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1. Single-period binomial model

A single-period model for a financial market:

e Consider the following very simplistic model with
one stock and a bank account over one period:

: initial :
prices terminal value
value
uSg with probability p
stock | 5o { dSy with probability 1 — p
bank 1 14
account

for numbers Sp > 0,0<d < u, p€ (0,1) and r.

e Assumptions: agent can invest in or short sell
(= negative investment) the stock, and they can
invest in and borrow from the bank account at
the same interest rate r.

e \We also assume

d<1l+7r<wu (no-arbitrage condition).
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This assumption is reasonable. Example: if we
had d = 2, u = 3 and r = 0, the agent could bor-
row a positive dollar amount x from the bank ac-

count and invest in stock to make a risk-free profit:

initial .
terminal value
value
bank
—x —x(1471r)=—=x
account

ux = 3x with probability p

stock | {daj = 2z with probability 1 — p

3x — x = 2x with probab. p
2r — x = x with probab. 1 — p

total 0 {

Pricing financial derivatives:

e Consider now additionally a financial derivative

with given payoff as follows:

initial _
value terminal value
R { fu if stock price = u.Sy (probab. p)
o fyg if stock price = dSp (probab. 1 — p)

for fixed numbers f;, and f;.
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e Example: (European) call option with strike K.
A call option gives the buyer the right, but not
the obligation to buy the stock at maturity for the
strike price K. In our model the option payoff is

{ max{uSy — K,0} with probability p
max{dSy — K,0} with probability 1 — p

because

- two possibilities uSg or dSp for the stock price,

- the buyer will use (= exercise) the option only
if the stock price is higher than K.

e How can we find an initial value x for the financial
derivative?
We can use a replication argument because we
will see that we can obtain here the same payoff
by investing in the stock and bank account.

Consider a portfolio consisting of A units of the
stock and W units of the bank account.

initial :
terminal value
value
AuSy+ V(1 +r) if stock = uSy
ASo+V { AdSy + V(1 +7) if stock = dSy
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We find A and W of a replicating portfolio by
setting its terminal value equal to that of the fi-

nancial derivative, which implies

fu = AuSy + V(1 4+ r),
fd — AdSO + \U(l -+ 7“).

Solving this system of two linear equations for the
unknowns gives

_ Ju— Ja v — ufqg — dfu
So(u — d)’ (1+7)(u—d)
so that the initial value of the portfolio equals
fu—fd_l_ ufq — dfu
u—d (14+7r)(u—d)
1 14+r—d u—1—r
_1—|—fr( u —d Jut u—d fd)'

To avoid arbitrage (= risk-free gains), this quan-

A

ASO—|—\U:

tity must be equal to the initial value x of the
financial derivative:

1 /1+r—d u—1—7r
CE_l—|—7“< u—d Jut u—d fd)'




Risk-neutral probabilities:

e Define
1+r—d u—1—r
du = u—d dd = u —d
so that we can write
T = %(QUfU‘FQdfd)
e Note that
© qutqq =1,

cd<l4+r<wu=qy,>0,q5 >0.

Therefore, we can consider g, q4 as the proba-

bilities of a probability measure () and we have

z = 1+ EC[f] = —(qufu+qdfd)

where f is the random variable of the option pay-
off and E¥ denotes the expectation under the

measure (). In other words,

expectation of the discounted

option value =
P payoff under a measure @)

(discounted because payoff is divided by 1 + 7).
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A crucial observation is that the probability mea-
sure () used in the pricing formula does not equal
the historical (from the model construction) prob-
ability measure because in general

1 4+r— u—1-—r7r

d
pu— 3 p— 1— .
u=—""""7P W=—"—_—F1-p

If we calculate the expectation of the discounted
stock price under (), we obtain

0 terminal value of stock

1+7r
_uSp n dSp
_qul—l—r qdl—l—fr

1+r—d uS0_|_u—1—r dSp
 u—d 1+ 7r u—d 1+7r
= S0,

which shows that the expectation of the discounted
terminal stock price under () equals its initial value.
Therefore, g, and q4 are called risk-neutral prob-
abilities and @) a risk-neutral probability measure.
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e Remark. A financial market (like that we consid-
ered here) where every payoff can be replicated
is called complete. It can be proved that a risk-
neutral probability measure exists if there is no
arbitrage in the market model and it is unique if

the market is complete.

e The pricing formula we derived was based on a
replication argument: we replicated the payoff
of the derivative by investing in the stock and
bank account. As a byproduct, we also saw the

right number of stocks we need for the replica-

tion, which is A = %.

