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1. Single-period binomial model

A single-period model for a financial market:

• Consider the following very simplistic model with

one stock and a bank account over one period:

prices
initial

terminal value
value

stock S0

{
uS0 with probability p
dS0 with probability 1− p

bank
1 1 + r

account

for numbers S0 > 0, 0 ≤ d < u, p ∈ (0, 1) and r.

• Assumptions: agent can invest in or short sell

(= negative investment) the stock, and they can

invest in and borrow from the bank account at

the same interest rate r.

• We also assume

d < 1 + r < u (no-arbitrage condition).
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This assumption is reasonable. Example: if we

had d = 2, u = 3 and r = 0, the agent could bor-

row a positive dollar amount x from the bank ac-

count and invest in stock to make a risk-free profit:

initial
terminal value

value
bank −x −x(1 + r) = −x

account

stock x

{
ux = 3x with probability p
dx = 2x with probability 1− p

total 0
{
3x− x = 2x with probab. p
2x− x = x with probab. 1− p

Pricing financial derivatives:

• Consider now additionally a financial derivative

with given payoff as follows:

initial
terminal value

value

x =?
{

fu if stock price = uS0 (probab. p)
fd if stock price = dS0 (probab. 1− p)

for fixed numbers fu and fd.
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• Example: (European) call option with strike K.

A call option gives the buyer the right, but not

the obligation to buy the stock at maturity for the

strike price K. In our model the option payoff is{
max{uS0 −K, 0} with probability p
max{dS0 −K, 0} with probability 1− p

because

· two possibilities uS0 or dS0 for the stock price,

· the buyer will use (= exercise) the option only

if the stock price is higher than K.

• How can we find an initial value x for the financial

derivative?

We can use a replication argument because we

will see that we can obtain here the same payoff

by investing in the stock and bank account.

Consider a portfolio consisting of ∆ units of the

stock and Ψ units of the bank account.

initial
terminal value

value

∆S0 +Ψ
{

∆uS0 +Ψ(1 + r) if stock = uS0
∆dS0 +Ψ(1 + r) if stock = dS0
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• We find ∆ and Ψ of a replicating portfolio by

setting its terminal value equal to that of the fi-

nancial derivative, which implies

fu = ∆uS0 +Ψ(1 + r),

fd = ∆dS0 +Ψ(1 + r).

Solving this system of two linear equations for the

unknowns gives

∆ =
fu − fd

S0(u− d)
, Ψ =

ufd − dfu

(1 + r)(u− d)

so that the initial value of the portfolio equals

∆S0 +Ψ =
fu − fd
u− d

+
ufd − dfu

(1 + r)(u− d)

=
1

1 + r

(
1 + r − d

u− d
fu +

u− 1− r

u− d
fd

)
.

To avoid arbitrage (= risk-free gains), this quan-

tity must be equal to the initial value x of the

financial derivative:

x =
1

1 + r

(
1 + r − d

u− d
fu +

u− 1− r

u− d
fd

)
.



6

Risk-neutral probabilities:

• Define

qu =
1 + r − d

u− d
, qd =

u− 1− r

u− d

so that we can write

x =
1

1 + r
(qufu + qdfd).

• Note that

· qu + qd = 1,

· d < 1 + r < u =⇒ qu > 0, qd > 0.

Therefore, we can consider qu, qd as the proba-

bilities of a probability measure Q and we have

x =
1

1 + r
EQ[f ] =

1

1 + r
(qufu + qdfd),

where f is the random variable of the option pay-

off and EQ denotes the expectation under the

measure Q. In other words,

option value =
expectation of the discounted
payoff under a measure Q

(discounted because payoff is divided by 1 + r).
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A crucial observation is that the probability mea-

sure Q used in the pricing formula does not equal

the historical (from the model construction) prob-

ability measure because in general

qu =
1 + r − d

u− d
̸= p, qd =

u− 1− r

u− d
̸= 1− p.

• If we calculate the expectation of the discounted

stock price under Q, we obtain

EQ
[
terminal value of stock

1 + r

]
= qu

uS0

1 + r
+ qd

dS0

1 + r

=
1 + r − d

u− d
·
uS0

1 + r
+

u− 1− r

u− d
·
dS0

1 + r
= S0,

which shows that the expectation of the discounted

terminal stock price underQ equals its initial value.

Therefore, qu and qd are called risk-neutral prob-

abilities and Q a risk-neutral probability measure.
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• Remark. A financial market (like that we consid-

ered here) where every payoff can be replicated

is called complete. It can be proved that a risk-

neutral probability measure exists if there is no

arbitrage in the market model and it is unique if

the market is complete.

• The pricing formula we derived was based on a

replication argument: we replicated the payoff

of the derivative by investing in the stock and

bank account. As a byproduct, we also saw the

right number of stocks we need for the replica-

tion, which is ∆ = fu−fd
S0(u−d)

.

