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Some examples of differential equations

@ A one-dimensional differential equation

(a(x)u'), +r2(X)u=f(x), xe€Q:=(0,1)
Agu(0) + Mu'(0) = go, Au(1) + Afu'(1) = gr.

@ The 2D Poisson equation with a variable coefficient

~V - (a(x)Vu(x)) = f(x), x €Q:=(0,1),
u(x) =0, x € 0.

@ The 2D Helmholtz equation
—Au—r2u="f, inQ:=(0,1)

Ou —iku=g, on 0LQ.
%
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Some examples of differential equations

@ The 1D heat equation

du(x, t) k82u(x, t)

ks I xe€(0,L), t>0,
u(0,t) = u(L,t) =0, t >0,
u(x,0) = f(x), x € (0,L).

@ The 1D wave equation

QPu(x,t)  ,0%u(x,t)

52— a2 x € (0,L), t >0,
u(0,t) = u(L,t) =0, t >0,

u(x,0) = f(x), x € (0,L),
ur(x,0) = g(x), x € (0,L),
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Outline of today's lecture

o Finite difference method
@ Wavelet Galerkin method
o Physics-informed neural network

@ Neural operator
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A simple example of 1D FDM

Consider the following 1D Poisson equation
—u”" =fin(0,1), u(0)=u(l)=0.

Let x; =j/N, where j =0,...,N, xo :=0, and xy := 1, be a uniform grid

that partitions [0, 1] with a grid size h = 1/N. By Taylor expansions,

—1u(xj41) + 2u(xj) — 1u(xj-1)
h? +

To find the approximated value for u(x;), denoted by u;, we need to solve

O(h?), h—0.

—u"(x) =

(2 -1 11 w ] [ f(x1) |
-1 2 -1 up f(x2)
-1 2 -1 L f(fz)

-1 2 -1 un—2 f(XN,Q)

| -1 2 1 LUn—1] _f(XN_l)_
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A simple example of 2D FDM

The 2D Poisson equation with a variable coefficient
-V - (a(x)Vu(x)) = f(x), x€Q:=(0,1)%
u(x) =0, x € 0.
Let (xi,y;) = (i/N,j/N), where i,j =0,...,N, xo = yo =0, and
xny = yn = 1, be a uniform grid that partitions [0, 1]? with a grid size
h =1/N for each axis.

Let u;; denote the approximated value for u(x;,y;). A second-order finite
difference scheme reads

—di-1/2,jUi-1j = djj—1/2Uij-1 — di41/2,jUi+1,j — i jy1/2Uij+1
12
+(ait1/2j + ai—1/2 + @ijr1/2 T aij1/2)uij = h°f(x;, y)),
S I
where a;,1/5; = 5(aiy1j +aij), dji_1/2j = 5(aij +ai—1), and aj j+1/2:

aj j—1/2 are defined similarly.

The linear system has a block triadiagonal structure. Let's do a demo.
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1D model problem

Consider the following 1D heterogeneous Helmholtz equation
Lu:= (a(x)u')/ + 12 (x)u = f(x), xe€Q:=(0,1)
Bou(0) := Asu(0) + M/ (0) = g,
Biu(1) == Au(1) + \F/'(1) = g1,

where f € L2(€2) and a(x), k(x) are bounded piecewise smooth functions
such that ess-infycq a(x) > 0.
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Arbitrarily accurate 1D compact FDM

Propn Suppose a, k2, f, u are analytic functions satisfying the model
problem for all x € (0,1).

For any point x; € (0, 1), we have

j—2
u (xp) = Ejou(xp) + Ej10'(xp) + Z FofO(x), =2
=0
where E; o, Ej 1, Fj ¢ only depend on a(xy), a'(xp), .. .,al = (xp) and

K2(xp), [K2) (%b),- - -, [K2]U=2(xp) for j =2 and £ € No
For sufficiently small h,

u(xp + h) = u(xp)Eo(h) + o/ (xp)hEL(h) + Y~ W2 FO(x,)Fo(h)  with
/=0

Eo(h) —1+Z S0H, (1) _1+z T Fi(h) = Z Bt iz,
'*K

M. Mlchelle Intro to Numencal DEs



Arbitrarily accurate 1D compact FDM

——————+—+—

Thm Suppose a, k2, f are smooth functions. Let M, M € N with M > M,
0 < h<1, and x, € (0,1) such that (xp — h,x, + h) C (0,1). Then, for
every solution u of Lu = f,