This means that as a buyer of the option, we can
“neutralize” the option by investing —A in the
stock. Conversely, as a writer (= seller) of the
option, we can buy A units of the stock to hedge
against our risk. Consequently, this is called a

replicating strategy or hedging strategy.



2. Two-period binomial model

e \We can extend the model of Section 1 by adding

a second period. We then have a tree of the form

time 0 time 1 time 2 probability
quo p?
stock: ya
p
uSp
/
p 1—p
So udSg  2p(1 —p)
/
1—p p
dSp
1-p

d?So (1 - p)?

bank account:
1 - 14+r — (147)?

e Trading is now also possible at the intermediate
time 1. We still assume d < 1+ r < w.
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e Let us consider a European call option with ma-
turity 2. It has the following payoff at time 2:
fuu = max{u2So — K,0} if stock u?Sy

fud = max{udSy — K,0} if stock = udSy
fqq = max{d?Sg — K,0} if stock = d?S

e By a replication argument similarly to that in Sec-
tion 1 applied to both trading periods, the price

of the derivative equals

1
(1 +r)2

(¢ fuw +24(1 = @) fug + (1 — 9)*faa),
where ¢ = %Z Indeed, we have

fuu

derivative:
fu

fud

Jd

N\
YA VRN

Jadd
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Applying the reasoning of Section 1 to each branch

of the tree gives

1

fu= 17" ——(qfuu+ (1 = @) fua);
fa =1 Jlr (afud + (1= a) faa),
= (o (1= a)fa)
= —:r)2 (C]2fuu +29(1 — q) fyqg + (1 — Q)Zfdd)-

This means that the price equals ﬁEQ[f],
where f = max{S, — K, 0} is the option payoff
and (@ is the probability measure with probabili-
ties g2, 2¢(1 — q), (1 — q)? corresponding to the
different states u250, udSy, szo, respectively, of
the stock at time 2.

One can also show that

1 2 2 2 2
a +T)2(q u®So+2q(1—q)udSp+(1—q)d>So)

equals Sp so that @ is a risk-neutral measure.
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3. Multiperiod binomial model

e We can further extend the model to n periods so
that we have

time n probability
stock:
uSy p"
uldSy  np" (1 - p)
unIdiSy  (7)p" (1 — p)
ud” 1Sy np(l —p)1
d"Sp (1—-p)"
bank account:
(14 7)™

e A European call with maturity n and strike K has
the payoff max{S, — K, 0}, which means

P

fur = max{u"Sy — K, 0} if Sy, = u"Sy

fon—igi = max{uIdI Sy — K,0} if Sp =u""Id’ Sy

| fan = max{d"Sg — K, 0} if Sp = d"Sg
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e Extending the pattern of the two-period, the fair
price of the option is given by

1 nN . .
(1+r)n(qnﬁﬂ”L"'Jr (j)qn YA = aY fyn-jas
et 0t
where
14+ r—d
€= u—d

e Associating to g the corresponding measure @,
we can write the option price as

1
(14 7)™ (14 7)™
where we emphasize that it is the expectation un-

EC[f] =

der () and not under the historical probability.

e Remark: Under the historical probability, Sy is
related to a binomial distribution with parame-
ters p and n. Under the probability measure @,
Sn, is still related to a binomial distribution but

1+r—d

with parameters ¢ = ="—% and n. So for the
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option pricing, we just change the parameters of
the distribution of S;, and take then expectations

of discounted values.

