

Notes to IUSEP Lectures in Mathematical Finance:

A Tour from the Binomial Model to the Black-Scholes Formula

July 2025

Christoph Frei
www.math.ualberta.ca/~cfrei
cfrei@ualberta.ca

1. Single-period binomial model

A single-period model for a financial market:

- Consider the following very simplistic model with one stock and a bank account over one period:

prices	initial value	terminal value
stock	S_0	$\begin{cases} uS_0 & \text{with probability } p \\ dS_0 & \text{with probability } 1 - p \end{cases}$
bank account	1	$1 + r$

for numbers $S_0 > 0$, $0 \leq d < u$, $p \in (0, 1)$ and r .

- Assumptions:** agent can invest in or short sell (= negative investment) the stock, and they can invest in and borrow from the bank account at the same interest rate r .
- We also assume

$$d < 1 + r < u \quad (\text{no-arbitrage condition}).$$

This assumption is reasonable. Example: if we had $d = 2$, $u = 3$ and $r = 0$, the agent could borrow a positive dollar amount x from the bank account and invest in stock to make a risk-free profit:

	initial value	terminal value
bank account	$-x$	$-x(1 + r) = -x$
stock	x	$\begin{cases} ux = 3x \text{ with probability } p \\ dx = 2x \text{ with probability } 1 - p \end{cases}$
total	0	$\begin{cases} 3x - x = 2x \text{ with probab. } p \\ 2x - x = x \text{ with probab. } 1 - p \end{cases}$

Pricing financial derivatives:

- Consider now additionally a financial derivative with given payoff as follows:

initial value	terminal value
$x = ?$	$\begin{cases} f_u & \text{if stock price} = uS_0 \text{ (probab. } p) \\ f_d & \text{if stock price} = dS_0 \text{ (probab. } 1 - p) \end{cases}$

for fixed numbers f_u and f_d .

- **Example:** (European) call option with strike K .
A call option gives the buyer the right, but not the obligation to buy the stock at maturity for the strike price K . In our model the option payoff is

$$\begin{cases} \max\{uS_0 - K, 0\} & \text{with probability } p \\ \max\{dS_0 - K, 0\} & \text{with probability } 1 - p \end{cases}$$

because

- two possibilities uS_0 or dS_0 for the stock price,
- the buyer will use (= exercise) the option only if the stock price is higher than K .

- How can we find an initial value x for the financial derivative?

We can use a **replication argument** because we will see that we can obtain here the same payoff by investing in the stock and bank account.

Consider a portfolio consisting of Δ units of the stock and Ψ units of the bank account.

initial value	terminal value
$\Delta S_0 + \Psi$	$\begin{cases} \Delta uS_0 + \Psi(1 + r) & \text{if stock} = uS_0 \\ \Delta dS_0 + \Psi(1 + r) & \text{if stock} = dS_0 \end{cases}$

- We find Δ and Ψ of a replicating portfolio by setting its terminal value equal to that of the financial derivative, which implies

$$f_u = \Delta u S_0 + \Psi(1 + r),$$

$$f_d = \Delta d S_0 + \Psi(1 + r).$$

Solving this system of two linear equations for the unknowns gives

$$\Delta = \frac{f_u - f_d}{S_0(u - d)}, \quad \Psi = \frac{u f_d - d f_u}{(1 + r)(u - d)}$$

so that the initial value of the portfolio equals

$$\begin{aligned} \Delta S_0 + \Psi &= \frac{f_u - f_d}{u - d} + \frac{u f_d - d f_u}{(1 + r)(u - d)} \\ &= \frac{1}{1 + r} \left(\frac{1 + r - d}{u - d} f_u + \frac{u - 1 - r}{u - d} f_d \right). \end{aligned}$$

To avoid arbitrage (= risk-free gains), this quantity must be equal to the initial value x of the financial derivative:

$$x = \frac{1}{1 + r} \left(\frac{1 + r - d}{u - d} f_u + \frac{u - 1 - r}{u - d} f_d \right).$$

Risk-neutral probabilities:

- Define

$$q_u = \frac{1 + r - d}{u - d}, \quad q_d = \frac{u - 1 - r}{u - d}$$

so that we can write

$$x = \frac{1}{1 + r} (q_u f_u + q_d f_d).$$

- Note that

- $q_u + q_d = 1$,
- $d < 1 + r < u \implies q_u > 0, q_d > 0$.

Therefore, we can consider q_u, q_d as the probabilities of a probability measure Q and we have

$$x = \frac{1}{1 + r} E^Q[f] = \frac{1}{1 + r} (q_u f_u + q_d f_d),$$

where f is the random variable of the option payoff and E^Q denotes the expectation under the measure Q . In other words,

option value = expectation of the discounted payoff under a measure Q

(discounted because payoff is divided by $1 + r$).

A crucial observation is that the probability measure Q used in the pricing formula does not equal the historical (from the model construction) probability measure because in general

$$q_u = \frac{1+r-d}{u-d} \neq p, \quad q_d = \frac{u-1-r}{u-d} \neq 1-p.$$

- If we calculate the expectation of the discounted stock price under Q , we obtain

$$\begin{aligned} & E^Q \left[\frac{\text{terminal value of stock}}{1+r} \right] \\ &= q_u \frac{uS_0}{1+r} + q_d \frac{dS_0}{1+r} \\ &= \frac{1+r-d}{u-d} \cdot \frac{uS_0}{1+r} + \frac{u-1-r}{u-d} \cdot \frac{dS_0}{1+r} \\ &= S_0, \end{aligned}$$

