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Why Should We Protect Data?

▶ Removing directly identifying information is not sufficient.
▶ many legendary disclosure incidents due to failed de-identification

▶ For example:
▶ Phd student Sweeney’s experiment to identify the then Massachusetts governor’s

medical data using publicly accessible and insurance data
▶ 87% of U.S. citizens are expected to be unique using zip code, gender, and birth date
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Why Should We Protect Data?

▶ Most famously, 2006 Netflix $ 1 million prize competition, inviting researchers to
improve the Netflix baseline recommendation algorithm by 10%.
▶ The training data: 100 million user data and their ratings on movies (1 to 5 stars)
▶ The testing data: 1.5 million user data without any ratings.
▶ As required by the Video Privacy Protection Act of 1988, there was no information that

could identify a user, like zip-code, birthdate, and of course name, etc.
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Why Should We Protect Data?
▶ Narayanan and Shmatikov were able to connect the individuals in the Netflix dataset

to real people, by cross referencing movie ratings in IMDA site (many users post
publicly with their own names).

▶ It end up with privacy breaches, a big lawsuit, and cancelling of Netflix Challenge II.
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Motivating principles for sharing data

▶ Transparency/reproducibility → trust in research
▶ Public good → collective knowledge sharing
▶ Fairness → reducing barriers to data access
▶ However, one needs to protect privacy.
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How might we protect privacy?

▶ Removing direct identifiers is not enough
▶ In a typical dataset, especially those for research purposes, we have:

▶ Demographics (e.g., age, sex, race)
▶ Sensitive variables (e.g., income, medical status, political opinion)
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How might we protect privacy?

Topics covered include:
▶ Sample new values based on the existing data? [Synthetic Data]
▶ Add some random noise to final released results? [Differential Privacy]

Other frameworks exist that we will not cover:
▶ Distributed learning/federated learning
▶ k-anonymity: generalization and suppression
▶ Classical statistical disclosure control methods: data swapping, top and bottom coding
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Understanding the Utility-Risk Trade-off is Crucial

▶ Privacy is never free.
▶ Fundamentally all methods contain a trade-off:

▶ Utility is the accuracy of the released data relative to the confidential data
▶ global measures: overall similarity or resemblance of the released data to the confidential

data
▶ specific measures: analysis-specific measures for certain estimand of interest

▶ Risk is the likelihood of learning confidential information: identity disclosure and
attribute disclosure

▶ Generally, high privacy, low utility; low privacy, high utility.
▶ Goals are to maintain the same level of privacy while maximizing data utility.
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What is synthetic data?
▶ The idea is not new: Rubin (1993) proposed the first model-based synthetic method

using multiple imputation (MI):
▶ replace the original data by predictive values drawn from the posterior predictive

distributions
▶ use combining rules to analyze the released multiple synthetic datasets.

source: https://www.replica-analytics.com
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Challenges

▶ However, the quality of the resulting synthetic datasets depends on how well the
assumed synthesis model would fit the original data. Information loss due to incorrect
specification of such a model can weaken or invalidate the inferences obtained using
synthetic datasets.

▶ As discussed by Winkler (1993) that “in producing confidential public-use data files,
statistical agencies should first assure that the files are analytically valid", creating
synthetic datasets with low quality/utility is not beneficial or worthwhile especially if
they lead to incorrect scientific conclusions.
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The setup

▶ All directly identifying variables (e.g., names, addresses) are removed from the
confidential dataset.

▶ The dataset D = (X,Z) consists of two types of variables:
▶ The quasi-identifying variables X (demographic variables, such as age, gender) that

provide indirectly identifying information that intruders can use to identify a particular
subject.

▶ The non-identifying variables Z.
▶ Here we focus on synthesizing/perturbing X to prevent identity disclosure, while

keeping Z unchanged.
▶ An identity disclosure/re-identification occurs when it is possible to learn that a

particular data record belongs to a particular subject.
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Rubin’s original MI-based synthetic methods

▶ The imputation model Mimput: p(X|Z, γ)
▶ The synthetic values of Xi, i = 1, · · · , n are then drawn from the posterior predictive

distribution:

P (X̃i|Z̃i,D,Mimput) =

∫
P (X̃i|Z̃i, γ,Mimput)P (γ|D,Mimput)dγ,

where Z̃i represents an independent copy of Zi, and X̃i represents the posterior
predictive replicate of Xi.

▶ If Mimput does accurately reflect the true association between X and Z, the
information loss in the synthetic data will be minimal, leading to a high level of data
utility but also minimal privacy protection.
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Limitations

▶ In practice, the assumed Mimput will rarely provide perfect predictions and hence will
not perfectly preserve the information in the original dataset.