<2

c_1(h)ul(xo — h) + co(h)u(xe) + ca(h)u(xs + h) R~

h2

do()h FO (xp) = O(AM),

o~
i

where h — 0 and for £ =0, . M—1,

_ Oé(h)
co(h) = —a(h
dy(h) = c1(h)

and « is smooth with «(0) # 0.

a(h)
Ei(—h)
)Eo(h) — c-1(h)Eo(—h) + O(h"+?),

Fo(h) + (1) c_1(h)Fo(—h) + O(A™=4), h— 0,

+ O, c_1(h) = + O(hM+1),
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Arbitrarily accurate 1D compact FDM

—

Thm Suppose a, k2, f are smooth. Let M, M € N with M > M,
0< h<1, and xp € [0,1) with (xp, xp + h) C (0,1). Define

BT u(xp) := Xou(xp+) + A1t/ (xp+) with g, A1 € C.
Then, for every solution u of Lu =0,

b (hulx) + ¢ (BuCxo+h) N~
h

(MO (xp+) — BT u(xs) = A(h),

where h — 0 and

+ A +
o (0) = gy T O & (h) = ho = ()Eo(h) + O(H""™),
dB (k) = B (h)Fy(h) + O(K"=Y), ¢=0,...,M—2, h—0.
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Example

Consider the model problem with a = 1.1 + sin(407x), x = 10° (1 —(x— 0.5)2>,

f = 10%(x” + 1), and the boundary conditions v/1.1¢/(0) + i75000u(0) = —1 and
v 1.1u/(1) — i75000u(1) = 0.

|

}|||||||||||||||W “ MMW"I'I'IH’IWM

01 0z 03 04 05 06 07 08 08 1

0 o1 02 03 04 05 08 07 08 09

DAT using the compact FDM with order M = 6 DAT using the compact FDM with order M = 8
N | Dol TS o on LnkeN | Bmcele TSl g en Link ON
Tean -1l [ Tazn—1loe 15— 1Tl

241 0 |48707x1071 7.6812x 10T 553 x 10° - 6.7606 x 10> 1.0602 x 102 5.66 x 10° -
16 | 4.8707 x 107! 7.6812x 1071 2.74 x 10° 7.71 x 10° | 6.7606 x 103 1.0602 x 1072 525 x 10° 1.20 x 107

2941 0 |7.1208x 1073 1.1068 x 102 1.47 x 107 - 2.2709 x 1075 3.5577 x 10° 1.42 x 107 -
17 | 7.1208 x 1073 1.1068 x 1072 4.39 x 10! 1.16 x 107 | 2.2709 x 10~° 3.5577 x 107° 4.39 x 10' 1.19 x 107

22041 0 |1.0754x107% 1.6712x10°*% 6.21 x 107 - 8.6824 x 10°% 1.3591 x 107 5.98 x 107 -
18 | 1.0754 x 107*  1.6712x 10™* 4.47 x 10! 1.19 x 107 | 8.6814 x 108 1.3580 x 1077 4.47 x 10* 1.19 x 107

22411 0 | 1.6652x 10® 25876 x 10°° 223 x 10 - 1.9291 x 10° 2.9177 x 1077 2.23 x 10 -
19 | 1.6652 x 107® 2.5877 x 107° 4.49 x 10! 1.19 x 107 | 1.8549 x 107° 2.8085 x 10~ 4.49 x 10> 1.19 x 107
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2D model problem

Let Q :=(h, k) x (k,1y) and ¢ be a smooth two-dimensional function. Consider
a smooth curve I := {(x,y) € Q : 9(x,y) = 0}, which partitions € into

Q= {(x,y) €Q : Ulxy) >0} and Q= {(x,y) €Q : ¥(xy) <O}
Our model problem is
Au+r’u=f in Q\ T,
[ul]=gp, [Vu-v]=gn onT,