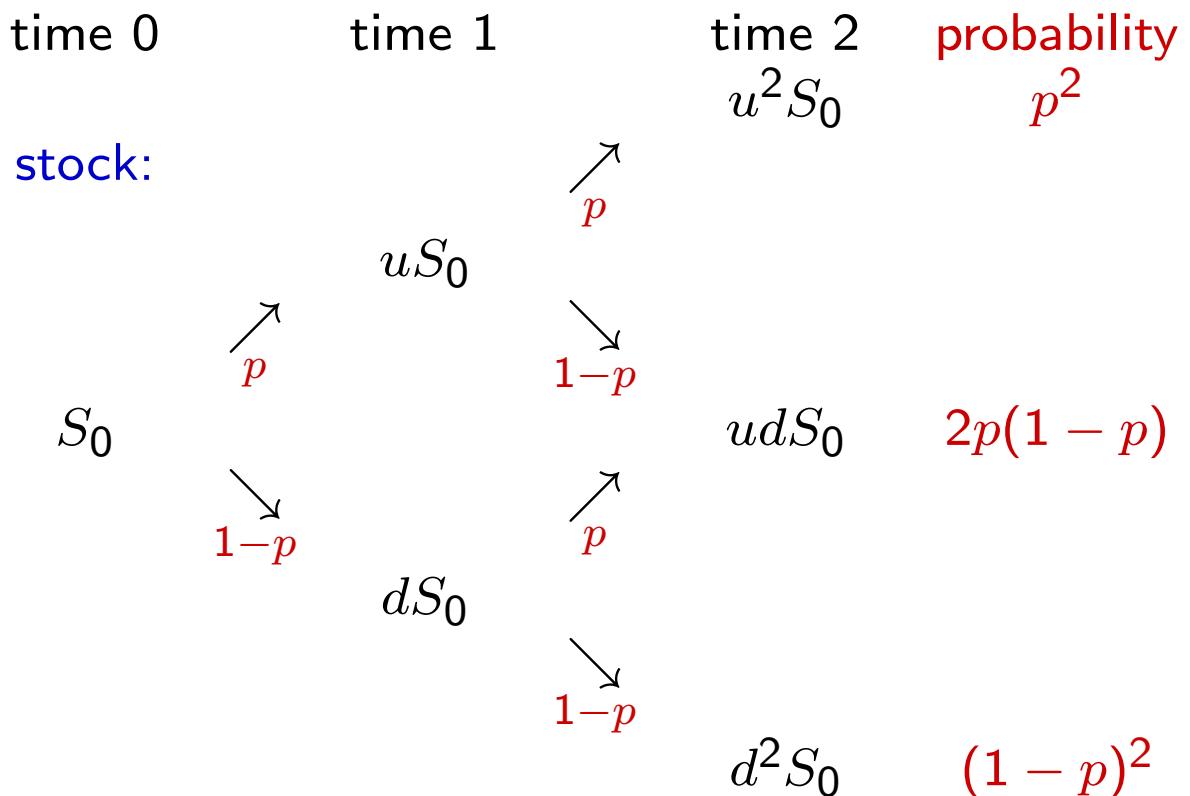
which shows that the expectation of the discounted terminal stock price under Q equals its initial value. Therefore, q_u and q_d are called **risk-neutral probabilities** and Q a **risk-neutral probability measure**.

- **Remark.** A financial market (like that we considered here) where every payoff can be replicated is called **complete**. It can be proved that a risk-neutral probability measure exists if there is no arbitrage in the market model and it is unique if the market is complete.
- The pricing formula we derived was based on a replication argument: we replicated the payoff of the derivative by investing in the stock and bank account. As a byproduct, we also saw the right number of stocks we need for the replication, which is $\Delta = \frac{f_u - f_d}{S_0(u-d)}$.

This means that as a buyer of the option, we can “neutralize” the option by investing $-\Delta$ in the stock. Conversely, as a writer (= seller) of the option, we can buy Δ units of the stock to hedge against our risk. Consequently, this is called a **replicating strategy** or **hedging strategy**.

2. Two-period binomial model

- We can extend the model of Section 1 by adding a second period. We then have a tree of the form



bank account:

$$1 \rightarrow 1+r \rightarrow (1+r)^2$$

- Trading is now also possible at the intermediate time 1. We still assume $d < 1 + r < u$.

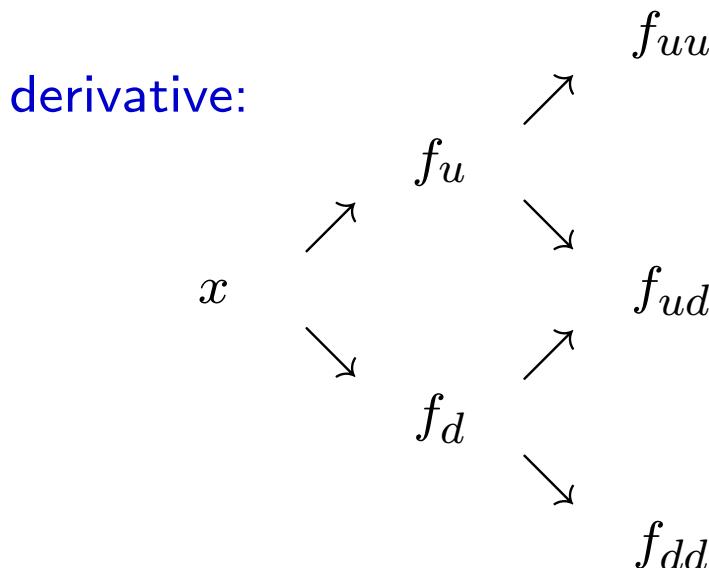
- Let us consider a European call option with maturity 2. It has the following payoff at time 2:

$$\begin{cases} f_{uu} = \max\{u^2 S_0 - K, 0\} & \text{if stock } = u^2 S_0 \\ f_{ud} = \max\{udS_0 - K, 0\} & \text{if stock } = udS_0 \\ f_{dd} = \max\{d^2 S_0 - K, 0\} & \text{if stock } = d^2 S_0 \end{cases}$$

- By a replication argument similarly to that in Section 1 applied to both trading periods, the price of the derivative equals

$$\frac{1}{(1+r)^2} (q^2 f_{uu} + 2q(1-q)f_{ud} + (1-q)^2 f_{dd}),$$

where $q = \frac{1+r-d}{u-d}$. Indeed, we have



Applying the reasoning of Section 1 to each branch of the tree gives

$$\begin{aligned}
 f_u &= \frac{1}{1+r} (q f_{uu} + (1-q) f_{ud}), \\
 f_d &= \frac{1}{1+r} (q f_{ud} + (1-q) f_{dd}), \\
 x &= \frac{1}{1+r} (q f_u + (1-q) f_d) \\
 &= \frac{1}{(1+r)^2} (q^2 f_{uu} + 2q(1-q) f_{ud} + (1-q)^2 f_{dd}).
 \end{aligned}$$

This means that the price equals $\frac{1}{(1+r)^2} E^Q[f]$, where $f = \max\{S_2 - K, 0\}$ is the option payoff and Q is the probability measure with probabilities $q^2, 2q(1-q), (1-q)^2$ corresponding to the different states $u^2 S_0, udS_0, d^2 S_0$, respectively, of the stock at time 2.