▶ The information about X that is preserved in the synthetic data is determined by the
assumed association specified by the imputation model Mimput.

▶ The data utility and disclosure risk in the synthetic datasets are determined once
Mimput is chosen (more illustration in simulation studies).
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The new data-augmented MI synthetic framework by Jiang et al. (2022)

▶ Our new framework generalizes Rubin’s MI framework:
Imputation model Mimput

X

Mmask : W ∼ P (X,λ,Mmask) Massoc : P (X|Z, θ,Massoc)

draw Xsyn ∼ P (X̃|Z̃, W̃ ,DDA,Mmask,Massoc)

▶ We create pseudo-variable W based on X through Mmask and the tuning parameter λ
(Details will be given later).

▶ We build the joint model Mmask and Massoc for the augmented DDA = (D,W ).

p(X,W |Z, λ, θ) = p(X|Z, θ)︸ ︷︷ ︸
Massoc

p(W |X,λ)︸ ︷︷ ︸
Mmask

,
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The new data-augmented MI synthetic framework

▶ The synthetic values of Xi, i = 1, · · · , n are then drawn from the posterior predictive
distribution:

P (X̃i|Z̃i, W̃i,DDA,Mimput)

∝
∫

P (X̃i|Z̃i, θ,Massoc)P (W̃i|X̃i, λ,Mmask)P (λ, θ|DDA,Mimput)dλdθ,

▶ Z̃i and W̃i represent independent copies of Zi and Wi, respectively and X̃i represents
the posterior predictive replicate of Xi.

▶ Mimput consists of Mmask (always correctly specified) and Massoc.
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The new data-augmented MI synthetic framework

▶ Without W , our DA-MI reduces to Rubin’s original method.
▶ With W and Mmask, the generated W will provide additional information about X

and hence mitigate information loss.
▶ Further, one could control how much information in X to be transferred to W by

tuning through λ under Mmask.
▶ Thus, when Massoc is misspecified or X is only weakly correlated with Z, Mmask

offers protection against information loss and in turn helps balance quality of inference
and disclosure risk.

▶ No need for new inference procedures; the combining rules of Reiter (2003) for
inference using MI synthetic data sets are still applicable (regardless of the input data
being D or augmented DDA).
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How to choose Mmask to generate W ?

▶ If the confidential Xi is continuous
▶ for each Xi, we add random noise with the variance level chosen by the data provider,

to produce K pseudo-variable, denoted by Wi = (Wik, i = 1, · · · , n; k = 1, · · · ,K),
according to the masking model Mmask,

Mmask : Wik = Xi + eik, where eik ∼i.i.d. N(0, σ2
e), k = 1, 2, · · · ,K.

▶ By varying the values of K and σ2
e , one can control the amount of information in Xi to

be transferred to Wi.
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How to choose Mmask to generate W ?

▶ If the sensitive Xi is categorical taking values in {0, · · · , C − 1}
▶ for each Xi, we create pseudo-variable Wi from a mixture distribution of C components

according to the masking model Mmask,

Mmask : Wi = αXi + ui, where ui ∼ N(0, 1),

▶ The value of α controls how close the C components are located to one and another; in
other words, how accurate one can recover Xi from Wi.

▶ Alternatively, Wi could be generated from

Mmask : P (Wi = v|Xi = u) = πvu

where higher πvu means more information transfer from Xi to Wi.
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How does the tuning mechanism work?
RMSEs of the estimated coefficients using M synthetic datasets (Utility)
M = 3
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How does the tuning mechanism work?
Disclosure/Re-identification risk
M = 3
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Global utitlity measures

▶ aim to reflect the overall similarities between the distributions of the synthetic data
and the confidential data.

▶ stack up the original dataset and the synthetic dataset resulting in a merged dataset
of size 2n

▶ and use a classification algorithm (e.g. logistic regression or CART) to predict
whether an observation belongs to the original dataset or the synthetic dataset

▶ return a summary statistic Up, which measures overall how close the predicted
probability of each observation p̂i is to 1

2 :

Up =
1

2n

2n∑
i=1

(
p̂i −

1

2

)2

.

