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Why Should We Protect Data? B AUBERTA

aonovovasemann QLML

» Removing directly identifying information is not sufficient.
» many legendary disclosure incidents due to failed de-identification
» For example:

» Phd student Sweeney’s experiment to identify the then Massachusetts governor’s
medical data using publicly accessible and insurance data
> 87% of U.S. citizens are expected to be unique using zip code, gender, and birth date

Bei Jiang (University of Alberta) 2025 2/64
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» Most famously, 2006 Netflix $ 1 million prize competition, inviting researchers to
improve the Netflix baseline recommendation algorithm by 10%.
» The training data: 100 million user data and their ratings on movies (1 to 5 stars)
» The testing data: 1.5 million user data without any ratings.
> As required by the Video Privacy Protection Act of 1988, there was no information that
could identify a user, like zip-code, birthdate, and of course name, etc.

Bei Jiang (University of Alberta) 2025 3/64



Why Should We Protect Data? B AUBERTA
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» Narayanan and Shmatikov were able to connect the individuals in the Netflix dataset
to real people, by cross referencing movie ratings in IMDA site (many users post
publicly with their own names).

» It end up with privacy breaches, a big lawsuit, and cancelling of Netflix Challenge II.
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Image credit: Arvind Narayanan

Bei Jiang (University of Alberta) 2025 4/64



[G3) UNIVERSITY OF

ALBERTA

Motivating principles for sharing data BALBERIA -

» Transparency/reproducibility — trust in research
» Public good — collective knowledge sharing
» Fairness — reducing barriers to data access

» However, one needs to protect privacy.

Bei Jiang (University of Alberta) 2025 5/64
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How might we protect privacy?

» Removing direct identifiers is not enough

» In a typical dataset, especially those for research purposes, we have:
» Demographics (e.g., age, sex, race)
> Sensitive variables (e.g., income, medical status, political opinion)

Bei Jiang (University of Alberta) 2025 6/64
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Topics covered include:

» Sample new values based on the existing data? [Synthetic Datal

» Add some random noise to final released results? [Differential Privacy]
Other frameworks exist that we will not cover:

» Distributed learning/federated learning

» k-anonymity: generalization and suppression

> Classical statistical disclosure control methods: data swapping, top and bottom coding

Bei Jiang (University of Alberta) 2025 7/64



Understanding the Utility-Risk Trade-off is Crucial @ ALBERTA
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» Privacy is never free.
» Fundamentally all methods contain a trade-off:
> Utility is the accuracy of the released data relative to the confidential data

» global measures: overall similarity or resemblance of the released data to the confidential
data
> specific measures: analysis-specific measures for certain estimand of interest

> Risk is the likelihood of learning confidential information: identity disclosure and
attribute disclosure

» Generally, high privacy, low utility; low privacy, high utility.

» Goals are to maintain the same level of privacy while maximizing data utility.

Bei Jiang (University of Alberta) 2025 8/64



What is synthetic data? B ALBERTA
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» The idea is not new: Rubin (1993) proposed the first model-based synthetic method
using multiple imputation (MI):
> replace the original data by predictive values drawn from the posterior predictive
distributions
» use combining rules to analyze the released multiple synthetic datasets.

Source Data Fit Model
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source: https://www.replica-analytics.com
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Challenges

» However, the quality of the resulting synthetic datasets depends on how well the
assumed synthesis model would fit the original data. Information loss due to incorrect
specification of such a model can weaken or invalidate the inferences obtained using
synthetic datasets.

» As discussed by Winkler (1993) that “in producing confidential public-use data files,
statistical agencies should first assure that the files are analytically valid", creating
synthetic datasets with low quality /utility is not beneficial or worthwhile especially if
they lead to incorrect scientific conclusions.

Bei Jiang (University of Alberta) 2025 10/64
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The setup

» All directly identifying variables (e.g., names, addresses) are removed from the
confidential dataset.
» The dataset D = (X, Z) consists of two types of variables:

» The quasi-identifying variables X (demographic variables, such as age, gender) that
provide indirectly identifying information that intruders can use to identify a particular
subject.

» The non-identifying variables Z.

» Here we focus on synthesizing/perturbing X to prevent identity disclosure, while
keeping Z unchanged.

» An identity disclosure/re-identification occurs when it is possible to learn that a
particular data record belongs to a particular subject.

Bei Jiang (University of Alberta) 2025 11/64
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Rubin’s original MI-based synthetic methods ALBERTR - -

» The imputation model Mnpu: P(X1Z,7)
» The synthetic values of X;, i =1,--- ,n are then drawn from the posterior predictive
distribution:

P(Xz|Zz»D7Mzmput) = /P(XZ|ZM’V»Mzmput)P(’ﬂDvM'meut)d’%

where Z; represents an independent copy of Z;, and X, represents the posterior
predictive replicate of X;.