Pricing a call option by writing a MATLAB function

callnperiod.m:

function price = callnperiod(u,d,r,S0,K,n)

% calculate the price of a call option with
strike K in an n period binomial model

if d<l+r && 1l+r<u

price=0;
q = (l+r-d)/ (u-d);

for 3J=0:n
price = price +

nchoosek (n, j)*xg” (n—=j) * (1-q) " J*. ..
max (u” (n—7J) *d"J*xS0-K,0) / (1+r) "n;
end
else
error ('wrong parameters')
end

% plot the call price in dependence of the
strike price

K= 0:0.05:10;

price = callnperiod(l.2,.95,.05,1,K,20);

plot (K,price, 'LineWidth', 3);

set (gca, "fontsize', 14, '"FontWeight', "bold");

xlabel ('strike price', 'fontsize',14);




ylabel ('option price', 'fontsize',14);
axis ([0 10 0 1]) % choosing suitable range

for axes
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strike price

4. Transition to continuous time

10

e The binomial model can be used as approximation

for a model with continuous trading possibilities

on some time interval [0, T7.
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To show convergence, one lets tend the number
n of periods to infinity and, simultaneously, the
length of each period tend to zero. This means
that one makes specific choices for u, d and r
depending on n; for details, please see the Ap-
pendix.

The resulting continuous-time model has a bank
account whose value at time T equals exp(pT')
and a stock whose price at time 7' is given by

St = Spexp ((u —0%/2)T + GﬁN),

where p, © and o > 0 are constants and N is a
standard normally distributed random variable.

function convergenceS (mu, sigma, T, n)

o

(¢}

c

o\°

o

o\°

j:

compares the cumulative distribution
function of S.n in a binomial model with
that of the corresponding log—-normal
distribution

= exp((mu-sigma”2/2)+*T/n+sigmax* (T/n) " .5);
appropriate choice of u

= exp((mu-sigma”2/2)*T/n—-sigmax* (T/n) "~ .5);
appropriate choice of d

O:n;




Sn = d." " (n—-3).xu."j; % S n for p = 1/2

bin=binocdf (0:n,n,1/2); % cumulative
distribution function of S_n

points = 0:.05:Sn(n+1); % choose equidistant
points for plot

lognorm=logncdf (points, (mu-sigma”2/2) T, ...

sigma*T"~.5); % cumulative distribution
function of S

17

plot (points, lognorm, Sn,bin, 'r."', "LinewWidth', ...

3, 'MarkerSize',18) % r = red, . = point
set (gca, '"fontsize', 14, 'FontWeight', '"bold");
title('cumulative distribution functions');
legend ('continuous time', 'discrete

time', 'location', 'best');

cumulative distribution functions

0.9+

0.8

0.7

0.6

0.5

0.4+

0.3

continuous time
e discrete time

0.2

0.1
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e Similarly to the binomial model, the price of a
European call option with strike K and maturity
T is given by

1

exp(pT)
for some probability measure (). This probability

EQ[max{ST — K,0}]

measure is such that
ST = Spexp ((p — 02/2)T + aﬁﬁ>

for a random variable N that is normally dis-
tributed under (). Using this fact, we can rewrite
the price of the European call as

¢ = Sp(dy) — K exp(—pT)®(dy — oV'T), (%)

where

O () = /_xoo \/127 exp(—u2/2) du

is the standard-normal distribution function and

S
_ log RH+oT 1y

Comments:

e ((x)) is the famous Black-Scholes formula. Note ¢
depends on Sy, K, p, o0 and T', but not on .
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e In continuous time, the underlying process of the

stock price dynamics is related to a Brownian mo-

tion.

e The partial derivatives of the Black-Scholes for-

mula (%) with respect to its parameters are called
Greeks.

1.

Delta = 8%90 = ®(dy) € (0,1) is the amount
of the risky asset held in the replicating port-

folio.

__ D% /
Gamma = 952 = = &'(dy )Sa\/_

if Gamma is blg, frequent adjustments of the

> 0;

replicating portfolio are necessary.

_ oc
Theta = — 57

- _So;q\)//%dl) . Kp exp(—pT)CD(d]_ — U\/T)
< 0.