▶ High level of similarity between the original and the synthetic datasets results in
Up ≈ 0; low level of similarity results in Up ≈ 1

4
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Specific utility measures

Analysis-specific measures for the estimand of interest:
▶ The 95% confidence interval (CI) overlap measure, i.e., the percentage overlap of CIs

calculated using the original and synthetic data sets, defined as,

0.5

[
min(Uorig, Usyn)− max(Lorig, Lsyn)

Uorig − Lorig
+

min(Uorig, Usyn)− max(Lorig, Lsyn)

Usyn − Lsyn

]
,

where U· and L· denote the upper and lower bounds of the CI and subscripts, and
“orig” and “syn” denote the CI bounds calculated using the original and synthetic data
sets respectively. A higher positive value of this interval overlap measure corresponds
to higher data utility. A negative value indicates no overlap.
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Specific utility measures

Analysis-specific measures for the estimand of interest:
▶ The standardized difference between the estimates using the original and synthetic

data sets, defined as
∣∣∣β̂orig − β̂syn

∣∣∣ /SE(β̂orig), where β̂orig and β̂syn are the
estimated coefficients obtained using the original and synthetic data sets respectively,
and SE(β̂orig) is the estimated standard error of the coefficient using the original
dataset.
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Disclosure risk

▶ Let ti represents the vector of the quasi-identifiers for individual i, for i = 1, · · · , n.
Recall that Dpub = {D(1)

pub, · · · ,D
(M)
pub } denotes the M released synthetic datasets.

▶ For each target record ti known by the intruder, we seek candidate records in each
D(m)

pub with the same values for each categorical identifier and with each continuous
identifier located within a small range of the target value. When any such record
within D(m)

pub is found, we consider it to be a match of ti.

▶ Then we estimate the probability of matching on the ith individual in each D(m)
pub ,

denoted by Pr(Jti = i|ti,D(m)
pub ), by letting ti be the record of the ith individual and

assuming that each of the matched records has equal probability of being picked by
the intruder.
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Disclosure risk

▶ If s records are matched on ti, this probability is estimated to be 1/s; and when there
are no defined matches for ti, this probability is estimated to be zero.

▶ Once Pr(Jti = i|ti,D(m)
pub ) is determined for each released D(m)

pub , m = 1, · · · ,M , we
average them across the M released data sets Dpub to obtain the estimate of
Pr(Jti = i|ti,Dpub) for each target record ti. That is, the individual-level
re-identification risk, Ii = 1

M

∑M
m=1 Pr(Jti = i|ti,D(m)

pub ).
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Disclosure risk

▶ Under this framework, we mimic the behaviour of an ill-intentioned intruder who has
access to the true values of certain background and demographic information for
certain individuals in the dataset, and seeks to identify the records that belong to
these individuals in the released synthetic datasets.

▶ Specifically, we assume that the intruder knows that the target individuals are in the
dataset and the values of the quasi-identifiers for all individuals in the dataset. In
other words, those variables that are not considered as quasi-identifiers are not used in
the calculation of disclosure risks.
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Inference using the synthetic datasets

▶ Let Q = Q(D) be a target estimand defined by the data user, which is a function of
the unmasked data D.

▶ For each synthetic dataset D(m)
pub , m = 1, · · · ,M , the data user could fit his/her choice

of model, Manaly, as if D(m)
pub was the actual dataset.

▶ The target estimand Q is estimated by some estimator q(m) = q(X
(m)
pub , Z) with an

associated variance, estimated via v(m) = v(X
(m)
pub , Z).

▶ Let q̄M =
∑M

m=1 q
(m)/M , v̄M =

∑M
m=1 v

(m)/M (i.e., average of the within-copy
variance) and bM =

∑M
m=1(q

(m) − q̄M )2/(M − 1) (the between-copy variance). Then Q
is estimated by q̄M and the variance of q̄M is estimated by TM = M−1bM + v̄M .

▶ When the sample size n is large, the confidence interval for Q is constructed using a
t−distribution with degrees of freedom ν = (M − 1)(1 + r−1

M )2, where
rM = M−1bM/v̄M . As pointed out by Reiter (2003), in the case of a large enough ν, the
normal distribution provides an adequate approximation to such a t−distribution.
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Canadian Scleroderma Research Group (CSRG) cohort

Focusing on Complete Case

Table: Point estimates and 95% confidence intervals for only 4 coefficients in a Probit regression
model to predict work disability when perturbing binary Race, Sex and Education and
continuous Age variables.