» If Mimpur does accurately reflect the true association between X and Z, the
information loss in the synthetic data will be minimal, leading to a high level of data
utility but also minimal privacy protection.

Bei Jiang (University of Alberta) 2025 12/64
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> In practice, the assumed M y,;,+ Will rarely provide perfect predictions and hence will
not perfectly preserve the information in the original dataset.

» The information about X that is preserved in the synthetic data is determined by the
assumed association specified by the imputation model M, pyz.

» The data utility and disclosure risk in the synthetic datasets are determined once
Mimput 18 chosen (more illustration in simulation studies).

Bei Jiang (University of Alberta) 2025 13/64
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» Our new framework generalizes Rubin’s MI framework:

[Imputation model M;mpu,tj

(Mmask W~ P(X~ A, Mmask)] [Massoc : P(X‘Z 0, Massoc)]

[draw Xsyn ~ P<X|Z~7 ﬁly DDA7 Mmask7 Massoc)]

> We create pseudo-variable W based on X through M,,.sx and the tuning parameter A

(Details will be given later).

»> We build the joint model Mupqsk and Massoc for the augmented Dpa = (D, W).

p(X, W|Z,X,0) = p(X|Z,0) p(W|X, \),
Massoc Mmask

Bei Jiang (University of Alberta) 2025

amil
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The new data-augmented MI synthetic framework ami

» The synthetic values of X;, i =1,--- ,n are then drawn from the posterior predictive
distribution:

P(Xi|Zi, Wi, Dpas Mimput)
X / P(Xz|Zzu 9; Massoc)P(Wi|Xi7 >\; Mmask)P()\y 9|DDA7 Mimput)d)\dga
» Z; and W; represent independent copies of Z; and W;, respectively and X; represents

the posterior predictive replicate of X;.
P> Mimput consists of Mqsk (always correctly specified) and Massoc-

Bei Jiang (University of Alberta) 2025 15/64
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The new data-augmented MI synthetic framework ami

» Without W, our DA-MI reduces to Rubin’s original method.

» With W and M,,4sk, the generated W will provide additional information about X
and hence mitigate information loss.

» Further, one could control how much information in X to be transferred to W by
tuning through A under M, k-

» Thus, when M0 is misspecified or X is only weakly correlated with Z, M5k
offers protection against information loss and in turn helps balance quality of inference
and disclosure risk.

» No need for new inference procedures; the combining rules of Reiter (2003) for
inference using MI synthetic data sets are still applicable (regardless of the input data
being D or augmented Dp ).

Bei Jiang (University of Alberta) 2025 16/64



How to choose M, to generate W7 & KUBERTA
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» If the confidential X; is continuous

» for each X;, we add random noise with the variance level chosen by the data provider,
to produce K pseudo-variable, denoted by W; = (Wi, i =1,--- ,n;k=1,--- , K),
according to the masking model M ,q5k,

Monask : Wix = Xi + eir,, where g, ~ia. N(0,02), k=1,2,-- K.

» By varying the values of K and o2, one can control the amount of information in X; to
be transferred to W;.

Bei Jiang (University of Alberta) 2025 17/64
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How to choose M, to generate W7

> If the sensitive X; is categorical taking values in {0,--- ,C — 1}

» for each X;, we create pseudo-variable W, from a mixture distribution of C' components
according to the masking model M 45k,

Mmask : Wi = aX; + ui, where u; ~ N(0,1),

» The value of a controls how close the C' components are located to one and another; in
other words, how accurate one can recover X; from W;.
> Alternatively, W, could be generated from

Monastk P(Wz = ’Ule- = u) = Tou

where higher 7,, means more information transfer from X; to W;.

Bei Jiang (University of Alberta) 2025 18/64
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How does the tuning mechanism work? AUBERTR -

RMSEs of the estimated coefficients using M synthetic datasets (Utility)
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How does the tuning mechanism work?
Disclosure /Re-identification risk
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Global utitlity measures
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aim to reflect the overall similarities between the distributions of the synthetic data
and the confidential data.

stack up the original dataset and the synthetic dataset resulting in a merged dataset
of size 2n

and use a classification algorithm (e.g. logistic regression or CART) to predict
whether an observation belongs to the original dataset or the synthetic dataset

return a summary statistic U,, which measures overall how close the predicted
probability of each observation p; is to % :

High level of similarity between the original and the synthetic datasets results in

U, = 0; low level of similarity results in U, ~ i

Bei Jiang (University of Alberta) 2025

21/64
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Analysis-specific measures for the estimand of interest:
» The 95% confidence interval (CI) overlap measure, i.e., the percentage overlap of Cls
calculated using the original and synthetic data sets, defined as,

min(Uorig, USyH) — maX(Lorig, LSyH) n min(Uorig, Usyn) — HlaX(LOI.ig, Lsyn)
L Usyn — Lsyn

0.5

Uorig — Horig

where U. and L. denote the upper and lower bounds of the CI and subscripts, and
“orig” and “syn” denote the CI bounds calculated using the original and synthetic data
sets respectively. A higher positive value of this interval overlap measure corresponds
to higher data utility. A negative value indicates no overlap.