This means that as a buyer of the option, we can

“neutralize” the option by investing −∆ in the

stock. Conversely, as a writer (= seller) of the

option, we can buy ∆ units of the stock to hedge

against our risk. Consequently, this is called a

replicating strategy or hedging strategy.
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2. Two-period binomial model

• We can extend the model of Section 1 by adding

a second period. We then have a tree of the form

time 0 time 1 time 2 probability
u2S0 p2

stock: ↗
p

uS0
↗
p

↘
1−p

S0 udS0 2p(1− p)
↘
1−p

↗
p

dS0
↘
1−p

d2S0 (1− p)2

bank account:
1 → 1 + r → (1 + r)2

• Trading is now also possible at the intermediate

time 1. We still assume d < 1 + r < u.
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• Let us consider a European call option with ma-

turity 2. It has the following payoff at time 2:
fuu = max{u2S0 −K, 0} if stock = u2S0
fud = max{udS0 −K, 0} if stock = udS0
fdd = max{d2S0 −K, 0} if stock = d2S0

• By a replication argument similarly to that in Sec-

tion 1 applied to both trading periods, the price

of the derivative equals

1

(1 + r)2

(
q2fuu + 2q(1− q)fud + (1− q)2fdd

)
,

where q = 1+r−d
u−d . Indeed, we have

fuu
derivative: ↗

fu
↗ ↘

x fud
↘ ↗

fd
↘

fdd
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Applying the reasoning of Section 1 to each branch

of the tree gives

fu =
1

1 + r

(
qfuu + (1− q)fud

)
,

fd =
1

1 + r

(
qfud + (1− q)fdd

)
,

x =
1

1 + r

(
qfu + (1− q)fd

)
=

1

(1 + r)2

(
q2fuu + 2q(1− q)fud + (1− q)2fdd

)
.

This means that the price equals 1
(1+r)2

EQ[f ],

where f = max{S2 − K, 0} is the option payoff

and Q is the probability measure with probabili-

ties q2, 2q(1 − q), (1 − q)2 corresponding to the

different states u2S0, udS0, d
2S0, respectively, of

the stock at time 2.

• One can also show that

1

(1 + r)2

(
q2u2S0+2q(1−q)udS0+(1−q)2d2S0

)
equals S0 so that Q is a risk-neutral measure.
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3. Multiperiod binomial model

• We can further extend the model to n periods so

that we have

time n probability
stock:

unS0 pn

un−1dS0 npn−1(1− p)
... ...

un−jdjS0

(
n
j

)
pn−j(1− p)j

... ...
udn−1S0 np(1− p)n−1

dnS0 (1− p)n

bank account:
(1 + r)n

• A European call with maturity n and strike K has

the payoff max{Sn −K, 0}, which means

fun = max{unS0 −K, 0} if Sn = unS0
... ...

fun−jdj = max{un−jdjS0 −K, 0} if Sn = un−jdjS0
... ...

fdn = max{dnS0 −K, 0} if Sn = dnS0
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• Extending the pattern of the two-period, the fair

price of the option is given by

1

(1 + r)n

(
qnfun + · · ·+

(n
j

)
qn−j(1− q)jfun−jdj

+ · · ·+ (1− q)nfdn
)
,

where

q =
1 + r − d

u− d
.

• Associating to q the corresponding measure Q,

we can write the option price as

1

(1 + r)n
EQ[f ] =

1

(1 + r)n
EQ[max{Sn −K, 0}],

where we emphasize that it is the expectation un-

der Q and not under the historical probability.

• Remark: Under the historical probability, Sn is

related to a binomial distribution with parame-

ters p and n. Under the probability measure Q,

Sn is still related to a binomial distribution but

with parameters q = 1+r−d
u−d and n. So for the
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option pricing, we just change the parameters of

the distribution of Sn and take then expectations

of discounted values.

Pricing a call option by writing a MATLAB function

callnperiod.m:

function price = callnperiod(u,d,r,S0,K,n)
% calculate the price of a call option with ...

strike K in an n period binomial model
if d<1+r && 1+r<u

price=0;
q = (1+r−d)/(u−d);

for j=0:n
price = price + ...

nchoosek(n,j)*qˆ(n−j)*(1−q)ˆj*...
max(uˆ(n−j)*dˆj*S0−K,0)/(1+r)ˆn;

end
else
error('wrong parameters')
end

% plot the call price in dependence of the ...

strike price
K = 0:0.05:10;
price = callnperiod(1.2,.95,.05,1,K,20);
plot(K,price,'LineWidth',3);
set(gca,'fontsize',14,'FontWeight','bold');
xlabel('strike price','fontsize',14);
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ylabel('option price','fontsize',14);
axis([0 10 0 1]) % choosing suitable range ...

for axes
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4. Transition to continuous time

• The binomial model can be used as approximation

for a model with continuous trading possibilities

on some time interval [0, T ].
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To show convergence, one lets tend the number

n of periods to infinity and, simultaneously, the

length of each period tend to zero. This means

that one makes specific choices for u, d and r

depending on n; for details, please see the Ap-

pendix.