M=3 M=20
Unperturbed CART norm+logit DA-MI CART norm+logit DA-MI

Age
Estimate -0.183 -0.094 -0.08 -0.195 -0.084 -0.119 -0.189
95% CI (-0.312, -0.053) (-0.235, 0.048) (-0.222, 0.063) (-0.324, -0.066) (-0.219, 0.051) (-0.261, 0.022) (-0.319, -0.059)

Race
Estimate 0.518 0.051 0.85 0.514 0.088 0.554 0.514
95% CI (-0.018, 1.053) (-0.491, 0.593) (0.13, 1.57) (-0.021, 1.049) (-0.424, 0.601) (-0.04, 1.147) (-0.02, 1.049)

Sex
Estimate 0.082 -0.132 -0.031 0.084 -0.058 0.017 0.016
95% CI (-0.364, 0.527) (-0.577, 0.312) (-0.53, 0.468) (-0.354, 0.522) (-0.538, 0.423) (-0.429, 0.464) (-0.398, 0.431)

Education
Estimate -0.149 -0.041 -0.256 -0.153 -0.052 -0.216 -0.113
95% CI (-0.435, 0.137) (-0.332, 0.249) (-0.717, 0.204) (-0.444, 0.138) (-0.349, 0.244) (-0.522, 0.09) (-0.401, 0.176)

Our MI-DA method reduces the risk of re-identification to 0% while still preserving 97.6%
confidence interval overlap on average.
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Canadian Scleroderma Research Group (CSRG) cohort

Focusing on Complete Case

Table: Point estimates and 95% confidence intervals for only 4 coefficients in a Probit regression
model to predict one-year incidence of insterstitial lung disease (ILD) when perturbing
binary Race, Sex and Education and continuous Age variables.

M=3 M=20
Unperturbed CART norm+logit DA-MI CART norm+logit DA-MI

Age
Estimate 0.253 0.22 0.029 0.233 0.100 0.013 0.244
95% CI (0.082, 0.424) (0.019, 0.421) (-0.185, 0.244) (0.062, 0.403) (-0.072, 0.272) (-0.158, 0.183) (0.074, 0.414)

Race
Estimate -0.347 0.164 0.215 -0.35 0.178 -0.032 -0.35
95% CI (-0.857, 0.164) (-0.526, 0.853) (-0.602, 1.032) (-0.858, 0.159) (-61.472, 61.829) (-0.611, 0.548) (-0.861, 0.161)

Sex
Estimate 0.167 0.4 0.083 0.062 0.138 -0.067 0.16
95% CI (-0.422, 0.756) (-0.304, 1.104) (-0.447, 0.614) (-0.467, 0.592) (-0.502, 0.777) (-0.59, 0.457) (-0.385, 0.704)

Education
Estimate 0.002 0.117 0.011 0.015 -0.072 0.046 0.045
95% CI (-0.359, 0.364) (-0.306, 0.541) (-0.419, 0.441) (-0.35, 0.381) (-0.45, 0.306) (-0.329, 0.422) (-0.32, 0.41)

Note, one-year ILD is a new collected variable not used in the original data synthetic
process.
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CSRG Study with Missing Data

Table: Point estimates and 95% confidence intervals for only 4 coefficients in both Work Disability
and ILD when perturbing binary Race, Sex and Education and continuous Age variables.

Predict Work Disability Predict Onset of ILD
Unperturbed MI DA-MI CART Norm+Logit Unperturbed MI DA-MI CART Norm+Logit

Age
Estimate -0.065 -0.082 -0.044 0.002 0.301 0.293 0.138 -0.077
95% CI (-0.174, 0.043) (-0.19, 0.026) (-0.164, 0.076) (-0.107, 0.11) (0.042, 0.56) (0.06, 0.526) (-0.189, 0.466) (-0.343, 0.189)

Gender
Estimate -0.017 -0.012 -0.072 -0.043 0.751 0.599 0.187 -0.238
95% CI (-0.306, 0.272) (-0.3, 0.277) (-0.322, 0.179) (-0.327, 0.24) (-0.092, 1.595) (-0.238, 1.437) (-0.594, 0.969) (-0.778, 0.302)

Race
Estimate 0.19 0.209 0.086 0.002 -0.286 -0.277 0.186 0.147
95% CI (-0.156, 0.537) (-0.138, 0.556) (-0.282, 0.454) (-0.323, 0.326) (-0.875, 0.303) (-0.89, 0.336) (-0.722, 1.093) (-0.673, 0.966)

Education
Estimate -0.306 -0.304 -0.184 -0.189 -0.11 -0.117 -0.073 0.121
95 %CI (-0.519, -0.093) (-0.517, -0.091) (-0.422, 0.055) (-0.404, 0.027) (-0.525, 0.306) (-0.507, 0.273) (-0.632, 0.486) (-0.302, 0.544)

▶ DA-MI method can be combined with existing missing data methods to impute
missing values.
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Other challenges

▶ Most existing methods treat each individual equally in the synthesis model, resulting
in no special treatment of high or low risk records.

▶ Individuals at higher risk of disclosure may not get sufficient protection, while those
individuals at relatively lower risk of disclosure may get excessive protection and
hence unnecessary information loss.