Bei Jiang (University of Alberta) 2025 22/64
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Specific utility measures ransenns QML

Analysis-specific measures for the estimand of interest:
» The standardized difference between the estimates using the original and synthetic
data sets, defined as ﬁorig — Bsyn|/ SE(ﬁorig), where Borig and fBsyn are the

estimated coefficients obtained using the original and synthetic data sets respectively,
and SE(ﬁorig) is the estimated standard error of the coefficient using the original

dataset.

Bei Jiang (University of Alberta) 2025 23/64
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Let t; represents the vector of the quasi-identifiers for individual i, for i =1,--- ,n.

Recall that Dpyp = {Dz()'lu)lﬂ . ,D;ﬁ)} denotes the M released synthetic datasets.

For each target record ¢; known by the intruder, we seek candidate records in each
D;Tb) with the same values for each categorical identifier and with each continuous
identifier located within a small range of the target value. When any such record
within D]gz"b) is found, we consider it to be a match of t;.

Then we estimate the probability of matching on the i*” individual in each D;()ZLI)) ,
denoted by Pr(J% = i|t;, D;Tg), by letting ¢; be the record of the i*" individual and
assuming that each of the matched records has equal probability of being picked by
the intruder.

Bei Jiang (University of Alberta) 2025

24/64
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» If s records are matched on ¢;, this probability is estimated to be 1/s; and when there
are no defined matches for ¢;, this probability is estimated to be zero.

» Once Pr(J% = i|t“D[()ub)) is determined for each released D(ub)7 =1,---, M, we
average them across the M released data sets Dp,; to obtaln the estimate of

Pr(J% = i|t;, Dpup) for each target record t;. That is, the individual-level

re-identification risk, J; = 4 Z L Pr(Jt = i\ti7D§)ZL£).

Bei Jiang (University of Alberta) 2025 25/64
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» Under this framework, we mimic the behaviour of an ill-intentioned intruder who has
access to the true values of certain background and demographic information for
certain individuals in the dataset, and seeks to identify the records that belong to
these individuals in the released synthetic datasets.

» Specifically, we assume that the intruder knows that the target individuals are in the
dataset and the values of the quasi-identifiers for all individuals in the dataset. In
other words, those variables that are not considered as quasi-identifiers are not used in
the calculation of disclosure risks.

Bei Jiang (University of Alberta) 2025 26/64
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> Let Q@ = Q(D) be a target estimand defined by the data user, which is a function of
the unmasked data D.

» For each synthetic dataset Dz(mb) ,m=1,--- M, the data user could fit his/her choice

of model, Mgnaiy, as if D(ub) was the actual dataset.

» The target estimand @ is estimated by some estimator ¢(™) = q(XZ(mmb)7 Z) with an

associated variance, estimated via v("™) = ’U(X;umb), Z).

> Let g = 27]\:{:1 q(m)/M, Uy = ZM LV m>/M (i.e., average of the within-copy
variance) and by = Z%Zl(q(m) g )?/(M — 1) (the between-copy variance). Then Q
is estimated by gas and the variance of gqas is estimated by Th = M~ Ybar + s

> When the sample size n is large, the confidence interval for @) is constructed using a
t—distribution with degrees of freedom v = (M — 1)(1 + r3,")?, where
rar = M~ bar/Tar. As pointed out by Reiter (2003), in the case of a large enough v, the
normal distribution provides an adequate approximation to such a t—distribution.

Bei Jiang (University of Alberta) 2025 27/64
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Focusing on Complete Case
Table: Point estimates and 95% confidence intervals for only 4 coefficients in a Probit regression

model to predict work disability when perturbing binary Race, Sex and Education and
continuous Age variables.