Biu=gionTy:={h} x(h,ls), Bau=gronTy:={h}x(hl),
Bsu=gzonl3:=(h,h)x{h}, Bau=ggonTly:=(h,h)x{h},

where B; € {lg (Dirichlet), % (Neumann), % — ikly (radiation)} and for any
point (xo,y0) €T,

[U](x0,%0) :=  lim  wu(x,y)— lim u(x,y),
(xy)eat, (xy)eQ—,
(x:y)=(x0:%0) (x:y)=(x0,%0)
[Vu-vV](x0, %)= lim  Vu(x,y)-v— lim Vu(x,y)- v
(xy)eat, (oy)ea—,
(x,y) = (x0:%0) (x,)=(x0:%0)
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2D model problem

B4u:%fil-@u:g4

M4

Q+

Blu:%—inu:gl M Mo | Bou=u=g

I3

P)
Bsu=735, =g3
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Construction of interior, edge, and corner stencils

ke
Cia Cip Ci1 Co,1 Ci T / (@ 5)

Co,1 Co, Co,1 Co,0 C10 k_
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Example

Suppose Q = (—1/2,1/2)? with (x4, x_) € {(10,1),(1,100)}, the source
term is i = sin(27x) sin(2my), f- = cos(2mx) cos(2my), and the
boundary conditions are

g = sin(6), gr = cos(f), for 6 €0,2m),

u(-1/2,y)=0, and u(1/2,y)=0 for ye(-1/2,1/2),
u(x,—1/2) =0, and u(x,1/2)=0 for x e (—-1/2,1/2).

ky=10and K- =1 Ky =1and k_ =100
J % llun — uppall2 | order | [lup — “h/zﬂoo order | J h‘% [lun — uppll2 | order | [lup — uh/sz order
6 40.2 8.2461E-01 3.6325E+00
7 | 80.4 | 8.0665E-03 | 6.7 4.4579E-02 63 | 7 | 80 | 3.5212E-02 2.6626E-01
8 | 160.8 | 9.3400E-05 6.4 6.5308E-04 6.1 | 8 | 16.1 | 9.6191E-04 | 52 6.9248E-03 5.3
9 | 321.7 | 3.0871E-06 | 4.9 2.2701E-05 48 | 9 | 322 | 2.4508E-05 | 53 1.5983E-04 5.4
10 | 643.4 | 1.9575E-08 7.3 2.2072E-07 6.7 | 10 | 64.3 | 8.0117E-07 4.9 5.2179E-06 4.9

o
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Preliminaries on wavelets

Let ¢ := (¢',...,¢")T and ¢ := (¥!,...,1°)T be vectors of functions in Ly(R).
For J € Z, a wavelet system B, (¢; 1) is defined to be

Bi(divp) :={d%u + kEZL=1,....r}U{Yfy + j=>Jo.k€Z L =1,...,5s},
where ., 1= 2%/2¢¢(2% . —k) and yf, = 2/2)4(2 - —k).

/\/\/\/\/\/\/\/\/\/\/\/\/\/\ [
OMQAAA@@”Wijh@

| {23/2¢(2% - k), k=1,...,7}

r{:ol\).::-

o

~

N

. . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Preliminaries on wavelets

We say that By,(¢; ) is a Riesz basis of Ly(R) if the linear span of
B, (¢; 1) is dense in Lp(IR) and By,(¢; 1) is a Riesz sequence in Ly(R),
i.e., there exist positive constants C; and C, such that

2

o ¥ el S e > o

heBy (¢i9) heBy (o) heByy (o)

for all finitely supported sequences {ch}hegjo(¢;¢).

We say that {¢; 1} is a Riesz wavelet in Ly(R) if By,(¢; ) is a Riesz basis
of LQ(R).

