x), x ∈ (0, L),

M. Michelle Intro to Numerical DEs July 22, 2025 3 / 33



Outline of today’s lecture

Finite difference method

Wavelet Galerkin method

Physics-informed neural network

Neural operator
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A simple example of 1D FDM

Consider the following 1D Poisson equation

−u′′ = f in (0, 1), u(0) = u(1) = 0.

Let xj = j/N, where j = 0, . . . ,N, x0 := 0, and xN := 1, be a uniform grid
that partitions [0, 1] with a grid size h = 1/N. By Taylor expansions,

−u′′(xj) =
−1u(xj+1) + 2u(xj)− 1u(xj−1)

h2
+O(h2), h → 0.

To find the approximated value for u(xj), denoted by uj , we need to solve

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2





u1
u2
u3
...

uN−2

uN−1


= h2



f (x1)
f (x2)
f (x3)
...

f (xN−2)
f (xN−1)


.
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A simple example of 2D FDM

The 2D Poisson equation with a variable coefficient

−∇ · (a(x)∇u(x)) = f (x), x ∈ Ω := (0, 1)2,

u(x) = 0, x ∈ ∂Ω.

Let (xi , yj) = (i/N, j/N), where i , j = 0, . . . ,N, x0 = y0 = 0, and
xN = yN = 1, be a uniform grid that partitions [0, 1]2 with a grid size
h = 1/N for each axis.

Let ui ,j denote the approximated value for u(xi , yj). A second-order finite
difference scheme reads

−ai−1/2,jui−1,j − ai ,j−1/2ui ,j−1 − ai+1/2,jui+1,j − ai ,j+1/2ui ,j+1

+(ai+1/2,j + ai−1/2,j + ai ,j+1/2 + ai ,j−1/2)ui ,j = h2f (xi , yj),

where ai+1/2,j =
1
2(ai+1,j + ai ,j), ai−1/2,j =

1
2(ai ,j + ai−1,j), and ai ,j+1/2,

ai ,j−1/2 are defined similarly.

The linear system has a block triadiagonal structure. Let’s do a demo.
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1D model problem

Consider the following 1D heterogeneous Helmholtz equation

Lu :=
(
a(x)u′

)′
+ κ2(x)u = f (x), x ∈ Ω := (0, 1)

B0u(0) := λL0u(0) + λL1u
′(0) = g0,

B1u(1) := λR0 u(1) + λR1 u
′(1) = g1,

where f ∈ L2(Ω) and a(x), κ(x) are bounded piecewise smooth functions
such that ess- infx∈Ω a(x) > 0.
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Arbitrarily accurate 1D compact FDM

Propn Suppose a, κ2, f , u are analytic functions satisfying the model
problem for all x ∈ (0, 1).

For any point xb ∈ (0, 1), we have

u(j)(xb) = Ej ,0u(xb) + Ej ,1u
′(xb) +

j−2∑
ℓ=0

Fj ,ℓf
(ℓ)(xb), j ⩾ 2,

where Ej ,0,Ej ,1,Fj ,ℓ only depend on a(xb), a
′(xb), . . . , a(j−1)(xb) and

κ2(xb), [κ
2]′(xb),. . . , [κ2](j−2)(xb) for j ⩾ 2 and ℓ ∈ N0.

For sufficiently small h,

u(xb + h) = u(xb)E0(h) + u′(xb)hE1(h) +
∞∑
ℓ=0

hℓ+2f (ℓ)(xb)Fℓ(h) with

E0(h) := 1+
∞∑
j=2

Ej ,0

j!
hj , E1(h) := 1+

∞∑
j=2

Ej ,1

j!
hj−1, Fℓ(h) :=

∞∑
j=ℓ+2

Fj ,ℓ
j!

hj−ℓ−2.
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Arbitrarily accurate 1D compact FDM

Thm Suppose a, κ2, f are smooth functions. Let M, M̃ ∈ N with M ⩾ M̃,
0 < h < 1, and xb ∈ (0, 1) such that (xb − h, xb + h) ⊂ (0, 1). Then, for
every solution u of Lu = f ,

c−1(h)u(xb − h) + c0(h)u(xb) + c1(h)u(xb + h)

h2
−

M̃−1∑
ℓ=0

dℓ(h)h
ℓf (ℓ)(xb) = O(hM̃),

where h → 0 and for ℓ = 0, . . . , M̃ − 1,

c1(h) =
α(h)