M=3 M=20
Unperturbed CART norm-+logit DA-MI CART norm-+-logit DA-MI

Age

Estimate -0.183 -0.094 -0.08 -0.195 -0.084 -0.119 -0.189

95% CI (-0.312,-0.053)  (-0.235, 0.048) (-0.222, 0.063) (-0.324,-0.066)  (-0.219, 0.051) (-0.261, 0.022) (-0.319, -0.059)
Race

Estimate 0.518 0.051 0.85 0.514 0.088 0.554 0.514

95% CI (-0.018, 1.053) (-0.491, 0.593) (0.13, 1.57) (-0.021, 1.049) (-0424,0.601)  (-0.04, 1.147)  (-0.02, 1.049)
Sex

Estimate 0.082 -0.132 -0.031 0.084 -0.058 0.017 0.016

95% CI (-0.364, 0.527) (-0.577,0.312)  (-0.53,0.468)  (-0.354, 0.522) (-0.538,0.423)  (-0.429, 0.464)  (-0.398, 0.431)
Education

Estimate -0.149 -0.041 -0.256 -0.153 -0.052 -0.216 -0.113

95% CI (-0.435, 0.137) (-0.332,0.249)  (-0.717,0.204)  (-0.444, 0.138) (-0.349,0.244)  (-0.522,0.09)  (-0.401, 0.176)

Our MI-DA method reduces the risk of re-identification to 0% while still preserving 97.6%
confidence interval overlap on average.

Bei Jiang (University of Alberta) 2025 28/64
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Focusing on Complete Case

Table: Point estimates and 95% confidence intervals for only 4 coefficients in a Probit regression
model to predict one-year incidence of insterstitial lung disease (ILD) when perturbing
binary Race, Sex and Education and continuous Age variables.

M=3 M=20
Unperturbed CART norm-+logit DA-MI CART norm-logit DA-MI

Age

Estimate 0.253 0.22 0.029 0.233 0.100 0.013 0.244

95% CI (0.082, 0.424) (0.019, 0.421) ~ (-0.185, 0.244)  (0.062, 0.403) (-0.072, 0.272) (-0.158, 0.183)  (0.074, 0.414)
Race

Estimate -0.347 0.164 0.215 -0.35 0.178 -0.032 -0.35

95% CI (-0.857, 0.164) (-0.526, 0.853)  (-0.602, 1.032)  (-0.858, 0.159) (-61.472, 61.829)  (-0.611, 0.548)  (-0.861, 0.161)
Sex

Estimate 0.167 0.4 0.083 0.062 0.138 -0.067 0.16

95% CI (-0.422, 0.756) (-0.304, 1.104)  (-0.447,0.614)  (-0.467, 0.592) (-0.502, 0.777) (-0.59, 0.457) (-0.385, 0.704)
Education

Estimate 0.002 0.117 0.011 0.015 -0.072 0.046 0.045

95% CI (-0.359, 0.364) (-0.306, 0.541)  (-0.419, 0.441)  (-0.35, 0.381) (-0.45, 0.306) (-0.329, 0.422) (-0.32, 0.41)

Note, one-year ILD is a new collected variable not used in the original data synthetic
process.

Bei Jiang (University of Alberta) 2025 29/64
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CSRG Study with Missing Data

Table: Point estimates and 95% confidence intervals for only 4 coefficients in both Work Disability
and ILD when perturbing binary Race, Sex and Education and continuous Age variables.

Predict Work Disability Predict Onset of ILD
Unperturbed MI DA-MI CART Norm-+Logit Unperturbed MI____DA-MI CART Norm+Logit
Age
Estimate -0.065 -0.082 -0.044 0.002 0.301 0.293 0.138 -0.077
95% CI (-0.174, 0.043) (-0.19, 0.026)  (-0.164, 0.076)  (-0.107, 0.11) (0.042, 0.56) (0.06, 0.526)  (-0.189, 0.466) (-0.343, 0.189)
Gender
Estimate -0.017 0.012 -0.072 -0.043 0.751 0.599 0.187 0.238
95% C1 (-0.306, 0.272) (:0.3,0.277)  (-0.322,0.179)  (-0.327, 0.24) (10.092, 1.595)  (-0.238, 1.437)  (-0.594, 0.969)  (-0.778, 0.302)
Race
Estimate 0.19 0.209 0.086 0.002 -0.286 0.277 0.186 0.147
95% C1 (-0.156, 0.537)  (-0.138,0.556)  (-0.282,0.454)  (-0.323, 0.326) (-0.875, 0.303) (0.8, 0.336)  (-0.722, 1.093)  (-0.673, 0.966)
Education
Estimate -0.306 -0.304 -0.184 -0.189 -0.11 -0.117 -0.073 0.121
95 %Cl (-0.519,-0.093)  (-0.517,-0.091) (-0.422, 0.055) (-0.404, 0.027) (-0.525, 0.306)  (-0.507, 0.273)  (-0.632, 0486)  (-0.302, 0.544)

» DA-MI method can be combined with existing missing data methods to impute
missing values.

ang (University of Alberta) 2025 30/64
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Other challenges

> Most existing methods treat each individual equally in the synthesis model, resulting
in no special treatment of high or low risk records.

» Individuals at higher risk of disclosure may not get sufficient protection, while those
individuals at relatively lower risk of disclosure may get excessive protection and
hence unnecessary information loss.