▶ Some authors propose to take into account the disclosure risks when designing their
synthetic methods, although this is still under-explored in the literature.
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Other challenges

▶ Little et al. (2004) developed an algorithm to synthesize the identifying variables for
only a group of selected high risk individuals, which can be impractical or inefficient
when the size of this selected subset is small.

▶ Hu and Williams (2021) proposed a risk-weighted synthetic method that down weighs
the likelihood contributions from high-risk records.

▶ However, these methods may still suffer from potential imputation model
mis-specification.
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Revisit CSRG patient registry data

We tackle the more challenging task of perturbing the following quasi-identifying (QI)
variables:
▶ Disease duration (in years)
▶ Age (in years)
▶ Work disability status (yes, no)
▶ Sex (female, male)
▶ Race (white, non-white)
▶ Education (< high school, high school, > high school)
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Risk subgroups (informal definition)
Scatter plots of the age and disease duration variables (with axis labels removed)

(a) all individuals

Disease Duration

low-risk
medium-risk
high-risk

(b) individuals in the cell #1

Disease Duration

A
ge

low-risk
medium-risk
high-risk

(c) individuals in the cell #2

low-risk
medium-risk
high-risk

(d) individuals in the cell #3

A
ge

low-risk
medium-risk
high-risk

▶ Low risk: have many
neighbouring/matching
individuals (i.e., sharing similar
values of QIs).

▶ Medium risk: share the same
values of categorical QIs with
at least k0 others, but less than
k0 of them have continuous QI
values close enough

▶ High risk: otherwise
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The joint subgroup-targeted imputation model

With the generated pseudo-observations W obs = (W 0
obs,W

1
obs,W

2
obs) and the originally

observed Dobs = (Xobs,Zobs,H), we build the following joint imputation model, denoted
by Mimput using DDA = (Dobs,W obs):

p(Xobs,Zobs,W obs|H)

=

∫
p(Xobs,Xmis,Zobs,Zmis,W obs|H)dZmisdXmis

=

∫
p(Xobs,Xmis,Zobs,Zmis|H, θ)︸ ︷︷ ︸

Mcopula

p(W 0
obs|X

0
obs, λ0)︸ ︷︷ ︸

M0
mask

× · · · × p(W 2
obs|X

2
obs, λ2)︸ ︷︷ ︸

M2
mask

dZmisdXmis
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A risk-subgroup targeted synthesis scheme

Figure: A graphical representation of our joint imputation model for DDA in the presence of
re-identification risk subgroups.

Joint imputation model Mimput

synthesize Xr
obs, r = 0, 1, 2 impute Xmis & Zmis

Mr
mask, r = 0, 1, 2

p(W r
obs|X

r
obs, λr,Mr

mask)
Mcopula

p(X,Z|H, θ,Mcopula)

Bei Jiang (University of Alberta) 2025 36/64



How does this framework work?

Tuning leads to different degrees of perturbation to Age for different risk subgroups:
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Utility of synthetic datasets: predict work disability
Partial table:

Estimates (95% CI) Std. Diff 95% CI Overlap
MI-complete Risk-based DA-MI CART Risk-based DA-MI CART Risk-based DA-MI CART

Diffuse
Estimate 0.318 0.311 0.096 0.058 1.762 0.986 0.539
95% CI (0.071, 0.564) (0.065, 0.556) (-0.138, 0.33)

Centro Positive
Estimate -0.022 -0.035 0.064 0.09 0.581 0.978 0.845
95% CI (-0.312, 0.267) (-0.325, 0.254) (-0.198, 0.326)

Disease Duration
Estimate 0.178 0.12 0.073 0.97 1.75 0.775 0.545
95% CI (0.061, 0.296) (-0.018, 0.257) (-0.041, 0.187)

FVC
Estimate -1.298 -1.3 0.174 0.003 2.491 0.996 0.34
95% CI (-2.457, -0.138) (-2.449, -0.15) (-0.895, 1.244)

DLCO
Estimate 0.142 0.146 -0.246 0.01 1.054 0.983 0.722
95% CI (-0.587, 0.87) (-0.558, 0.849) (-0.895, 0.404)

TLC
Estimate 0.499 0.456 0.001 0.07 0.81 0.982 0.787
95% CI (-0.711, 1.708) (-0.731, 1.643) (-1.107, 1.11)

Vitality
Estimate -0.548 -0.561 -0.114 0.045 1.507 0.988 0.605
95% CI (-1.111, 0.016) (-1.123, 0.001) (-0.646, 0.418)

HAQ
Estimate 1.325 1.29 0.029 0.191 7.043 0.952 -1.026
95% CI (0.965, 1.684) (0.931, 1.649) (-0.255, 0.313)
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Summary