E1(h)
+O(hM+1), c−1(h) =

α(h)

E1(−h)
+O(hM+1),

c0(h) = −c1(h)E0(h)− c−1(h)E0(−h) +O(hM+2),

dℓ(h) = c1(h)Fℓ(h) + (−1)ℓc−1(h)Fℓ(−h) +O(hM̃−ℓ), h → 0,

and α is smooth with α(0) ̸= 0.
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Arbitrarily accurate 1D compact FDM

Thm Suppose a, κ2, f are smooth. Let M, M̃ ∈ N with M ⩾ M̃,
0 < h < 1, and xb ∈ [0, 1) with (xb, xb + h) ⊂ (0, 1). Define

B+u(xb) := λ0u(xb+) + λ1u
′(xb+) with λ0, λ1 ∈ C.

Then, for every solution u of Lu = 0,

cB
+

0 (h)u(xb) + cB
+

1 (h)u(xb + h)

h
−

M̃−2∑
ℓ=0

dB+

ℓ (h)hℓ+1f (ℓ)(xb+)−B+u(xb) = λ(hM̃),

where h → 0 and

cB
+

1 (h) =
λ1

E1(h)
+O(hM), cB

+

0 (h) = hλ0 − cB
+

1 (h)E0(h) +O(hM+1),

dB+

ℓ (h) = cB
+

1 (h)Fℓ(h) +O(hM̃−ℓ−1), ℓ = 0, . . . , M̃ − 2, h → 0.
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Example

Consider the model problem with a = 1.1 + sin(40πx), κ = 105
(
1− (x − 0.5)2

)
,

f = 109(x7 + 1), and the boundary conditions
√
1.1u′(0) + i75000u(0) = −1 and√

1.1u′(1)− i75000u(1) = 0.
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0.2

0.3
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-0.05

0

0.05

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 8

N ℓ
∥uN−u2N−1∥∞

∥u2N−1∥∞
∥u′N−u′2N−1∥∞

∥u′2N−1∥∞
Local CN Link CN

∥uN−u2N−1∥∞
∥u2N−1∥∞

∥u′N−u′2N−1∥∞
∥u′2N−1∥∞

Local CN Link CN

218 + 1 0 4.8707× 10−1 7.6812× 10−1 5.53× 106 − 6.7606× 10−3 1.0602× 10−2 5.66× 106 −
16 4.8707× 10−1 7.6812× 10−1 2.74× 105 7.71× 106 6.7606× 10−3 1.0602× 10−2 5.25× 105 1.20× 107

219 + 1 0 7.1208× 10−3 1.1068× 10−2 1.47× 107 − 2.2709× 10−5 3.5577× 10−5 1.42× 107 −
17 7.1208× 10−3 1.1068× 10−2 4.39× 101 1.16× 107 2.2709× 10−5 3.5577× 10−5 4.39× 101 1.19× 107

220 + 1 0 1.0754× 10−4 1.6712× 10−4 6.21× 107 − 8.6824× 10−8 1.3591× 10−7 5.98× 107 −
18 1.0754× 10−4 1.6712× 10−4 4.47× 101 1.19× 107 8.6814× 10−8 1.3589× 10−7 4.47× 101 1.19× 107

221 + 1 0 1.6652× 10−6 2.5876× 10−6 2.23× 108 − 1.9291× 10−9 2.9177× 10−9 2.23× 108 −
19 1.6652× 10−6 2.5877× 10−6 4.49× 101 1.19× 107 1.8549× 10−9 2.8085× 10−9 4.49× 101 1.19× 107
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2D model problem

Let Ω := (l1, l2)× (l3, l4) and ψ be a smooth two-dimensional function. Consider
a smooth curve ΓI := {(x , y) ∈ Ω : ψ(x , y) = 0}, which partitions Ω into

Ω+ := {(x , y) ∈ Ω : ψ(x , y) > 0} and Ω− := {(x , y) ∈ Ω : ψ(x , y) < 0}.