- One can also show that

$$\frac{1}{(1+r)^2} (q^2 u^2 S_0 + 2q(1-q) u d S_0 + (1-q)^2 d^2 S_0)$$

equals S_0 so that Q is a risk-neutral measure.

3. Multiperiod binomial model

- We can further extend the model to n periods so that we have

time n probability

stock:

$u^n S_0$	p^n
$u^{n-1} d S_0$	$np^{n-1}(1-p)$
\vdots	\vdots
$u^{n-j} d^j S_0$	$\binom{n}{j} p^{n-j}(1-p)^j$
\vdots	\vdots
$u d^{n-1} S_0$	$np(1-p)^{n-1}$
$d^n S_0$	$(1-p)^n$

bank account:

$$(1+r)^n$$

- A European call with maturity n and strike K has the payoff $\max\{S_n - K, 0\}$, which means

$$\left\{ \begin{array}{ll} f_{u^n} = \max\{u^n S_0 - K, 0\} & \text{if } S_n = u^n S_0 \\ \vdots & \vdots \\ f_{u^{n-j} d^j} = \max\{u^{n-j} d^j S_0 - K, 0\} & \text{if } S_n = u^{n-j} d^j S_0 \\ \vdots & \vdots \\ f_{d^n} = \max\{d^n S_0 - K, 0\} & \text{if } S_n = d^n S_0 \end{array} \right.$$

- Extending the pattern of the two-period, the fair price of the option is given by

$$\frac{1}{(1+r)^n} \left(q^n f_{u^n} + \cdots + \binom{n}{j} q^{n-j} (1-q)^j f_{u^{n-j} d^j} + \cdots + (1-q)^n f_{d^n} \right),$$

where

$$q = \frac{1+r-d}{u-d}.$$

- Associating to q the corresponding measure Q , we can write the option price as

$$\frac{1}{(1+r)^n} E^Q[f] = \frac{1}{(1+r)^n} E^Q[\max\{S_n - K, 0\}],$$

where we emphasize that it is the expectation under Q and not under the historical probability.

- Remark:** Under the historical probability, S_n is related to a binomial distribution with parameters p and n . Under the probability measure Q , S_n is still related to a binomial distribution but with parameters $q = \frac{1+r-d}{u-d}$ and n . So for the

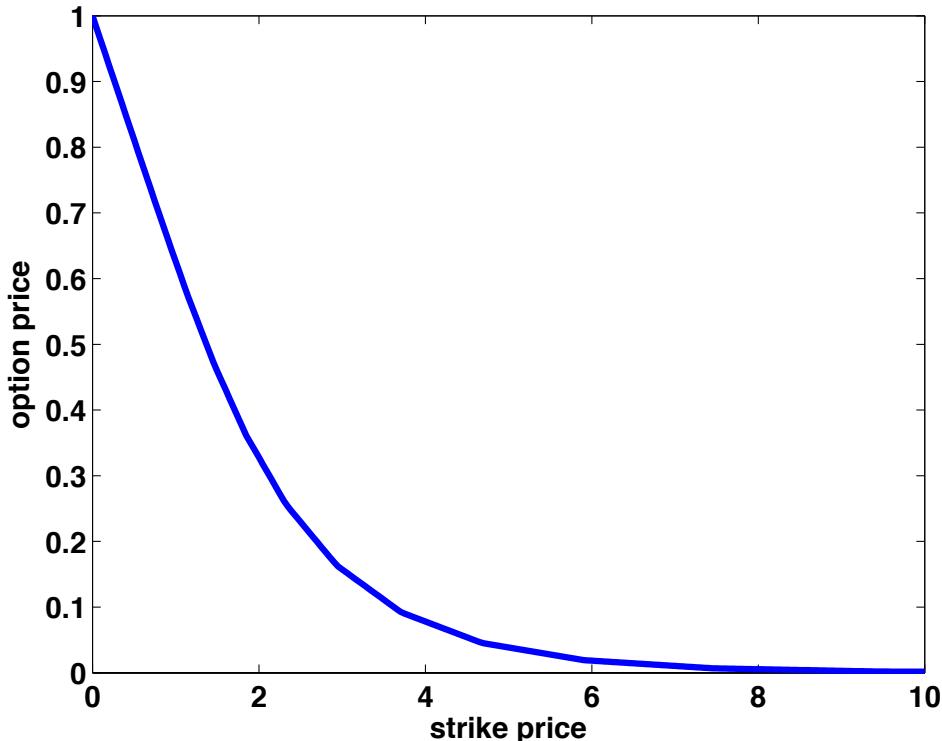
option pricing, we just change the parameters of the distribution of S_n and take then expectations of discounted values.

Pricing a call option by writing a MATLAB function `callnperiod.m`:

```
function price = callnperiod(u,d,r,S0,K,n)
% calculate the price of a call option with ...
% strike K in an n period binomial model
if d<1+r && 1+r<u
    price=0;
    q = (1+r-d) / (u-d);
    for j=0:n
        price = price + ...
            nchoosek(n, j)*q^(n-j)*(1-q)^j*...
            max(u^(n-j)*d^j*S0-K, 0) / (1+r)^n;
    end
else
    error('wrong parameters')
end
```

```
% plot the call price in dependence of the ...
% strike price
K = 0:0.05:10;
price = callnperiod(1.2,.95,.05,1,K,20);
plot(K,price, 'LineWidth',3);
set(gca, 'fontsize',14, 'FontWeight', 'bold');
xlabel('strike price', 'fontsize',14);
```

```
ylabel('option price', 'fontsize', 14);  
axis([0 10 0 1]) % choosing suitable range ...  
for axes
```



4. Transition to continuous time

- The binomial model can be used as approximation for a model with continuous trading possibilities on some time interval $[0, T]$.

To show convergence, one lets tend the number n of periods to infinity and, simultaneously, the length of each period tend to zero. This means that one makes specific choices for u , d and r depending on n ; for details, please see the Appendix.

- The resulting continuous-time model has a bank account whose value at time T equals $\exp(\rho T)$ and a stock whose price at time T is given by

$$S_T = S_0 \exp \left((\mu - \sigma^2/2)T + \sigma \sqrt{T} N \right),$$

where ρ , μ and $\sigma > 0$ are constants and N is a standard normally distributed random variable.