Let ¢ := (¢, ...,¢")T and ¢ := (1,...,9°)T be vectors of functions in
L>(R). We say that ({¢; 4}, {¢;1}) is a biorthogonal wavelet in Ly(R) if
both {¢; %} and {¢;4} are Riesz bases in L»(R) such that B, (¢; ) and
B, (¢; 1)) are biorthogonal to each other in Ly(R).
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Three examples of biorthogonal wavelets

Left to right: qb,lb,d;, and @Z Each row represents an example.
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Fundamental result on biorthogonal wavelets

Thm: Let ¢, $ be r x 1 vectors of compactly supported distributions and v ¥ be

s x 1 vectors of compactly supported distributions on R. Then ({J) @Z} {d;}) i
a biorthogonal wavelet in Ly(R) iff

(1) 6,3 € (L(R)Y and 3(0) (0) =1

(2) ¢ and ¢ are biorthogonal to each other: (¢, ¢(- — k)) = 8(k)l, for all k € Z.
(3) There exist a, 3, b, b € (Ip(Z)) ™" (finitely supported sequences)

¢=2) a(k)p(2-—k), =2 b(k)$(2—k),
keZ keZ

$=23 &K)d@2-—k), =2 b(k)p2-—k),
keZ

kez
and ({3; b}, {a; b}) is a biorthogonal wavelet filter bank, i.e., s = r and

F(g) &+ m) a©) %TT =h, E€R
b&) bE+m)] |5+ bE+) |

(4) Every element in 1) and ) has at least one vanishing moment
M. Michelle
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One more example of a wavelet system

Define & := {¢io,¢1;1,¢51},
wj = {¢JL0} U {wjk 1< X - 1} U{ J; 21_1}7 J P J07 and
BiY = ®1UU V)
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Consider the following differential equation:
—u"+5u="fon(0,1), wu(0)=0, J(1)=0,
where the exact solution is u(x) = 100(1 — e™*) — 100e~1x. Let
uy = Z Cyn-
neBLy,
The coefficients ¢, can be found by solving the following linear system

(s v) + (ug,v) = (F,v), veBID.

Level Size Iteration K llenllio llenllL, log, ”ﬁ';ll‘yf

5 128 15 3.2106 4.2213e-07 1.8141e-07 3.0089
256 15 3.2106 5.2757e-08 2.2607e-08 3.0044
512 15 3.2106 6.5948e-09 2.8215e-09 3.0022
1024 15 3.2106 8.2152e-10 3.5243e-10 3.0011
2048 16 3.2106 1.1396e-10 4.5919e-11 2.9402

© 00 ~N O
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How about the 2D case?

@ Any compactly supported biorthogonal wavelet can be adapted to the
unit interval.

@ Use tensor product.

@ Use the weak formulation to obtain an approximated solution.

M. Michelle
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Biorthogonal wavelet in H}(Q) from the 2D hat function

o

a SSAMMANAAANS A

&

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
NUVAVAVAVAUNIN
. JAN A\

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

o - N W
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Biorthogonal wavelet in H}(Q) from the 2D hat function

).

Q
Below are plots of some generators of B, 0(

@ > -
-
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Wavelets in Lp(Z), Z := (0,1).

Given a compactly supported biorthogonal wavelet ({¢~5 1/;}, {#;7}) in
L>(R), we construct a biorthogonal wavelet (B'P, B1P) in Ly(Z)

Bi? =0, U Uj.iJO\Uj C Ly(2), B~_ll(? = &)_/0 U Uf.ijoqjj C Ly(2),
where Jp € N,

< 2h — nh7¢>} U {d)’j;;zlo_ﬁv

&gy = {8501 Uldmk  mg <k
k<2 —npy}U {¢J52j,1}7 J =D,

V= {¢o} U{thjk 1 iy <

oR = pH(1 — ), YR := L1 - ), and l’;’f is similarly defined by adding
~ to each element in B'P.
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Wavelets in Sobolev spaces

Thm Let ({cf; 1/7}, {¢;1}) be any compactly supported biorthogonal
wavelet in Lp(R) such that every entry of ¢ belongs to H'(R). Let

(l’;’f’x,Bf’X) and (Ef’y, Bf’y) be biorthogonal wavelets in Ly(Z) from
({¢: 9}, {¢:9}) such that
1D,x i
B, ™ C{f € HY(Z) : £(0) = f(1) =0},
1D
B, C{fe HY(T) : f(0) =0}.
Define BﬁOD = CD%E U Uj'iJO\UJ?D with
O = {P) @)} and WP = {OF @ W Vi@l Vo w ],
and define 5’3(')3 similarly using the dual functions. Then, (53(?,83(?) is a
biorthogonal wavelet basis in L»(€2) and
Bt =27 hoPTu U, 27720
is a Riesz basis of the Sobolev space