▶ Our new risk-subgroup targeted synthesis framework preserves all strengths of the
DA-MI synthetic framework in Jiang et al. (2022):
▶ Protects against imputation model misspecification by introducing the

data-augmentation masking step.
▶ Flexibility in balancing disclosure risk and data utility through tuning
▶ Simplicity: with valid inferences for the MI synthetic datasets can be obtained using

simple combing rule.
▶ It adds additional features:

▶ simultaneously imputing missing data for mixed categorical and continuous variables
▶ provides subgroup specific perturbation schemes to suit the specific privacy protection

needs of different risk subgroups.
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Motivation for a New Privacy Framework

▶ Assumptions on attacker knowledge on participants
▶ Assumptions on publicly accessible variables
▶ Lack of consensus on risk definitions for synthetic data
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Differential Privacy with provable guarantee

▶ A mechanism M with domain N|X | is ε-differentially private (DP) for all
S ⊆ Range(M) and for all x,y ∈ N|X | such that δ(x,y) = 1 :∣∣∣∣ln(Pr[M(x) ∈ S]

Pr[M(y) ∈ S]

)∣∣∣∣ ≤ ε

Equivalently,
Pr[M(x) ∈ S] ≤ eϵ Pr[M(y) ∈ S]

where δ(x,y) is the Hamming distance between x and y (that is, any two neighbouring
datasets x and y that differ by one record or remove a record from x to get y).

▶ How to achieve DP?
▶ Add noise to the output of queries (i.e., summary statistics or any quantities derived

from the data) made to databases
▶ Added noise is random, which depends on a pre-determined privacy budget ϵ and the

queries.
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The global sensitivity

▶ Let f be some function Xn → Rk. The ℓ1-sensitivity of f is

∆f = max
X,X′

∥f(X)− f (X ′)∥1

where X and X ′ are two neighboring databases.
▶ The concept of ℓ1 sensitivity of query (function) f is to quantify the maximum

potential change in the ℓ1 norm of the query f caused by the data of a single
individual in the worst-case scenario.

▶ For example, f can be
▶ Sample mean
▶ Sample median
▶ Coefficient of linear regression
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The Laplace mechanism is ϵ-DP.

▶ Let f be a query (function) Xn → Rk. The Laplace mechanism is defined as

M(x, f(·), ϵ) = f(x) + (Y1, . . . , Yk)

where Yi are independent Laplace(∆f/ε) random variables.
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The Laplace distribution

A random variable has a Laplace (µ, s) distribution if its probability density function is

f(x | µ, s) = 1

2s
exp

(
−|x− µ|

s

)
=

1

2s

{
exp

(
−µ−x

s

)
if x < µ;

exp
(
−x−µ

s

)
if x ≥ µ,

▶ µ is a location parameter
▶ s > 0 is a scale parameter
▶ when µ = 0, b = 1, the positive half-line is an exponential distribution scaled by 1

2 .
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Proof

Proof: Let x,y ∈ N|X | and δ(x,y) = 1, and let f(·) be some function f : N|X | → Rk. Let
px and py denote the probability density functions of M(x, f(·), ϵ) and M(y, f(·), ϵ). We
compare the two at some arbitrary output point z ∈ Rk:

px(z)

py(z)
=

∏k
i=1 exp

(
− ε|f(x)i−zi|

∆f

)
∏k

i=1 exp
(
− ε|f(y)i−zi|

∆f

) =

k∏
i=1

exp

(
−ε (|f(x)i − zi| − |f(y)i − zi|)

∆f

)

≤
k∏

i=1

exp

(
ε |f(y)i − f(x)i|

∆f

)

= exp

(
ε
∑k

i=1 |f(x)i − f(y)i|
∆f

)

= exp

(
ε∥f(x)− f(y)∥1

∆f

)
≤ exp(ε)
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Example: mean under DP guarantee

▶ f(D) is sample mean of a dataset D, where each record is a scalar in [0, 1].
▶ So global sensitivity of f is 1/n, where n is the sample size.
▶ Laplace mechanism: output sample mean + Z, where Z ∼ 1

nϵ Lap(0, 1), ϵ is the
privacy budget.

▶ How about each record contains a continuous value (unbounded)?
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Some properties of Differential Privacy

▶ Any function of an output that satisfies ϵ−DP is also ϵ−DP (post-processing
property).

▶ The privacy loss as defined is guaranteed, which does not require assumptions about
the attacker.