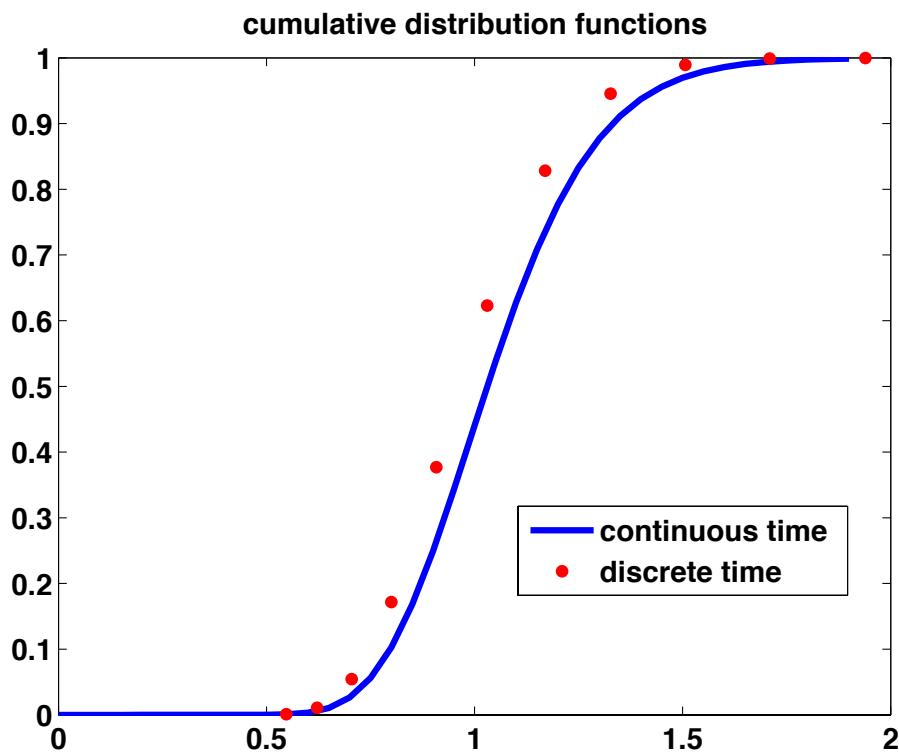
```
function convergenceS(mu,sigma,T,n)
% compares the cumulative distribution ...
% function of S_n in a binomial model with ...
% that of the corresponding log-normal ...
% distribution

u = exp((mu-sigma^2/2)*T/n+sigma*(T/n)^.5);
% appropriate choice of u
d = exp((mu-sigma^2/2)*T/n-sigma*(T/n)^.5);
% appropriate choice of d
j=0:n;
```

```

Sn = d.^(n-j).*u.^j; % S_n for p = 1/2
bin=binocdf(0:n,n,1/2); % cumulative ...
    distribution function of S_n
points = 0:.05:Sn(n+1); % choose equidistant ...
    points for plot
lognorm=logncdf(points,(mu-sigma^2/2)*T, ...
    sigma*T^.5); % cumulative distribution ...
    function of S
plot(points,lognorm,Sn,bin,'r.', 'LineWidth', ...
    3, 'MarkerSize',18) % r = red, . = point
set(gca,'fontsize',14,'FontWeight','bold');
title('cumulative distribution functions');
legend('continuous time','discrete ...
    time','location','best');

```



- Similarly to the binomial model, the price of a European call option with strike K and maturity T is given by

$$\frac{1}{\exp(\rho T)} E^Q[\max\{S_T - K, 0\}]$$

for some probability measure Q . This probability measure is such that

$$S_T = S_0 \exp\left((\rho - \sigma^2/2)T + \sigma\sqrt{T}\tilde{N}\right)$$

for a random variable \tilde{N} that is normally distributed under Q . Using this fact, we can rewrite the price of the European call as

$$c = S_0 \Phi(d_1) - K \exp(-\rho T) \Phi(d_1 - \sigma\sqrt{T}), \quad (\star)$$

where

$$\Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \exp(-u^2/2) du$$

is the standard-normal distribution function and $d_1 = \frac{\log \frac{S_0}{K} + \rho T}{\sigma\sqrt{T}} + \frac{1}{2}\sigma\sqrt{T}$.

Comments:

- (\star) is the famous **Black-Scholes formula**. Note c depends on S_0 , K , ρ , σ and T , but not on μ .

- In continuous time, the underlying process of the stock price dynamics is related to a Brownian motion.
- The partial derivatives of the Black-Scholes formula (\star) with respect to its parameters are called **Greeks**.
 1. Delta = $\frac{\partial c}{\partial S_0} = \Phi(d_1) \in (0, 1)$ is the amount of the risky asset held in the replicating portfolio.
 2. Gamma = $\frac{\partial^2 c}{\partial S_0^2} = \Phi'(d_1) \frac{1}{S_0 \sigma \sqrt{T}} > 0$;
if Gamma is big, frequent adjustments of the replicating portfolio are necessary.
 3. Theta = $-\frac{\partial c}{\partial T}$
 $= -\frac{S_0 \sigma \Phi'(d_1)}{2\sqrt{T}} - K \rho \exp(-\rho T) \Phi(d_1 - \sigma \sqrt{T}) < 0$.
 4. Rho = $\frac{\partial c}{\partial \rho} = K T \exp(-\rho T) \Phi(d_1 - \sigma \sqrt{T}) > 0$.
 5. Vega = $\frac{\partial c}{\partial \sigma} = S_0 \sqrt{T} \Phi'(d_1) > 0$.

- The principle of valuation under Q holds generally. The price of a derivative with payoff $f(S_T)$ is

$$\begin{aligned} & \exp(-\rho T) E^Q[f(S_T)] \\ &= e^{-\rho T} E^Q \left[f \left(S_0 \exp \left((\rho - \sigma^2/2)T + \sigma \sqrt{T} \tilde{N} \right) \right) \right] \end{aligned}$$

for a normally distributed \tilde{N} under Q .