Our model problem is
∆u + κ2u = f in Ω \ Γ,
[u] = gD , [∇u · ν] = gN on Γ,

B1u = g1 on Γ1 := {l1} × (l3, l4), B2u = g2 on Γ2 := {l2} × (l3, l4),

B3u = g3 on Γ3 := (l1, l2)× {l3}, B4u = g4 on Γ4 := (l1, l2)× {l4},

where Bj ∈ {Id (Dirichlet), ∂
∂ν (Neumann), ∂

∂ν − iκId (radiation)} and for any
point (x0, y0) ∈ Γ,

[u](x0, y0) := lim
(x,y)∈Ω+,

(x,y)→(x0,y0)

u(x , y)− lim
(x,y)∈Ω−,

(x,y)→(x0,y0)

u(x , y),

[∇u · ν](x0, y0) := lim
(x,y)∈Ω+,

(x,y)→(x0,y0)

∇u(x , y) · ν − lim
(x,y)∈Ω−,

(x,y)→(x0,y0)

∇u(x , y) · ν.
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2D model problem

Ω−

Ω+

Γ

Γ1 Γ2

Γ3

Γ4

B1u = ∂u
∂ν − iκu = g1 B2u = u = g2

B3u = ∂u
∂ν = g3

B4u = ∂u
∂ν − iκu = g4
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Construction of interior, edge, and corner stencils

C1,1

C0,1

C1,0

C0,0

C1,1

C0,1

C0,1

C0,0

C1,1

C1,0

Γ
(xi, yj)

k+

k−
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Example

Suppose Ω = (−1/2, 1/2)2 with (κ+, κ−) ∈ {(10, 1), (1, 100)}, the source
term is f+ = sin(2πx) sin(2πy), f− = cos(2πx) cos(2πy), and the
boundary conditions are

g = sin(θ), gΓ = cos(θ), for θ ∈ [0, 2π),

u(−1/2, y) = 0, and u(1/2, y) = 0 for y ∈ (−1/2, 1/2),

u(x ,−1/2) = 0, and u(x , 1/2) = 0 for x ∈ (−1/2, 1/2).

κ+ = 10 and κ− = 1 κ+ = 1 and κ− = 100
J 2π

hκ+
∥uh − uh/2∥2 order ∥uh − uh/2∥∞ order J 2π

hκ−
∥uh − uh/2∥2 order ∥uh − uh/2∥∞ order

6 40.2 8.2461E-01 3.6325E+00
7 80.4 8.0665E-03 6.7 4.4579E-02 6.3 7 8.0 3.5212E-02 2.6626E-01
8 160.8 9.3400E-05 6.4 6.5308E-04 6.1 8 16.1 9.6191E-04 5.2 6.9248E-03 5.3
9 321.7 3.0871E-06 4.9 2.2701E-05 4.8 9 32.2 2.4508E-05 5.3 1.5983E-04 5.4
10 643.4 1.9575E-08 7.3 2.2072E-07 6.7 10 64.3 8.0117E-07 4.9 5.2179E-06 4.9
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Preliminaries on wavelets

Let ϕ := (ϕ1, . . . , ϕr )T and ψ := (ψ1, . . . , ψs)T be vectors of functions in L2(R).
For J ∈ Z, a wavelet system BJ0(ϕ;ψ) is defined to be

BJ0(ϕ;ψ) := {ϕℓJ0;k : k ∈ Z, ℓ = 1, . . . , r}∪{ψℓ
j ;k : j ⩾ J0, k ∈ Z, ℓ = 1, . . . , s},

where ϕℓJ0;k := 2J0/2ϕℓ(2J0 · −k) and ψℓ
j ;k := 2j/2ψℓ(2j · −k).