» Some authors propose to take into account the disclosure risks when designing their
synthetic methods, although this is still under-explored in the literature.

Bei Jiang (University of Alberta) 2025 31/64
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Little et al. (2004) developed an algorithm to synthesize the identifying variables for
only a group of selected high risk individuals, which can be impractical or inefficient
when the size of this selected subset is small.

Hu and Williams (2021) proposed a risk-weighted synthetic method that down weighs
the likelihood contributions from high-risk records.

However, these methods may still suffer from potential imputation model
mis-specification.

Bei Jiang (University of Alberta) 2025 32/64



Revisit CSRG patient registry data BATBERTA
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We tackle the more challenging task of perturbing the following quasi-identifying (QI)
variables:

» Disease duration (in years)
Age (in years)
Work disability status (yes, no)

>
>

» Sex (female, male)

» Race (white, non-white)
>

Education (< high school, high school, > high school)

Bei Jiang (University of Alberta) 2025 33/64



Risk subgroups (informal definition)
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Scatter plots of the age and disease duration variables (with axis labels removed)
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Bei Jiang (University of Alberta)
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»

A low-risk

A medium-risk

& high-risk

» Low risk: have many
neighbouring/matching
individuals (i.e., sharing similar
values of QIs).

» Medium risk: share the same
values of categorical QIs with
at least kg others, but less than
ko of them have continuous QI
values close enough

» High risk: otherwise
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The joint subgroup-targeted imputation model B KIBERTA
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With the generated pseudo-observations W, = (W2, ., WL, . W2, ) and the originally
observed Dops = (X obs, Zobss H ), we build the following joint imputation model, denoted
by Mimput USing DDA = (Dobs; Wobs):

p( obs; obsu obs |H)

/p ob57 mais» Zobsa Zmisa Wobs‘H)dZmistmis

/P ob57 mis» Zob57Zmis|H>9) ( b5|Xobsa ) X X ( 0bs|Xobs7>\2) dZmistmis

Meoputa MO

mask

M2

mask

Bei Jiang (University of Alberta) 2025 35/64
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A risk-subgroup targeted synthesis scheme BALBERIA -

Figure: A graphical representation of our joint imputation model for Dp4 in the presence of
re-identification risk subgroups.

[J oint imputation model /\/limput]

/\
- N\

:nask’ r = Oa 172 Mcopula
p(Wst|Xstv>\T7Mrmask) p(XVZ‘H797MC0PUla)
[synthesize X, =0,1, 2] Gmpute X s & Zmis]
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How does this framework work?

Tuning leads to different degrees of perturbation to Age for different risk subgroups:

synthetic datset # 1 synthetic datset # 2 synthetic datset # 3
-~ -~ 4 -~ - -
as A, A
o - * o * o -
- * *
o P o - o A
2 N 2 PRIIRE % .
S T 4 . e v R g T A .
2 ohee 2 2 R
[ [ o Y ,a
@ risk subgroups| @ risk subgroups @ risk subgroups|
* low ® low ® low
+ medium + medium P + medium
< 4 4 high < 4 4 high 5 4 4 high
T T T T T T T T T T T T T T T T T T
4 3 2 4 0 1 4 3 2 4 0 1 4 3 2 4 0 1
True Age True Age True Age

Bei Jiang (University of Alberta) 2025 37/64



Utility of synthetic datasets: predict work disability
Partial table:
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Estimates (95% CI)

Std. Diff

95% CI Overlap

MI-complete Risk-based DA-MI CART Risk-based DA-MI CART Risk-based DA-MI CART

Diffuse
Estimate 0.318 0.311 0.096 0.058 1.762 0.986 0.539
95% CI (0.071, 0.564) (0.065, 0.556) (-0.138, 0.33)

Centro Positive
Estimate -0.022 -0.035 0.064 0.09 0.581 0.978 0.845
95% CI (-0.312, 0.267) (-0.325, 0.254) (-0.198, 0.326)

Disease Duration
Estimate 0.178 0.12 0.073 0.97 1.75 0.775 0.545
95% CI (0.061, 0.296) (-0.018, 0.257) (-0.041, 0.187)

FVC
Estimate -1.298 -1.3 0.174 0.003 2.491 0.996 0.34
95% CI (-2.457, -0.138) (-2.449, -0.15) (-0.895, 1.244)

DLCO
Estimate 0.142 0.146 -0.246 0.01 1.054 0.983 0.722
95% CI (-0.587, 0.87) (-0.558, 0.849) (-0.895, 0.404)

TLC
Estimate 0.499 0.456 0.001 0.07 0.81 0.982 0.787
95% CI (-0.711, 1.708) (-0.731, 1.643) (-1.107, 1.11)