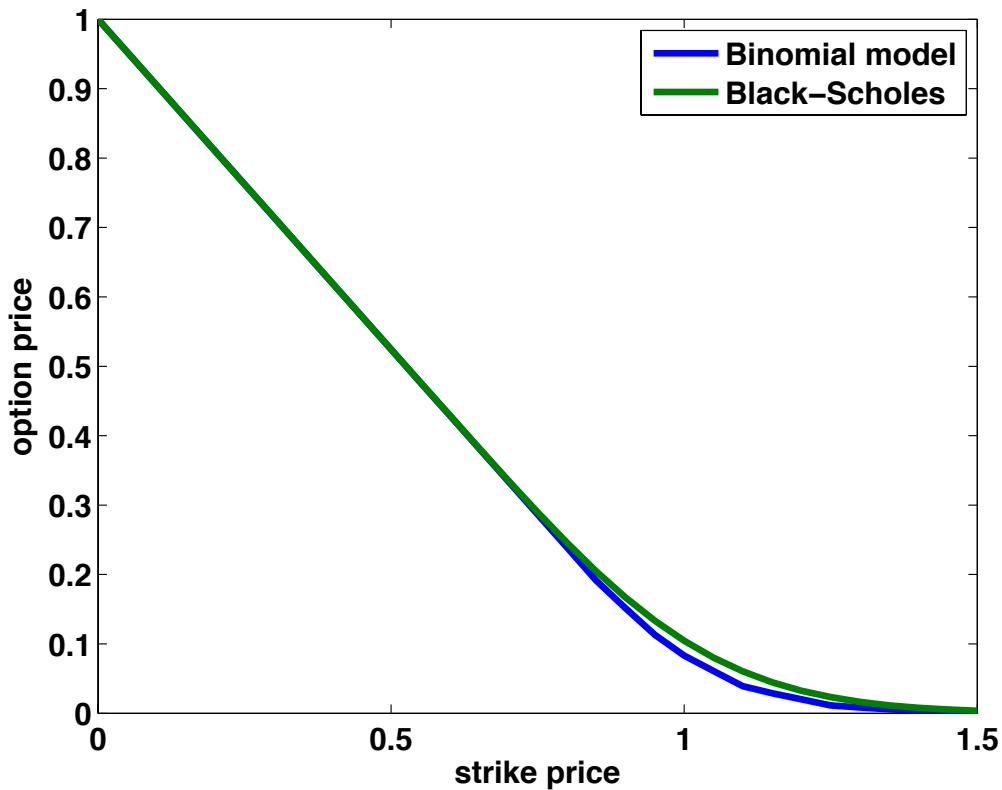
Comparison of Black-Scholes with Binomial model:

```
function [priceBin,priceBS] = ...
    compareCall(rho,mu,sigma,T,K,n)
% compares the call option price in a ...
% binomial model with the continuous-time ...
% analogue from the Black-Scholes formula
u = exp((mu-sigma^2/2)*T/n+sigma*(T/n)^.5); ...
    % appropriate choice of u
d = exp((mu-sigma^2/2)*T/n-sigma*(T/n)^.5); ...
    % appropriate choice of d
r = rho*T/n; % appropriate choice of r
priceBin = callnperiod(u,d,r,1,K,n);
d1 = (log(1./K) + rho*T)/sigma/T^.5 + ...
    sigma*T^.5/2;
priceBS = normcdf(d1) - ...
    K.*exp(-rho*T).*normcdf(d1-sigma*T^.5);

% or, alternatively, by applying the ...
% Financial Toolbox, we could use
% priceBS = blsprice(1,K,rho,T,sigma);
```

Plot the comparison of the Call option prices using the script `compareCallPlot.m`:

```
% plot comparison of Call option prices in ...
  binomial model and Black-Scholes model
K=0:.05:1.5;
[a,b] = compareCall(.05,.5,.2,1,K,10);
plot(K,a,K,b, 'LineWidth',3);
set(gca, 'fontsize',14, 'FontWeight', 'bold');
xlabel('strike price', 'fontsize',14);
ylabel('option price', 'fontsize',14);
legend('Binomial model', 'Black-Scholes')
```



5. Implied volatility

- The value of σ is hard to determine
→ idea: find σ by inverting the Black-Scholes formula and using the market price of the option.
- The implied volatility σ_{impl} is defined as the unique σ such $c_{\text{BS}}(\sigma) = c_{\text{market}}$, where c_{market} is the market price of the option and c_{BS} is the value of the Black-Scholes formula (*) depending on σ .
- If the Black-Scholes model is correct, σ_{impl} does not depend on K , S_0 , T and ρ . But in reality, one sees a strong dependence on K (volatility smile/skew).

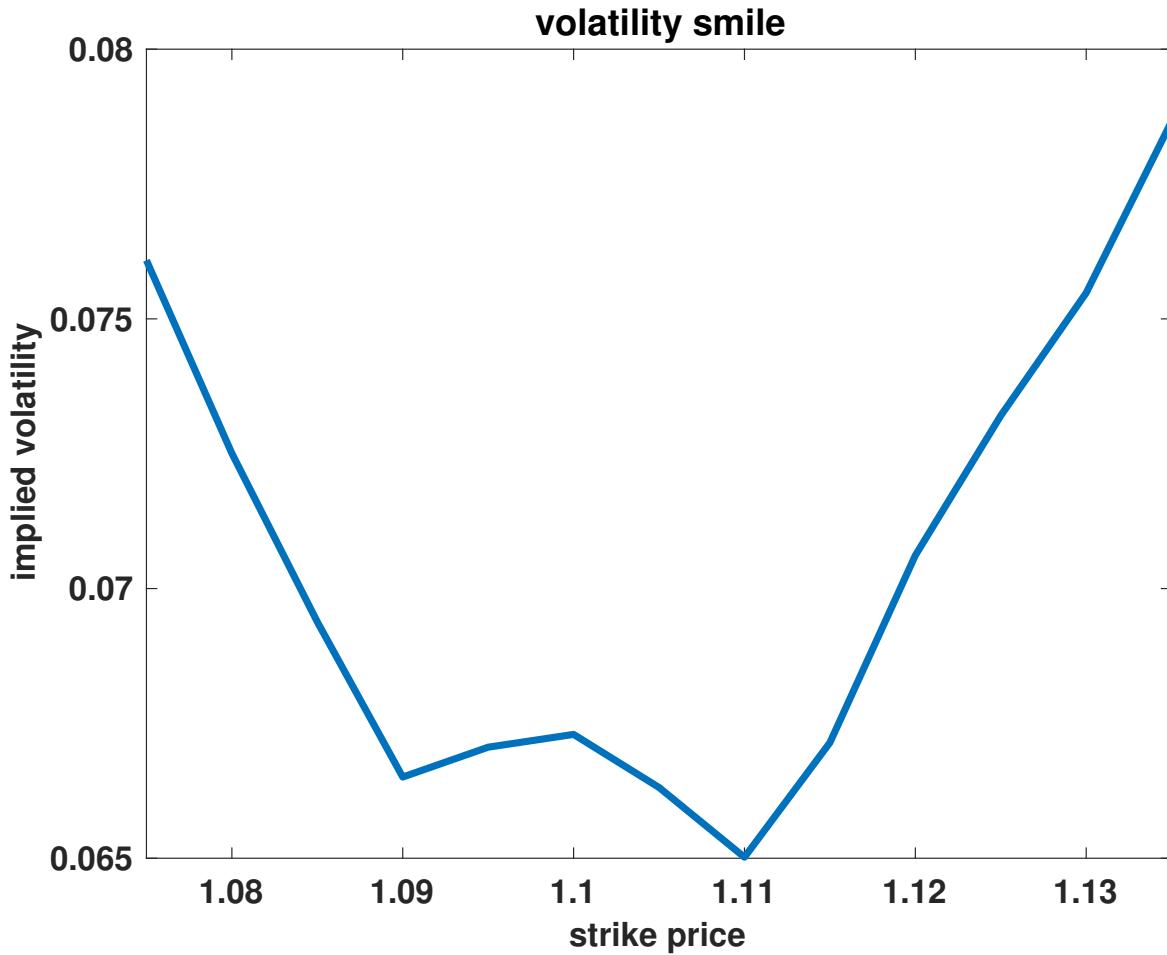
```
% The financial toolbox has the function ...
blsimpv to calculate implied volatility: ...
blsimpv(Current price of Stock S_0, ...
Strike K, Interest rate rho, Time to ...
maturity T, Option price)
```

```
>> blsimpv(100, 95, 0.05, 0.25, 10)
```

```
ans =
0.3339
```