▶ The amount of privacy loss is quantifiable, in the form of privacy budget ϵ. It needs to
be added across multiple releases (next: composition theorem).
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Some properties of Differential Privacy

Composition theorem
▶ Formally, let M1 : N|X | → R1 be an ϵ1-differentially private algorithm, and let

M2 : N|X | → R2 be an ϵ2-differentially private algorithm. Then their combination,
defined to be M1,2 : N|X | → R1 ×R2 by the mapping: M1,2(x) = (M1(x),M2(x)) is
(ϵ1 + ϵ2)-differentially private

▶ A generalization: let Mi : N|X | → Ri be an ϵi-differentially private algorithm for
i ∈ [k]. Then if M[k] : N|X | →

∏k
i=1 Ri is defined to be

M[k](x) = (M1(x), · · · ,Mk(x)), then M|k| is
(∑k

i=1 ϵi

)
-differentially private.
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What are Drawbacks to Differential Privacy?

▶ How about complex statistics and DP synthetic data?
▶ Counts/histograms are the most developed and deployed in practice.

▶ The meaning of the privacy loss is less intuitive: ϵ = 0.1 vs. ϵ = 1.
▶ Compared with measures such as risk of re-identification

▶ No consensus on how to set the privacy parameter/budget ϵ
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Randomized response ϵ−differentially private

Input: Data set of n bits: x = (x1, . . . ., xn) ∈ Xn, φ : X → {0, 1}, and a parameter ε > 0

Output: BitsY1, . . . , Yn

1 for i = 1 to n do

2 Yi =

{
φ (xi) w.p. eε

eε+1

φ (1− xi) w.p. 1
eε+1

3 return (Y1, . . . , Yn) ;
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Proof: RRϵ differentially private
Fix two neighboring data sets x and x′, and let i be the position in which they differ (so
that xi ̸= x′

i but xj = x′
j for all j ̸= i). First, consider a particular outcome

y = (y1, . . . , yn). Because we make selections independently for each i, we have

P (RRε(x) = y) = P (Y1 = y1 | x1) · P (Y2 = y2 | x2) · · ·P (Yn = yn | xn)

When we compare this to the probability that RRε (x
′) = y, only one of the terms in the

product will change. We thus get that

P (RRε (x
′) = y)

P (RRε(x) = y)
=

P (Yi = yi | x′
i)

P (Yi = yi | xi)

This ratio is at most eε

eε+1/
1

eε+1 = eε. Now let’s take any subset E ⊆ Y = {0, 1}n. The
probability that RRε(x) lies in E is just the sum over y ∈ E of the probability that
RRε(x) = y. We thus get

P (RRε(x) ∈ E) =
∑
y∈E

P (RRε(x) = y) ≤
∑
y∈E

eε · P (RRε (x
′) = y) = eε · P (RRε (x

′) ∈ E) .

This completes the proof.
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Composition

let A1 : Xn → Y1 be ε1-DP, and let A2 : Y1 ×Xn → Y2 be ε2-DP for all values of its first
input (that is A2 (a1, ·) is ε2-DP for every value of a1 ). Let A : Xn → Y1 × Y2 be the
randomized algorithm that outputs A(x) = (a1, a2) where a1 = A1(x) and a2 = A2 (a1,x).
Then A is (ε1 + ε2)−DP .
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Proof

We prove the discrete case here, for simplicity. Let x,x′ be neighboring data sets in Xn,
and let a = (a1, a2) be an outcome in Y1 × Y2.

P (A(x) = (a1, a2)) = P (A1(x) = a1) · P (A2 (x, a1) = a2)

Since A1 is ε1-DP, and A2 (a1, ·) is ε2-DP for every choice of a1, we can bound the
probability above.

P (A(x) = (a1, a2)) ≤ eε1P (A1 (x
′) = a1) · eε2P (A2 (x

′, a1) = a2)

= eε1+ε2 · P (A (x′) = (a1, a2))

Bei Jiang (University of Alberta) 2025 53/64



Post-processing

Let A : Xn → Y and B : Y → Z be randomized algorithms, where X ,Y,Z are arbitrary
sets. If A is ε-differentially private, then so is the composed algorithm B(A(·)).
▶ When B is deterministic. In that case, the event B(A(x)) = b is the same as the event

A(x) ∈ B−1(b) where B−1(b) is the preimage of b under B. So we can just apply the
A’s DP guarantee to B−1(b) :

P(B(A(x)) = b) = P
(
A(x) ∈ B−1(b)

)
≤ eεP

(
A (x′) ∈ B−1(b)

)
= eεP(B(A(x′)) = b)
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Post-processing

▶ To handle the case where B is randomized, we can write the B(a) as the application
of a deterministic function f applied to the pair (a,R) where R is a random variable
independent of a that represents B ’s random choices. Thus, B(A(·)) is the
application of a deterministic function to A′(x) = (A(x), R). The algorithm A′ is
ε-DP (since R is independent of A). Thus B(A(·)) is also ε-DP.
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Example: k−means Clustering
Let’s use some of the tools we now have—the Laplace mechanism and basic
composition—to design a more complex algorithm. First, let’s review the original
algorithm given below.
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Idea to achieve DP mechanism

▶ We apply the Laplace mechanism to get noisy versions of the each of the algorithm’s
intermediate steps. We can divide our privacy budget ϵ into T parts, and assign ϵ/T
to each intermediate step.