{22ψ(24 · −k), k = 1, . . . , 14}

{23/2ψ(23 · −k), k = 1, . . . , 6}

{23/2ϕ(23 · −k), k = 1, . . . , 7}
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Preliminaries on wavelets

We say that BJ0(ϕ;ψ) is a Riesz basis of L2(R) if the linear span of
BJ0(ϕ;ψ) is dense in L2(R) and BJ0(ϕ;ψ) is a Riesz sequence in L2(R),
i.e., there exist positive constants C1 and C2 such that

C1

∑
h∈BJ0

(ϕ;ψ)

|ch|2 ⩽
∥∥∥ ∑
h∈BJ0

(ϕ;ψ)

chh
∥∥∥2
L2(R)

⩽ C2

∑
h∈BJ0

(ϕ;ψ)

|ch|2

for all finitely supported sequences {ch}h∈BJ0
(ϕ;ψ).

We say that {ϕ;ψ} is a Riesz wavelet in L2(R) if BJ0(ϕ;ψ) is a Riesz basis
of L2(R).

Let ϕ̃ := (ϕ̃1, . . . , ϕ̃r )T and ψ̃ := (ψ̃1, . . . , ψ̃s)T be vectors of functions in
L2(R). We say that ({ϕ̃; ψ̃}, {ϕ;ψ}) is a biorthogonal wavelet in L2(R) if
both {ϕ̃; ψ̃} and {ϕ;ψ} are Riesz bases in L2(R) such that BJ0(ϕ̃; ψ̃) and
BJ0(ϕ;ψ) are biorthogonal to each other in L2(R).
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Three examples of biorthogonal wavelets

Left to right: ϕ, ψ, ϕ̃, and ψ̃. Each row represents an example.
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Fundamental result on biorthogonal wavelets

Thm: Let ϕ, ϕ̃ be r × 1 vectors of compactly supported distributions and ψ, ψ̃ be
s × 1 vectors of compactly supported distributions on R. Then ({ϕ̃; ψ̃}, {ϕ;ψ}) is
a biorthogonal wavelet in L2(R) iff

(1) ϕ, ϕ̃ ∈ (L2(R))r and ϕ̂(0)
T̂̃ϕ(0) = 1.

(2) ϕ and ϕ̃ are biorthogonal to each other: ⟨ϕ, ϕ̃(· − k)⟩ = δ(k)Ir for all k ∈ Z.
(3) There exist a, ã, b, b̃ ∈ (l0(Z))r×r (finitely supported sequences)

ϕ = 2
∑
k∈Z

a(k)ϕ(2 · −k), ψ = 2
∑
k∈Z

b(k)ϕ(2 · −k),

ϕ̃ = 2
∑
k∈Z

ã(k)ϕ̃(2 · −k), ψ̃ = 2
∑
k∈Z

b̃(k)ϕ̃(2 · −k),

and ({ã; b̃}, {a; b}) is a biorthogonal wavelet filter bank, i.e., s = r and[̂̃a(ξ) ̂̃a(ξ + π)̂̃b(ξ) ̂̃b(ξ + π)

] â(ξ)
T

b̂(ξ)
T

â(ξ + π)
T

b̂(ξ + π)
T

 = I2r , ξ ∈ R.

(4) Every element in ψ and ψ̃ has at least one vanishing moment.
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One more example of a wavelet system
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Define Φ1 := {ϕL1;0, ϕ1;1, ϕR1;1},

Ψj := {ψL
j ;0} ∪ {ψj ;k : 1 ⩽ k ⩽ 2j − 1} ∪ {ψR

j ;2j−1}, j ⩾ J0, and

B1D
1,J := Φ1 ∪ ∪J−1

j=J0
Ψj .

M. Michelle Intro to Numerical DEs July 22, 2025 20 / 33



Example

Consider the following differential equation:

−u′′ + 5u = f on (0, 1), u(0) = 0, u′(1) = 0,

where the exact solution is u(x) = 100(1− e−x)− 100e−1x . Let

uJ :=
∑
η∈B1D

1,J

cηη.

The coefficients cη can be found by solving the following linear system

⟨u′J , v⟩+ ⟨uJ , v⟩ = ⟨f , v⟩, v ∈ B1D
1,J .

Level Size Iteration κ ∥en∥L∞ ∥en∥L2 log2
∥en−1∥L2
∥en∥L2

5 128 15 3.2106 4.2213e-07 1.8141e-07 3.0089
6 256 15 3.2106 5.2757e-08 2.2607e-08 3.0044
7 512 15 3.2106 6.5948e-09 2.8215e-09 3.0022
8 1024 15 3.2106 8.2152e-10 3.5243e-10 3.0011
9 2048 16 3.2106 1.1396e-10 4.5919e-11 2.9402
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How about the 2D case?