Rho_@ KT exp(— pT)CD(dl—J\/_)

. Vega = 8 = SovVT®'(dy) > 0.
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e The principle of valuation under () holds gener-
ally. The price of a derivative with payoff f(S7) is

exp(—pT) EC[f(ST)]
= e PTEQ [f (So exp ((p — 02/2)T + “ﬁﬁ))]

for a normally distributed N under Q.

Comparison of Black-Scholes with Binomial model:

function [priceBin,priceBS] =
compareCall (rho, mu, sigma, T, K, n)

% compares the call option price in a
binomial model with the continuous-time
analogue from the Black-Scholes formula

u = exp((mu-sigma”2/2)*«T/n+sigma* (T/n)"~.5);
% appropriate choice of u

d = exp((mu-sigma”2/2)*«T/n-sigma=* (T/n) "~ .5);
% appropriate choice of d

r = rho*xT/n; % appropriate choice of r

priceBin = callnperiod(u,d,r,1,K,n);

dl = (log(l./K) + rho*T)/sigma/T"~.5 +

sigma*T".5/2;
priceBS = normcdf (dl) -
K.*exp (-rhoxT) .normcdf (dl-sigmaxT".5);
% or, alternatively, by applying the
Financial Toolbox, we could use
% priceBS = blsprice(l,K,rho,T,sigma);
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Plot the comparison of the Call option prices using
the script compareCallPlot.m:

[e]

% plot comparison of Call option prices 1n
binomial model and Black—-Scholes model

K=0:.05:1.5;

[a,b] = compareCall(.05,.5,.2,1,K,10);

plot (K,a,K,b, 'LineWidth', 3);

set (gca, "fontsize',14, '"FontWeight', "bold"');

xlabel ('strike price', "fontsize',14);

ylabel ('option price', "fontsize',14);

legend('Binomial model', "Black—-Scholes')

- Binomial model
0.9 - Black-Scholes [i

0.8

0.7

option price
o
a

0 | |
0 0.5 1 1.5
strike price
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5. Implied volatility

e The value of ¢ is hard to determine
— idea: find o by inverting the Black-Scholes
formula and using the market price of the option.

e Theimplied volatility oj ) is defined as the unique
o such cgs(0) = cmarket: Where cmarket IS the
market price of the option and cgg is the value of
the Black-Scholes formula ([x) depending on o.

e If the Black-Scholes model is correct, ojynp does
not depend on K, Sp, T' and p. But in reality,
one sees a strong dependence on K (volatility
smile /skew).

o\°

The financial toolbox has the function
blsimpv to calculate 1mplied volatility:
blsimpv (Current price of Stock S_0O,
Strike K, Interest rate rho, Time to ...
maturity T, Option price)

>> blsimpv (100, 95, 0.05, 0.25, 10)

ans =
0.3339
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We now calculate the implied volatility on EUR/USD
Call options, writing a script volaEURUSD.m. The re-

sulting plot shows a volatility smile.

o\°

volaEURUSD.m needs financial toolbox
Implied volatility of currency options.
We have the following data: the risk-free
USD interest rate is 5%. 1 EUR = 1.0916
USD (March 31, 2025); the matrix A gives
the prices (in USD) of call options with
maturity end of June [such data can be
found at http://www.cmegroup.com/]

o\°

A = [1.075 0.0355; 1.08 0.0312; 1.085 ...
0.0271; 1.09 0.0232; 1.095 0.0202; 1.1
0.0174; 1.105 0.0146; 1.11 0.012; 1.115
0.0104; 1.12 0.0093; 1.125 0.0082; 1.13
0.0072; 1.135 0.00657;

% calculate the implied volatilities:

A(:,3) = ...
blsimpv(1.0916,A(:,1),0.05,3/12,A(:,2));

% from March 31 until end of June = 3 months

% A(:,2) means all numbers of the 2nd column
plot (A(:,1),A(:,3), "'LineWidth', 3);

set (gca, "fontsize', 14, 'FontWeight', '"bold");
xlabel ('strike price', '"fontsize',14);

ylabel ('"implied volatility', 'fontsize',14);
x1lim([A(1,1),A(end,1)])

title('volatility smile'")
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volatility smile