▶ Suppose we have already released centers c
(t−1)
1 , . . . , c

(t−1)
k from the previous step.

Then we can divide the universe X into k regions B1, . . . , Bk, where Bj consists of
points closest to center c

(t−1)
j . To compute the next set of centers, we approximate

two quantities for each Bj :
▶ nj (integer): the number of data records in Bj , and
▶ aj (vector in Rd ): the sum of the data records in Bj (as vectors)
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Idea to achieve DP mechanism

▶ The counts (n1, . . . , nk) form a histogram. Their global sensitivity is thus 2 .
Releasing n̂1, . . . , n̂k by adding noise Lap

(
4T
ε

)
to each histogram entry thus consumes

at most ε
2T of our privacy budget.

▶ Similarly, we can view the sums a1, . . . , ak as one long vector of length kd. If we
change one record in the data set, only two of the sums aj can change, since the
record either stays in the same bin or moves from one bin to another. These two sums
gain or lose one term each, of ℓ1 norm at most 1. The change in the long vector is
thus at most 2 .

▶ Again, the algorithm adds noise Lap
(
4T
ε

)
to each entry, consuming another ε

2T of our
privacy budget. The computation of the next cluster center is just postprocessing of
the n̂j ’s and âj ’s, so it consumes no further budget.

▶ The total expenditure for the T step is thus ε
T . By Basic Composition, the algorithm

as a whole is ε-DP.
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Example: k−means Clustering
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The exponential mechanism

▶ A set Y of possible outputs;
▶ A score function q : Y × Un → R which measures the “goodness” of each output for a

data set. Given x ∈ Un, our goal is to find y ∈ Y which approximately maximizes
q(y;x). (When Y is finite, we can also think of q as a collection of Y separate
low-sensitivity queries.)

▶ A sensitivity bound ∆ > 0 such that q(y; ·) is ∆-sensitive for every y. That is,
supy∈Y sup x,x′∈Un

adjacent
|q(y;x)− q (y;x′)| ≤ ∆
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The exponential mechanism

▶ The idea is that given the score function q(·;x) that assigns a number to each element
y ∈ Y, we define a probability distribution which generates each element in y in Y
with probability proportional to exp

(
ε
2∆q(y;x) ; that is, we sample elements with a

probability that grows exponentially with their score. The symbol " ∝ " in Algorithm
2 means "proportional to".
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The exponential mechanism

▶ When is this algorithm even well defined? When Y is finite the algorithm is
well-defined since we can set

P (Y = y) =
e

ε
2∆ q(y;x)∑

y′∈Y e
ε

2∆ q(y′;x).

▶ In fact, the mechanism makes sense over infinite domains, and even continuous ones.
For inifinite discrete domains like the integers Z, it must be that

∑
y∈Y e

ε
2∆ q(y;x) is

finite for every x. Over continuous spaces like the real line, it must be that∫
y∈Y exp

(
ε
2∆q(y;x)

)
dy is finite for every possible data set x.

▶ Now that we have a well-defined algorithm, we’ll try to understand why it is
differentially private, and why it is useful.
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The exponential mechanism
Proof:
▶ Assume for simplicity that y is finite. For any output y and data set x we have

P (y | x) = e
ε

2∆
q(y;x)∑e

ε
2∆

q(y′;x)
y′∈Y

. Let x′ be a data set adjacent to x. Since the sensitivity of

q(y; ·) is at most ∆, we have

e
ε

2∆ q(y;x)

e
ε

2∆ q(y;x′)
= exp

( ε

2∆
(q(y;x)− q (y;x′))

)
≤ exp

( ε

2∆
·∆
)
= eε/2

▶ Similarly, for the normalizing constants,∑
y′∈Y e

ε
2∆ q(y′;x′)∑

y′∈Y e
ε

2∆ q(y′;x)
≤ sup

y′

(
exp

( ε

2∆
(q (y′;x′)− q (y′;x))

))
≤ eε/2.

Thus the ratio Pr(y|x)
P (y|x′) is at most eε/2 · eε/2 = eε. The case of an infinite domain is

similar, with integrals over to the base measure replacing sums.
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Thank You!

Any Questions?
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