Any compactly supported biorthogonal wavelet can be adapted to the
unit interval.

Use tensor product.

Use the weak formulation to obtain an approximated solution.
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Biorthogonal wavelet in H1
0 (Ω) from the 2D hat function
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Biorthogonal wavelet in H1
0 (Ω) from the 2D hat function

Below are plots of some generators of BH1
0 (Ω)

J0
:
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Wavelets in L2(I), I := (0, 1).

Given a compactly supported biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ}) in
L2(R), we construct a biorthogonal wavelet (B̃1D,B1D) in L2(I)

B1D
J0 := ΦJ0 ∪ ∪∞

j=J0Ψj ⊆ L2(I), B̃1D
J0 := Φ̃J0 ∪ ∪∞

j=J0Ψ̃j ⊆ L2(I),

where J0 ∈ N,

ΦJ0 = {ϕLJ0;0} ∪ {ϕJ0;k : nl ,ϕ ⩽ k ⩽ 2J0 − nh,ϕ} ∪ {ϕR
J0;2J0−1

},

Ψj = {ψL
j ;0} ∪ {ψj ;k : nl ,ψ ⩽ k ⩽ 2j − nh,ψ} ∪ {ψR

j ;2j−1}, j ⩾ J0,

ϕR := ϕL(1− ·), ψR := ψL(1− ·), and B̃1D
J0

is similarly defined by adding

∼ to each element in B1D.
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Wavelets in Sobolev spaces

Thm Let ({ϕ̃; ψ̃}, {ϕ;ψ}) be any compactly supported biorthogonal
wavelet in L2(R) such that every entry of ϕ belongs to H1(R). Let
(B̃1D,x

J0
,B1D,x

J0
) and (B̃1D,y

J0
,B1D,y

J0
) be biorthogonal wavelets in L2(I) from

({ϕ̃; ψ̃}, {ϕ;ψ}) such that

B1D,x
J0

⊆ {f ∈ H1(I) : f (0) = f (1) = 0},

B1D,y
J0

⊆ {f ∈ H1(I) : f (0) = 0}.

Define B2D
J0

:= Φ2D
J0

∪ ∪∞
j=J0

Ψ2D
j with

Φ2D
J0 := {Φx

J0 ⊗ Φy
J0
} and Ψ2D

j := {Φx
j ⊗Ψy

j ,Ψ
x
j ⊗ Φy

j ,Ψ
x
j ⊗Ψy

j },

and define B̃2D
J0

similarly using the dual functions. Then, (B̃2D
J0
,B2D

J0
) is a

biorthogonal wavelet basis in L2(Ω) and

BH
J0 := [2−J0Φ2D

J0 ] ∪ ∪∞
j=J0 [2

−jΨ2D
j ]

is a Riesz basis of the Sobolev space

H(Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω\Γ}.
M. Michelle Intro to Numerical DEs July 22, 2025 26 / 33



Elliptic interface problems

Consider the following problem

−∇ · (a∇u) = f in Ω \ Γ,
[[u]] = g , [[a∇u · ν]] = gΓ on Γ,

u = gb on ∂Ω,

Ω−

Ω+

Γ

where Ω := (0, 1)2, Γ is a smooth interface curve,

[[v ]](x) := lim
y∈Ω+,y→x

v(y)− lim
z∈Ω−,z→x

v(z) for x ∈ Γ,

a ∈ L∞(Ω) with ess-infx ,y∈Ω a(x , y) > 0, f ∈ L2(Ω), gΓ ∈ H−1/2(Γ), and
g , gb ∈ H1/2(∂Ω).
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Example

Let a+ = 1, a− = 10−3, and f , g , gΓ, gb be chosen so that

u+ = cos(4x − 2), u− = 103 sin(4y − 2) + 1500.