0.08 w x

o
o
3
o

implied volatility

0.07

0.065 —— * ﬂ ﬂ ﬂ
1.08 1.09 1.1 1.11 1.12 1.13

strike price

There exist indices which measure the implied volatil-
ity. A popular measure is VIX, which reflects the im-
plied volatility of options on the stock index S&P 500.
VIX is often referred to as “fear index”, because a high
level of VIX means a lot of uncertainty in the market;
see the development of VIX on the next page.
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Appendix: additional explanations

and proofs to Section 4

A.1 Choice in the continuous-time model

In the continuous-time situation, we model the termi-
nal value of the bank account as By = exp(p1’) and
the terminal value of the stock as

ST = Spexp ((,u—az/2)T—|—0\/TN), (1)

where p, u and o > 0 are constants and N is a stan-
dard normally distributed random variable.

A.2 Explanations behind choice

The reason behind these choices is as follows. In con-
tinuous time, the bank account models continuous in-

terest, which means

dB; = pBydt.

We can interpret this as that the infinitesimal change
dB; in the bank account is equal to the continuous
interest rate p times the capital B¢. This equation is
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equivalent to dBt = pBy, which yields By = exp(pT)
using that By = 1.

To explain the form (1) of the stock price, we can
say that on average (which means in expectation) the
stock should have a similar growth form than the bank
account. Hence, E[ST] = Sgexp(uT’) for some con-
stant p (typically pu will be bigger than p to compen-
sate for the risk in the stock), using that S starts at
So and not necessarily at 1, in contrast to the bank
account. Now, S7 will not just be equal to the deter-
ministic value Sgexp(uT’), but will also reflect some
random factor because we do not know future prices.
Hence, St is of the form

St = Spexp(uT’) x (positive random factor). (2)

The reason for this positive random factor is related
to the so-called Brownian motion. At the moment,
you should just accept that we can model it with a
normally distributed random variable, but because it
should be positive, we take the exponential of this
normally distributed random variable so that

positive random factor = exp(cN) (3)
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where c is some constant and NN is a standard normally
distributed random variable. The bigger T', the longer
the time horizon is and more uncertain S7 is. There-
fore, c should depend on T', and we will again see later
that the right form is ¢ = o+v/T, hence it grows like
square root in T' times some constant o, which gives

us how big the fluctuation in ST is. Combining this

with (2) and (3)), we get
ST = Spexp (,uT + aﬁN) (4)

for some normally distributed N. Recall we wanted to
have E[ST] = Sgexp(uT’) so that p has the interpre-

tation of the mean growth rate, but we can calculate

E[So exp (,uT + a\/TNﬂ

=50 exp(,uT)E[exp (ax/fNﬂ

— Spexp (MT + JQT/Z),
using the formula that E[exp(aN)] = exp(a?/2) for
any constant a and standard normally distributed N.

Therefore, to get E[ST] = Spexp(uT’), we need to
divide (3) by exp(c°T'/2), which leads to ([T]).
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A.3 Convergence proofs

We show now that under suitable choices of r,, d,, and
un, the terminal values of the bank account and stock
in the binomial model converge to By = exp(pT’) and

St given in ((1)).

Proposition 1 For rp, = pT' /n, we have

lim (14 r,)" = exp(pT).

Proof.
lim (14 pT/n)" =exp (In( lim (14 pT/n)"))
= exp <n|i_>mOO In(1 + pT/n)n)
= exp (nli_>moon In(1 + pT/n))
. In(1+ pT/n)
:exp(nll_>moo 1/n )’

which equals

In(1 + pT/n)) 9 e

- In(1 + st))

ex lim = ex |
P (n—>oo 1/n P s\0 S
(+%) ( ' pl )
=" ex im
PLsN01 + oTs

= exp(pT)
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(x) set s = 1/n, thenn—>oo<:>8\0

(*xx) L'Hopital’s rule using 7 Lin(1+ pT's) = =

14-pT's

Proposition 2 Set p = 1/2 and define

Uy = exp <<,u — 02/2)% + J\/i)’
n = exp <(,u — 02/2>% — J\/f)

then Sy, in the n-period binomial model converges to

ST in ()