Vitality
Estimate -0.548 -0.561 -0.114 0.045 1.507 0.988 0.605
95% CI (-1.111, 0.016) (-1.123, 0.001) (-0.646, 0.418)

HAQ
Estimate 1.325 1.29 0.029 0.191 7.043 0.952 -1.026
95% CI (0.965, 1.684) (0.931, 1.649) (-0.255, 0.313)
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Summary

» Our new risk-subgroup targeted synthesis framework preserves all strengths of the
DA-MI synthetic framework in Jiang et al. (2022):
» Protects against imputation model misspecification by introducing the
data-augmentation masking step.
> Flexibility in balancing disclosure risk and data utility through tuning
» Simplicity: with valid inferences for the MI synthetic datasets can be obtained using

simple combing rule.
» It adds additional features:
» simultaneously imputing missing data for mixed categorical and continuous variables
» provides subgroup specific perturbation schemes to suit the specific privacy protection
needs of different risk subgroups.
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Motivation for a New Privacy Framework WALBERTA

» Assumptions on attacker knowledge on participants
» Assumptions on publicly accessible variables

» Lack of consensus on risk definitions for synthetic data

Bei Jiang (University of Alberta) 2025 40/64
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Differential Privacy with provable guarantee
» A mechanism M with domain NI*! is e-differentially private (DP) for all
S C Range(M) and for all x,y € NI*! such that d(x,y) =1 :

(g ea)| =2

Equivalently,
PriM(x) € §] < e Pr[M(y) € S]

where d(x,y) is the Hamming distance between x and y (that is, any two neighbouring
datasets x and y that differ by one record or remove a record from x to get y).

» How to achieve DP?

» Add noise to the output of queries (i.e., summary statistics or any quantities derived
from the data) made to databases

» Added noise is random, which depends on a pre-determined privacy budget ¢ and the
queries.
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The global sensitivity

» Let f be some function X™ — R¥*. The #;-sensitivity of f is
— _ /
Af = wax||£(0) — § (X)),

where X and X’ are two neighboring databases.

» The concept of ¢; sensitivity of query (function) f is to quantify the maximum
potential change in the £; norm of the query f caused by the data of a single
individual in the worst-case scenario.

» For example, f can be

» Sample mean
» Sample median
» Coeflicient of linear regression

Bei Jiang (University of Alberta) 2025
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The Laplace mechanism is e-DP. BALBERIA -

» Let f be a query (function) X™ — R*. The Laplace mechanism is defined as
M(Xa f()? 6) = f(X) + (Y17 s 7Yk)

where Y; are independent Laplace(A f/e) random variables.
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The Laplace distribution

A random variable has a Laplace (u, s) distribution if its probability density function is

f@|p,s)= iexp <_|$_“|)

2s s
1 exp (—£22)  if o <y
© 92s exp (— "":“) if x > p,

» 1 is a location parameter
> s > 0 is a scale parameter

» when p = 0,b = 1, the positive half-line is an exponential distribution scaled by %

Bei Jiang (University of Alberta) 2025
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Proof: Let x,y € NI*l and §(x,y) = 1, and let f(-) be some function f : NI¥I — R*. TLet
px and py denote the probability density functions of M(x, f(-),€) and M(y, f(-),€). We
compare the two at some arbitrary output point z € R*:

Lo T exp (—05072) (i — =l — £ (9): — =)
zy(z) B szl exp( M) He ( Af )

— f(x)i
< Hexp <Af()|)
- <szi_1 [ (x); = f<y>i|>
Af

< exp(e)
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Example: mean under DP guarantee BALBERIA -

» f(D) is sample mean of a dataset D, where each record is a scalar in [0, 1].
> So global sensitivity of f is 1/n, where n is the sample size.

» Laplace mechanism: output sample mean + Z, where Z ~ i Lap(0,1), € is the
privacy budget.

» How about each record contains a continuous value (unbounded)?

Bei Jiang (University of Alberta) 2025 46,/64



Some properties of Differential Privacy WALBERTA  © -

» Any function of an output that satisfies e—DP is also e—DP (post-processing
property).

» The privacy loss as defined is guaranteed, which does not require assumptions about
the attacker.

» The amount of privacy loss is quantifiable, in the form of privacy budget €. It needs to
be added across multiple releases (next: composition theorem).
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Composition theorem

» Formally, let M; : NI¥l — R, be an € -differentially private algorithm, and let
My : NI¥I - R, be an es-differentially private algorithm. Then their combination,
defined to be M 5 : NI¥l - R, x Ry by the mapping: M o(x) = (M1(x), M2(x)) is
(€1 + €2)-differentially private

> A generalization: let M, : NI¥l — R, be an e;-differentially private algorithm for
i € [k]. Then if My : NI¥I = [T%_ R, is defined to be

My (x) = (Mi(x), -, Mg(x)), then M, is (Zle ei)—diﬁerentially private.
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What are Drawbacks to Differential Privacy? BAIBERA - -

» How about complex statistics and DP synthetic data?
> Counts/histograms are the most developed and deployed in practice.
» The meaning of the privacy loss is less intuitive: € = 0.1 vs. e = 1.