H(Q) = {u e HY(Q) : u=0 on IQ\FL}.
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Elliptic interface problems

Consider the following problem

Q+

—V-(aVu)=1f in Q\T,
[l =g, [aVu-v]=g on T, @
0Q,

u=4gp On

where Q := (0,1)?, T is a smooth interface curve,

= i — i f r
[[V]](X) yGQII,T/%x v(y) zeﬂl_r‘,nzﬁ\x V(Z) or xel,

a € Loo(Q) with ess-infy yeq a(x,y) >0, f € L(Q), gr € H™Y/2(T), and
g.8b € H'?(9).
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Example

Let a, =1, a_ = 1073, and f, g, gr, g» be chosen so that
uy = cos(4x —2), wu_ = 10sin(4y — 2) + 1500.
This makes g,gr #0on I, and g, # 0 on 09.

ay =1 A i
T T
B3s_’JH°(Q) (ours) B;g’HO(Q) (traditional) or ®3° (FEM)
Ny cond W order % order | Ny W order % order
4585  5.33E4+3 1.27E-1 3.85E-1 225  2.47E-1 7.19E-1

22857 8.23E+3 3.01E-2 1.79 1.98E-1 0.828 | 961 1.82E-1 0.417 530E-1  0.420
97497 9.71E4+3 7.79E-3 1.86 9.27E-2 1.05 | 3969 9.62E-2 0.900 3.51E-1  0.580
398713 1.08E+4 1.58E-3 2.26 471E-2 0961 | 16129 5.24E-2 0.866 2.44E-1  0.519

~N o oa
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Neural networks

For a given activation function o, the function ¢ : R — R%:ut is a o
network with L € N layers if

¢p:=LiocoLy 1000---000Li000 Ly,

where
o Li(yi) :== Wiy + bi, W; € RNwxNi 1y e RNi -y, € RN
o No = din, N1 = dout,
e b; € RNi+1 and
@ the activation function is applied elementwise.

Let 0 denote all trainable parameters in the network. In what follows, we
use ¢y to emphasize the dependence on 6.
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Physics-informed neural networks (PINN)

Original paper: Raissi, Perdikaris, and Karniadakis (2019).

Consider the following PDE:

ug+ Lu] =0, x€Q, te[0,T]
u(x,0) = g(x), x€0Q,
Blul =0, x€0Q, tc|0,T],
where

e L[] is a linear or nonlinear differential operator, and

e B[] is a boundary operator such as Dirichlet, Neumann, Robin, or
periodic boundary conditions.

M. Michelle

Intro to Numerical DEs July 22, 2025



Physics-informed neural networks (PINN)

Define the PDE residuals as

Ro(x, 1) = 22200 4 o1, t).

ot

Suppose that {x._ }fv‘Cl C 09, {x}.; tti,c},Nbcl C

{xr,t,} 7, CQx[o,T].

Then, we minimize the following sum of loss functions

‘C(a) = »Cic(e) + Lbc(e) + ['r(e)a

where

|c(9 Z |¢9( |c7 (Xil;:)|27 ‘Cbc

L0 = Zmo

Let's do a demo.
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Neural operators: DeepONet

Original paper: Lu, Jin, Pang, Zhang, and Karniadakis (2021).
DeepONet aims to approximate an operator (the mapping from functions
to functions). Define the target nonlinear operator as
G:v—u,
where
vix—v(x)eR, xeDCR?Y and wu:y—u(y)eR, yeD cRY.

The vanilla DeepONet has two parts: branch and trunk networks.

v(x) 5.
@

v — v(x®) Branch Net bz

p(x™) by

- 10162)
y—{ T}

M. Michelle
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Neural operators: DeepONet

Consider the following PDE

Llukl=1f, x€Q,
Blul=g, x¢€0Q,

where L is a differential operator, B is the boundary operator, and
k = k(x) parameterizes L.

Goal: use DeepONet to approximate the solution operator G : k, f — wu.

How to train?
o Generate many (l;7 f) pairs, say M pairs.
@ For each pair, use classical discretization method to obtain an
approximated solution, .
o Train the DeepONet by using {(k;, )}, as inputs and {&;} M as
the output.

Let's do a demo.
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