Proof. If S}, reflects j times uy, and n — 5 times dj,,
we have

Sp = Soul,d¥

_Soexp<< —0‘2/2)Tj—|—0'\/?)
xexp(( —02/2) n—])—U[(n_J)>

— Spexp <<,u — 02/2)T -+ J\/T2j\/_ﬁn>.
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n

: . : : 2
Comparing this with ([1]), it remains to show that *z/ﬁ

converges to a standard normally distributed random
variable. Define random variables X; by

1 if h ' lod 7
X, :{ : if we have uy In period ¢ (5)

—1, if we have d;, in period ¢

and note that if we have j times uy and n — 5 times
dn, then

mn
> Xi=j+(n—j)(-1)=2j—n
1=1

Therefore, we can write

27 —n
NG IZX (6)

We now apply the Central Limit Theorem, which says

that for independent and identically distributed ran-
dom variables X1, X5, ... with mean u = F[X;] and
finite variance o2 = Var(X;),

LS i) 7
1=1

converges (in distribution) to a standard normally dis-
tributed random variable. In our case of X, given by
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(5) with equal probability 1/2 for the two cases (be-
cause p = 1/2 by assumption), we have

1 1
=FX,|==-14+—--(—1) =0,
% [z] 5 "‘2( )

1 1
0® = Var(X;) = B|X7| = S 12 + S (-1)2 =1.

Therefore, (7)) simplifies in our case to %52?21 X;.
29— __

1 n ,
Vi = yaZi=1 i

converges (in distribution) to a standard normally dis-

Because of ([f]), this shows that

tributed random variable. =

A.4 Derivation of the Black-Scholes formula

Similarly to the binomial model, the price for a pay-
off f in the Black-Scholes model is given by e%TEQ[f]
where the terminal value of the stock price is

St = Soexp ((p — 02/2)T + oVTN)

with IV standard normally distributed under Q). In the
case of a call option with strike price K, the price
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equals

1
_ QIm _
c= epTE [max{St — K, 0}]

= B9 max {5ge(P =7 /ATHVTN _ it o}

2
1 oo 2 e—%7/2
= — max { Sge(P—0°/2)T+ovV Tz _ K,0 dx
el | _oo { 0 } V2T
> — 02T /240 Tx o e
= / max{SOe — Ke™” ,O} dz.
o0 V2T
Now, we use the equivalences
Soe—ozT/Z—i—U\/Tx _KePT >
s Soe—02T/2—|—a\/T:c > Ke—PT
s e—azT/2—i—a\/Tx > Ee—pT
S0
K
= —0°T/2+ oVTz > log (S_> — pT
0
log(K/S0) — pT
— x> +oV'T)2.
> s /
Therefore, defining d = log([i/j%)_pT+a\/T/2 allows

us to write
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—x2/2

V2r

@)
c= / max {Soe_UzT/z_M\/T:’j — Ke Pl O}e dx
— 0

—x2/2

dz
V2T

= [ (Soemo /2T _ g

2
— /doo Soe_azT/2+a\/T$£ dx
—x2/2

V2T
o0 e
_ KePT
/d \V 27m

dz.
For the first term, we calculate
2
>C —02T/2+0VTxz® /2
Spe dz
d \V 2T
279 [ eoﬁx—x2/2
— Soe_a dx
d V2T
_2qy [0 o—(z—0VT)?/2,0°T/2
— Spe” ¢ / / dx
d \V 2T
)
B S /OO e Yy d
0 d—oT /2w J

5o o4 o)
= So®( —d+oVT).
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For the second term, we have

2 2
oo e_aj /2 o0 e_x /2
Ke PT de = Ke PT dx
/d V2T d V2T
= Ke "T(1 - o(d))
= Ke "lo(—d).
Defining
log(K/Sg) +pT 1
L ’ O'\/T 2
we obtain
2
e [ spe T/ T e
d \V 2T
2
00 —x</2
— / Ke PT © dr
d \ 2T

= So®(d1) — Ke_qu)(dl — O'ﬁ),

which is the Black-Scholes formula.