» Compared with measures such as risk of re-identification

» No consensus on how to set the privacy parameter/budget e

Bei Jiang (University of Alberta) 2025 49/64



[G3) UNIVERSITY OF

ALBERTA

Randomized response e—differentially private = 5

Input: Data set of n bits: x = (z1,....,2,) € X", ¢ : X — {0,1}, and a parameter € > 0
Output: BitsYy,..., Y,

1fori=1tondo

)y _ {go(x» v oy
p(l—wx) wp =

3 return (Y7,...,Y,);
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Proof: R'R. differentially private SALHERIE - -
Fix two neighboring data sets x and x’, and let ¢ be the position in which they differ (so
that x; # @] but z; = 2, for all j # ). First, consider a particular outcome

y = (y1,---,yn). Because we make selections independently for each i, we have
P(RR:(x)=y)=PM1=y1 |21) PVo=y2[a2) - P(Yo=yn|zn)
When we compare this to the probability that RR. (x') =y, only one of the terms in the
product will change. We thus get that
P(RR: (x') =y) _P(Yi=y; |

P(RR.(x) =) B P(Y; =y | z3)

This ratio is at most 1/65+1 = ¢°. Now let’s take any subset £ C Y = {0,1}". The
probability that RR.(x ) lies in E is just the sum over y € E of the probability that
RR.(x) =y. We thus get

P (RR.(x =Y P(RR( <) e P (x')=y)=¢€ P(RR.(x') € E).

yEE yeE

This completes the proof.

Bei Jiang (University of Alberta) 2025
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let Ay : X™ — Y1 be £1-DP, and let As : Y1 X X™ — Y5 be £5-DP for all values of its first
input (that is As (aq,-) is e2-DP for every value of a; ). Let A : X™ — Y; X ) be the
randomized algorithm that outputs A(x) = (a1, as) where a1 = A;(x) and az = Az (a1,x).
Then A is (g1 +€2) — DP.
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We prove the discrete case here, for simplicity. Let x,x’ be neighboring data sets in X™,
and let @ = (a1, az) be an outcome in Y; X Vs.

P(A(x) = (a1,a2)) =P (A1 (x) = a1) - P (A2 (x,a1) = az)

Since A; is €1-DP, and A (aq,-) is e3-DP for every choice of a1, we can bound the
probability above.

P(A(x) = (a1,az2)) < e'P(A; (X') = ay1) - P (Ay (X', a1) = az)
=712 P (A (X) = (a1, a2))
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Let A: X — )Y and B : Y — Z be randomized algorithms, where X', ), Z are arbitrary
sets. If A is e-differentially private, then so is the composed algorithm B(A(-)).

» When B is deterministic. In that case, the event B(A(x)) = b is the same as the event
A(x) € B71(b) where B~1(b) is the preimage of b under B. So we can just apply the
A’s DP guarantee to B~1(b) :

P(B(A(x)) =b) =P (A(x) € B7'(b)) < e’P (A (x') € B~'(b)) = e“P(B(A(x')) = b)
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» To handle the case where B is randomized, we can write the B(a) as the application
of a deterministic function f applied to the pair (a, R) where R is a random variable
independent of a that represents B ’s random choices. Thus, B(A(-)) is the
application of a deterministic function to A’(x) = (A(x), R). The algorithm A’ is
e-DP (since R is independent of A). Thus B(A(:)) is also e-DP.
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Let’s use some of the tools we now have—the Laplace mechanism and basic
composition—to design a more complex algorithm. First, let’s review the original
algorithm given below.

Algorithm 1: Lloyd’s algorithm with random initialization

Input: Data set x € X" where X = {x eR?: ||x||; = l}, parameter k
1 Initialize c(o) céo), ey c]Ek) randomly in X ;
2 fort=1toT do

3 for j=1tok do

'

Sj = { : (.t_l) is the closest current center to xi};

(0 _
o =

i€S;

(5]

(1 (T) (7,
6 returnc; ’,c, e Cp 3
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Idea to achieve DP mechanism ami

> We apply the Laplace mechanism to get noisy versions of the each of the algorithm’s
intermediate steps. We can divide our privacy budget € into T' parts, and assign €/T
to each intermediate step.

» Suppose we have already released centers cgt_l), e c,(f_l) from the previous step.