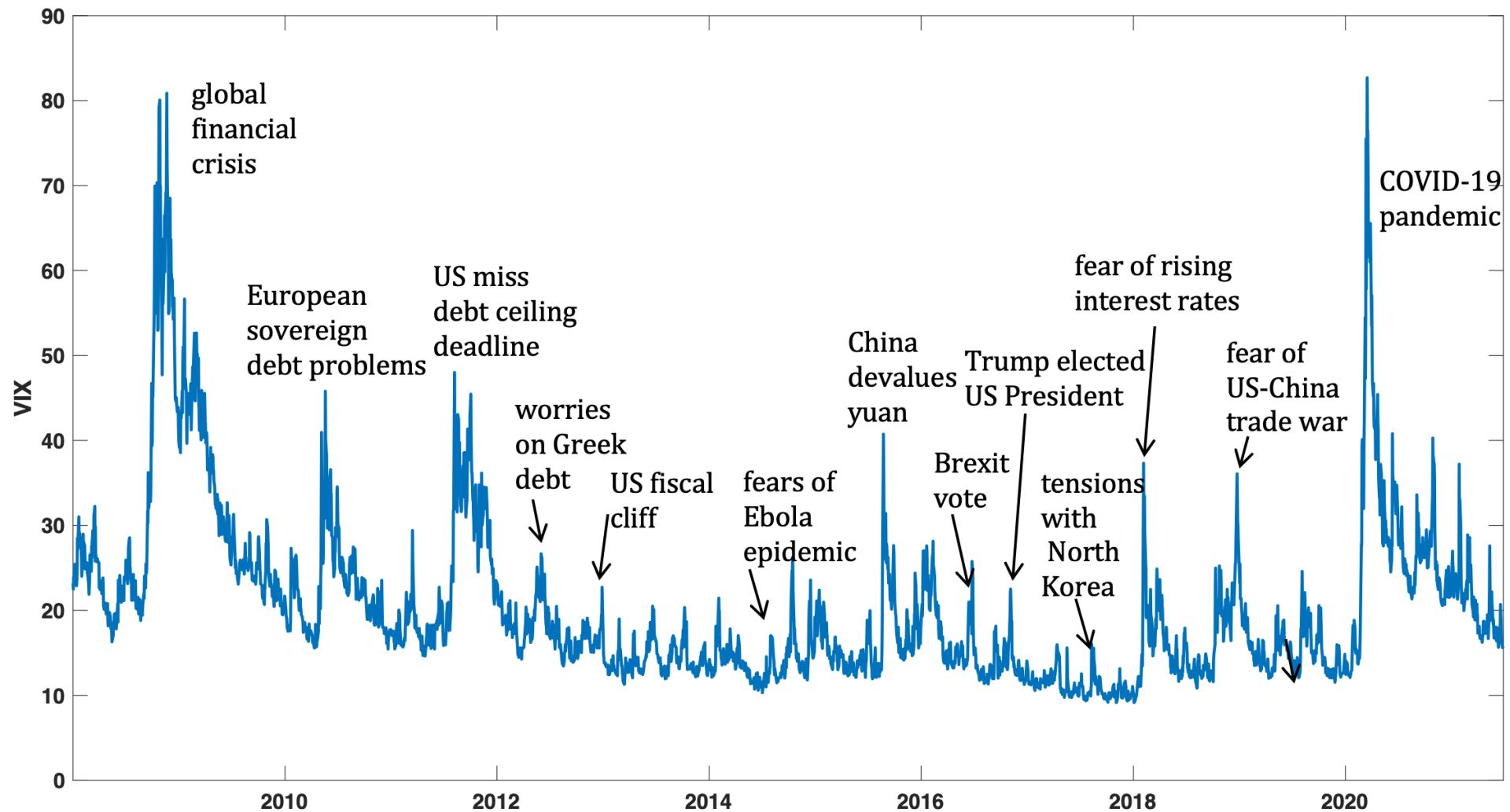
We now calculate the implied volatility on EUR/USD Call options, writing a script `volaEURUSD.m`. The resulting plot shows a volatility smile.

```
% volaEURUSD.m needs financial toolbox
% Implied volatility of currency options. ...
% We have the following data: the risk-free ...
% USD interest rate is 5%. 1 EUR = 1.0916 ...
% USD (March 31, 2025); the matrix A gives ...
% the prices (in USD) of call options with ...
% maturity end of June [such data can be ...
% found at http://www.cmegroup.com/]
A = [1.075 0.0355; 1.08 0.0312; 1.085 ...
      0.0271; 1.09 0.0232; 1.095 0.0202; 1.1 ...
      0.0174; 1.105 0.0146; 1.11 0.012; 1.115 ...
      0.0104; 1.12 0.0093; 1.125 0.0082; 1.13 ...
      0.0072; 1.135 0.0065];
% calculate the implied volatilities:
A(:,3) = ...
    blsimpv(1.0916,A(:,1),0.05,3/12,A(:,2));
% from March 31 until end of June = 3 months
% A(:,2) means all numbers of the 2nd column
plot(A(:,1),A(:,3),'LineWidth',3);
set(gca,'fontsize',14,'FontWeight','bold');
xlabel('strike price','fontsize',14);
ylabel('implied volatility','fontsize',14);
xlim([A(1,1),A(end,1)])
title('volatility smile')
```