This makes g , gΓ ̸= 0 on Γ, and gb ̸= 0 on ∂Ω.
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BS ,H1
0 (Ω)

3,J (ours) B2D,H1
0 (Ω)

3,J (traditional) or Φ2D
J (FEM)

J NJ cond ∥u−uJ∥2
∥u∥2 order ∥∇u−∇uJ∥2

∥∇u∥2 order NJ
∥u−uJ∥2
∥u∥2 order ∥∇u−∇uJ∥2

∥∇u∥2 order

4 4585 5.33E+3 1.27E-1 3.85E-1 225 2.47E-1 7.19E-1
5 22857 8.23E+3 3.01E-2 1.79 1.98E-1 0.828 961 1.82E-1 0.417 5.30E-1 0.420
6 97497 9.71E+3 7.79E-3 1.86 9.27E-2 1.05 3969 9.62E-2 0.900 3.51E-1 0.580
7 398713 1.08E+4 1.58E-3 2.26 4.71E-2 0.961 16129 5.24E-2 0.866 2.44E-1 0.519
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Neural networks

For a given activation function σ, the function ϕ : Rdin → Rdout is a σ
network with L ∈ N layers if

ϕ := LL ◦ σ ◦ LL−1 ◦ σ ◦ · · · ◦ σ ◦ L1 ◦ σ ◦ L0,

where

Li (yi ) := Wiyi + bi , Wi ∈ RNi+1×Ni , yi ∈ RNi , yi ∈ RNi ,

N0 = din, NL+1 = dout,

bi ∈ RNi+1 , and

the activation function is applied elementwise.

Let θ denote all trainable parameters in the network. In what follows, we
use ϕθ to emphasize the dependence on θ.
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Physics-informed neural networks (PINN)

Original paper: Raissi, Perdikaris, and Karniadakis (2019).

Consider the following PDE:

ut + L[u] = 0, x ∈ Ω, t ∈ [0,T ],

u(x , 0) = g(x), x ∈ ∂Ω,

B[u] = 0, x ∈ ∂Ω, t ∈ [0,T ],

where

L[·] is a linear or nonlinear differential operator, and

B[·] is a boundary operator such as Dirichlet, Neumann, Robin, or
periodic boundary conditions.
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Physics-informed neural networks (PINN)

Define the PDE residuals as

Rθ(x , t) :=
∂ϕθ(x , t)

∂t
+ L[ϕθ](x , t).

Suppose that {x iic}
Nic
i=1 ⊂ ∂Ω, {x ibc, t ibc}

Nbc
i=1 ⊂ ∂Ω× [0,T ], and

{x ir , t ir}Nr
i=1 ⊂ Ω× [0,T ].

Then, we minimize the following sum of loss functions

L(θ) = Lic(θ) + Lbc(θ) + Lr(θ),

where

Lic(θ) =
1

Nic

Nic∑
i=1

|ϕθ(x iic, 0)− g(x iic)|2, Lbc(θ) =
1

Nbc

Nbc∑
i=1

|B[ϕθ](x ibc, t ibc)|2,

Lr(θ) =
1

Nr

Nr∑
i=1

|Rθ(x
i
r , t

i
r)|2.

Let’s do a demo.
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Neural operators: DeepONet

Original paper: Lu, Jin, Pang, Zhang, and Karniadakis (2021).

DeepONet aims to approximate an operator (the mapping from functions
to functions). Define the target nonlinear operator as

G : v 7→ u,

where

v : x 7→ v(x) ∈ R, x ∈ D ⊂ Rd , and u : y 7→ u(y) ∈ R, y ∈ D ′ ⊂ Rd ′
.

The vanilla DeepONet has two parts: branch and trunk networks.
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Neural operators: DeepONet

Consider the following PDE

L[u; k] = f , x ∈ Ω,

B[u] = g , x ∈ ∂Ω,

where L is a differential operator, B is the boundary operator, and
k = k(x) parameterizes L.

Goal: use DeepONet to approximate the solution operator G : k, f 7→ u.

How to train?

Generate many (k̃ , f̃ ) pairs, say M pairs.

For each pair, use classical discretization method to obtain an
approximated solution, ũ.

Train the DeepONet by using {(k̃i , f̃i )}Mi=1 as inputs and {ũi}Mi=1 as
the output.

Let’s do a demo.
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