Then we can divide the universe X into % regions B, ..., By, where B; consists of

g,t_l). To compute the next set of centers, we approximate

points closest to center c
two quantities for each Bj :
> n; (integer): the number of data records in Bj, and

» q; (vector in R? ): the sum of the data records in B; (as vectors)
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» The counts (nl, ...,ny) form a histogram. Their global sensitivity is thus 2 .
Releasing nq,...,n; by adding noise Lap ( ) to each histogram entry thus consumes
at most 5= of our privacy budget.

» Similarly, we can view the sums aq,...,ax as one long vector of length kd. If we
change one record in the data set, only two of the sums a; can change, since the
record either stays in the same bin or moves from one bin to another. These two sums
gain or lose one term each, of /1 norm at most 1. The change in the long vector is
thus at most 2 .

» Again, the algorithm adds noise Lap ( ) to each entry, consuming another 57 of our

privacy budget. The computation of the next cluster center is just postprocessmg of
the n; ’s and a; ’s, so it consumes no further budget.

» The total expenditure for the T' step is thus =. By Basic Composition, the algorithm
as a whole is e-DP.
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Algorithm 2: A differentially private version of Lloyd’s algorithm

Input: Data set x € X" where X = {x eR?: x|, = 1}, parameter k and
privacy parameter ¢ > 0
1 ¢’ = 3% (since we will compose 2T executions of the Laplace mechanism);
2 Initialize cfo), céo), . c,((k) randomly in X ;
3 fort=1t0T do
4 for j=1tokdo

5 S;= {i : cj.t_l) is the closest current center to xi};

6 n; = |S;| (this has global sensitivity 2 across all j);

7 aj = Yjes, x; (this has global sensitivity 2 across all j);

8 Release 7i; = nj +Y where Y ~ Lap(%) ;

9 Release d; = a; + (Zy, ..., Zg) where Z; ~ Lap(%) iid.;
4; )
—= ifAa; >1

10 cj(.t) =47nj J 5

uniformin X if7A; <1

T) (T T . .
11 return ci ), cé ), . c,(( ) (NB: One can also average over the last few iterations to reduce
variance);
Bei Jiang (University of Alberta) 2025
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The exponential mechanism TALBERTA  mii

> A set ) of possible outputs;

» A score function g : Y x U™ — R which measures the “goodness” of each output for a
data set. Given x € U™, our goal is to find y € Y which approximately maximizes
q(y;x). (When Y is finite, we can also think of ¢ as a collection of Y separate
low-sensitivity queries.)

> A sensitivity bound A > 0 such that ¢(y;-) is A-sensitive for every y. That is,
SUPycy SUP x ey 19(yi%) —q (Y x)| < A

adjacent
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» The idea is that given the score function ¢(-;x) that assigns a number to each element
y € Y, we define a probability distribution which generates each element in y in Y
with probability proportional to exp (iq(y; x); that is, we sample elements with a
probability that grows exponentially with their score. The symbol " o« " in Algorithm
2 means "proportional to".

Algorithm 1: Exponential Mechanism Agy(x,¢(:;+), A, €)

Input: Assume that q(y;-) is A-sensitive for every y € Y.
1 Select Y from the distribution with Pr(Y = y) « exp (35q(y;x));
2 return Y;
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» When is this algorithm even well defined? When Y is finite the algorithm is
well-defined since we can set

e3x 4(yix)
sxa(y'sx
Zy’ey ezx W',
» In fact, the mechanism makes sense over infinite domains, and even continuous ones.
For inifinite discrete domains like the integers Z, it must be that Zyey e3m W) ig

finite for every x. Over continuous spaces like the real line, it must be that
fyey exp (55 ¢(y; %)) dy is finite for every possible data set x.

PY =y) =

> Now that we have a well-defined algorithm, we’ll try to understand why it is
differentially private, and why it is useful.
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Proof:
» Assume for simplicity that y is finite. For any output y and data set x we have
o5 avie) . . .
Py | x) = % Let x' be a data set adjacent to x. Since the sensitivity of
y' ey

q(y; ) is at most A, we have

e3x 1(y5x) c , €
D < . . . < <. — /2
o = o (5 i) —a (%)) <exp (55 4) =e

» Similarly, for the normalizing constants,

Zy’ey eﬁq(y';x/) € 1ot ’
. _ . e/2
Sy T < sup (GXP(ZA( (y'5x) Q(y,X)))) < e/

. Pr(ylx)
Thus the ratio Plol)

similar, with integrals over to the base measure replacing sums.

e/2 . e5/2 —

is at most e €. The case of an infinite domain is

Bei Jiang (University of Alberta) 2025 63/64



nnnnnnnnnnnn

e ALBERTA il
EDMONTON-ALBERTA-CANADA Omll

Thank You!
Any Questions?
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