There exist indices which measure the implied volatility. A popular measure is VIX, which reflects the implied volatility of options on the stock index S&P 500. VIX is often referred to as “fear index”, because a high level of VIX means a lot of uncertainty in the market; see the development of VIX on the next page.

VIX over the last twelve years



Appendix: additional explanations and proofs to Section 4

A.1 Choice in the continuous-time model

In the continuous-time situation, we model the terminal value of the bank account as $B_T = \exp(\rho T)$ and the terminal value of the stock as

$$S_T = S_0 \exp \left((\mu - \sigma^2/2)T + \sigma \sqrt{T} N \right), \quad (1)$$

where ρ , μ and $\sigma > 0$ are constants and N is a standard normally distributed random variable.

A.2 Explanations behind choice

The reason behind these choices is as follows. In continuous time, the bank account models continuous interest, which means

$$dB_t = \rho B_t dt.$$

We can interpret this as that the infinitesimal change dB_t in the bank account is equal to the continuous interest rate ρ times the capital B_t . This equation is

equivalent to $\frac{dB_t}{dt} = \rho B_t$, which yields $B_T = \exp(\rho T)$ using that $B_0 = 1$.

To explain the form (1) of the stock price, we can say that on average (which means in expectation) the stock should have a similar growth form than the bank account. Hence, $E[S_T] = S_0 \exp(\mu T)$ for some constant μ (typically μ will be bigger than ρ to compensate for the risk in the stock), using that S starts at S_0 and not necessarily at 1, in contrast to the bank account. Now, S_T will not just be equal to the deterministic value $S_0 \exp(\mu T)$, but will also reflect some random factor because we do not know future prices. Hence, S_T is of the form

$$S_T = S_0 \exp(\mu T) \times (\text{positive random factor}). \quad (2)$$

The reason for this positive random factor is related to the so-called Brownian motion. At the moment, you should just accept that we can model it with a normally distributed random variable, but because it should be positive, we take the exponential of this normally distributed random variable so that

$$\text{positive random factor} = \exp(cN) \quad (3)$$

where c is some constant and N is a standard normally distributed random variable. The bigger T , the longer the time horizon is and more uncertain S_T is. Therefore, c should depend on T , and we will again see later that the right form is $c = \sigma\sqrt{T}$, hence it grows like square root in T times some constant σ , which gives us how big the fluctuation in S_T is. Combining this with (2) and (3), we get

$$S_T = S_0 \exp(\mu T + \sigma\sqrt{T}N) \quad (4)$$

for some normally distributed N . Recall we wanted to have $E[S_T] = S_0 \exp(\mu T)$ so that μ has the interpretation of the mean growth rate, but we can calculate

$$\begin{aligned} & E[S_0 \exp(\mu T + \sigma\sqrt{T}N)] \\ &= S_0 \exp(\mu T) E[\exp(\sigma\sqrt{T}N)] \\ &= S_0 \exp(\mu T + \sigma^2 T/2), \end{aligned}$$

using the formula that $E[\exp(\alpha N)] = \exp(\alpha^2/2)$ for any constant α and standard normally distributed N . Therefore, to get $E[S_T] = S_0 \exp(\mu T)$, we need to divide (3) by $\exp(\sigma^2 T/2)$, which leads to (1).

A.3 Convergence proofs

We show now that under suitable choices of r_n , d_n and u_n , the terminal values of the bank account and stock in the binomial model converge to $B_T = \exp(\rho T)$ and S_T given in (1).

Proposition 1 *For $r_n = \rho T/n$, we have*

$$\lim_{n \rightarrow \infty} (1 + r_n)^n = \exp(\rho T).$$

Proof.

$$\begin{aligned} \lim_{n \rightarrow \infty} (1 + \rho T/n)^n &= \exp \left(\ln \left(\lim_{n \rightarrow \infty} (1 + \rho T/n)^n \right) \right) \\ &= \exp \left(\lim_{n \rightarrow \infty} \ln(1 + \rho T/n)^n \right) \\ &= \exp \left(\lim_{n \rightarrow \infty} n \ln(1 + \rho T/n) \right) \\ &= \exp \left(\lim_{n \rightarrow \infty} \frac{\ln(1 + \rho T/n)}{1/n} \right), \end{aligned}$$

which equals

$$\begin{aligned} \exp \left(\lim_{n \rightarrow \infty} \frac{\ln(1 + \rho T/n)}{1/n} \right) &\stackrel{(*)}{=} \exp \left(\lim_{s \searrow 0} \frac{\ln(1 + \rho T s)}{s} \right) \\ &\stackrel{(**)}{=} \exp \left(\lim_{s \searrow 0} \frac{\rho T}{1 + \rho T s} \right) \\ &= \exp(\rho T) \end{aligned}$$

(*) set $s = 1/n$, then $n \rightarrow \infty \iff s \searrow 0$

(**) L'Hôpital's rule using $\frac{d}{ds} \ln(1 + \rho T s) = \frac{\rho T}{1 + \rho T s}$ ■

Proposition 2 Set $p = 1/2$ and define

$$u_n = \exp \left(\left(\mu - \sigma^2/2 \right) \frac{T}{n} + \sigma \sqrt{\frac{T}{n}} \right),$$

$$d_n = \exp \left(\left(\mu - \sigma^2/2 \right) \frac{T}{n} - \sigma \sqrt{\frac{T}{n}} \right)$$

then S_n in the n -period binomial model converges to S_T in (1).

Proof. If S_n reflects j times u_n and $n - j$ times d_n , we have

$$\begin{aligned} S_n &= S_0 u_n^j d_n^{n-j} \\ &= S_0 \exp \left(\left(\mu - \sigma^2/2 \right) \frac{T}{n} j + \sigma \sqrt{\frac{T}{n}} j \right) \\ &\quad \times \exp \left(\left(\mu - \sigma^2/2 \right) \frac{T}{n} (n - j) - \sigma \sqrt{\frac{T}{n}} (n - j) \right) \\ &= S_0 \exp \left(\left(\mu - \sigma^2/2 \right) T + \sigma \sqrt{T} \frac{2j - n}{\sqrt{n}} \right). \end{aligned}$$

Comparing this with (1), it remains to show that $\frac{2j-n}{\sqrt{n}}$ converges to a standard normally distributed random variable. Define random variables X_i by

$$X_i = \begin{cases} 1, & \text{if we have } u_n \text{ in period } i \\ -1, & \text{if we have } d_n \text{ in period } i \end{cases} \quad (5)$$

and note that if we have j times u_n and $n - j$ times d_n , then

$$\sum_{i=1}^n X_i = j + (n - j)(-1) = 2j - n.$$

Therefore, we can write

$$\frac{2j-n}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i. \quad (6)$$

We now apply the Central Limit Theorem, which says that for independent and identically distributed random variables X_1, X_2, \dots with mean $\mu = E[X_i]$ and finite variance $\sigma^2 = \text{Var}(X_i)$,

$$\frac{\sqrt{n}}{\sigma} \left(\frac{1}{n} \sum_{i=1}^n X_i - \mu \right) \quad (7)$$

converges (in distribution) to a standard normally distributed random variable. In our case of X_i given by

(5) with equal probability $1/2$ for the two cases (because $p = 1/2$ by assumption), we have

$$\mu = E[X_i] = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (-1) = 0,$$

$$\sigma^2 = \text{Var}(X_i) = E[X_i^2] = \frac{1}{2} \cdot 1^2 + \frac{1}{2} \cdot (-1)^2 = 1.$$

Therefore, (7) simplifies in our case to $\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$. Because of (6), this shows that $\frac{2j-n}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$ converges (in distribution) to a standard normally distributed random variable. ■

A.4 Derivation of the Black-Scholes formula

Similarly to the binomial model, the price for a payoff f in the Black-Scholes model is given by $\frac{1}{e^{\rho T}} E^Q[f]$ where the terminal value of the stock price is

$$S_T = S_0 \exp \left((\rho - \sigma^2/2)T + \sigma \sqrt{T} \tilde{N} \right)$$

with \tilde{N} standard normally distributed under Q . In the case of a call option with strike price K , the price

equals

$$\begin{aligned}
 c &= \frac{1}{e^{\rho T}} E^Q[\max\{S_T - K, 0\}] \\
 &= \frac{1}{e^{\rho T}} E^Q \left[\max \left\{ S_0 e^{(\rho - \sigma^2/2)T + \sigma \sqrt{T} \tilde{N}} - K, 0 \right\} \right] \\
 &= \frac{1}{e^{\rho T}} \int_{-\infty}^{\infty} \max \left\{ S_0 e^{(\rho - \sigma^2/2)T + \sigma \sqrt{T} x} - K, 0 \right\} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
 &= \int_{-\infty}^{\infty} \max \left\{ S_0 e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} - K e^{-\rho T}, 0 \right\} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx.
 \end{aligned}$$

Now, we use the equivalences

$$\begin{aligned}
 S_0 e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} - K e^{-\rho T} &\geq 0 \\
 \iff S_0 e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} &\geq K e^{-\rho T} \\
 \iff e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} &\geq \frac{K}{S_0} e^{-\rho T} \\
 \iff -\sigma^2 T/2 + \sigma \sqrt{T} x &\geq \log \left(\frac{K}{S_0} \right) - \rho T \\
 \iff x &\geq \frac{\log(K/S_0) - \rho T}{\sigma \sqrt{T}} + \sigma \sqrt{T}/2.
 \end{aligned}$$

Therefore, defining $d = \frac{\log(K/S_0) - \rho T}{\sigma \sqrt{T}} + \sigma \sqrt{T}/2$ allows us to write

$$\begin{aligned}
c &= \int_{-\infty}^{\infty} \max \left\{ S_0 e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} - K e^{-\rho T}, 0 \right\} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
&= \int_d^{\infty} (S_0 e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} - K e^{-\rho T}) \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
&= \int_d^{\infty} S_0 e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
&\quad - \int_d^{\infty} K e^{-\rho T} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx.
\end{aligned}$$

For the first term, we calculate

$$\begin{aligned}
&\int_d^{\infty} S_0 e^{-\sigma^2 T/2 + \sigma \sqrt{T} x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
&= S_0 e^{-\sigma^2 T/2} \int_d^{\infty} \frac{e^{\sigma \sqrt{T} x - x^2/2}}{\sqrt{2\pi}} dx \\
&= S_0 e^{-\sigma^2 T/2} \int_d^{\infty} \frac{e^{-(x - \sigma \sqrt{T})^2/2} e^{\sigma^2 T/2}}{\sqrt{2\pi}} dx \\
&= S_0 \int_{d - \sigma \sqrt{T}}^{\infty} \frac{e^{-y^2}}{\sqrt{2\pi}} dy \\
&= S_0 (1 - \Phi(d - \sigma \sqrt{T})) \\
&= S_0 \Phi(-d + \sigma \sqrt{T}).
\end{aligned}$$

For the second term, we have

$$\begin{aligned}
 \int_d^\infty K e^{-\rho T} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx &= K e^{-\rho T} \int_d^\infty \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
 &= K e^{-\rho T} (1 - \Phi(d)) \\
 &= K e^{-\rho T} \Phi(-d).
 \end{aligned}$$

Defining

$$d_1 = -d + \sigma\sqrt{T} = \frac{\log(K/S_0) + \rho T}{\sigma\sqrt{T}} + \frac{1}{2}\sigma\sqrt{T}.$$

we obtain

$$\begin{aligned}
 c &= \int_d^\infty S_0 e^{-\sigma^2 T/2 + \sigma\sqrt{T}x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
 &\quad - \int_d^\infty K e^{-\rho T} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \\
 &= S_0 \Phi(d_1) - K e^{-\rho T} \Phi(d_1 - \sigma\sqrt{T}),
 \end{aligned}$$

which is the Black-Scholes formula.