• The resulting continuous-time model has a bank

account whose value at time T equals exp(ρT )

and a stock whose price at time T is given by

ST = S0 exp
(
(µ− σ2/2)T + σ

√
TN

)
,

where ρ, µ and σ > 0 are constants and N is a

standard normally distributed random variable.

function convergenceS(mu,sigma,T,n)
% compares the cumulative distribution ...

function of S n in a binomial model with ...

that of the corresponding log−normal ...

distribution

u = exp((mu−sigmaˆ2/2)*T/n+sigma*(T/n)ˆ.5);
% appropriate choice of u
d = exp((mu−sigmaˆ2/2)*T/n−sigma*(T/n)ˆ.5);
% appropriate choice of d
j=0:n;
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Sn = d.ˆ(n−j).*u.ˆj; % S n for p = 1/2
bin=binocdf(0:n,n,1/2); % cumulative ...

distribution function of S n
points = 0:.05:Sn(n+1); % choose equidistant ...

points for plot
lognorm=logncdf(points,(mu−sigmaˆ2/2)*T,...

sigma*Tˆ.5); % cumulative distribution ...

function of S
plot(points,lognorm,Sn,bin,'r.','LineWidth',...

3,'MarkerSize',18) % r = red, . = point
set(gca,'fontsize',14,'FontWeight','bold');
title('cumulative distribution functions');
legend('continuous time','discrete ...

time','location','best');
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• Similarly to the binomial model, the price of a

European call option with strike K and maturity

T is given by

1

exp(ρT )
EQ[max{ST −K, 0}]

for some probability measure Q. This probability

measure is such that

ST = S0 exp
(
(ρ− σ2/2)T + σ

√
TÑ

)
for a random variable Ñ that is normally dis-

tributed under Q. Using this fact, we can rewrite

the price of the European call as

c = S0Φ(d1)−K exp(−ρT )Φ
(
d1 − σ

√
T
)
, (⋆)

where

Φ(x) =
∫ x

−∞

1√
2π

exp(−u2/2) du

is the standard-normal distribution function and

d1 =
log

S0
K +ρT

σ
√
T

+ 1
2σ

√
T .

Comments:

• (⋆) is the famous Black-Scholes formula. Note c

depends on S0, K, ρ, σ and T , but not on µ.
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• In continuous time, the underlying process of the

stock price dynamics is related to a Brownian mo-

tion.

• The partial derivatives of the Black-Scholes for-

mula (⋆) with respect to its parameters are called

Greeks.

1. Delta = ∂c
∂S0

= Φ(d1) ∈ (0, 1) is the amount

of the risky asset held in the replicating port-

folio.

2. Gamma = ∂2c
∂S2

0
= Φ′(d1)

1
S0σ

√
T
> 0;

if Gamma is big, frequent adjustments of the

replicating portfolio are necessary.

3. Theta = − ∂c
∂T

= −S0σΦ
′(d1)

2
√
T

−Kρ exp(−ρT )Φ
(
d1 − σ

√
T
)

< 0.

4. Rho = ∂c
∂ρ = KT exp(−ρT )Φ

(
d1−σ

√
T
)
> 0.

5. Vega = ∂c
∂σ = S0

√
TΦ′(d1) > 0.
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• The principle of valuation under Q holds gener-

ally. The price of a derivative with payoff f(ST ) is

exp(−ρT )EQ[f(ST )]

= e−ρTEQ
[
f

(
S0 exp

(
(ρ− σ2/2)T + σ

√
TÑ

))]
for a normally distributed Ñ under Q.

Comparison of Black-Scholes with Binomial model:

function [priceBin,priceBS] = ...

compareCall(rho,mu,sigma,T,K,n)
% compares the call option price in a ...

binomial model with the continuous−time ...

analogue from the Black−Scholes formula
u = exp((mu−sigmaˆ2/2)*T/n+sigma*(T/n)ˆ.5); ...

% appropriate choice of u
d = exp((mu−sigmaˆ2/2)*T/n−sigma*(T/n)ˆ.5); ...

% appropriate choice of d
r = rho*T/n; % appropriate choice of r
priceBin = callnperiod(u,d,r,1,K,n);
d1 = (log(1./K) + rho*T)/sigma/Tˆ.5 + ...

sigma*Tˆ.5/2;
priceBS = normcdf(d1) − ...

K.*exp(−rho*T).*normcdf(d1−sigma*Tˆ.5);

% or, alternatively, by applying the ...

Financial Toolbox, we could use
% priceBS = blsprice(1,K,rho,T,sigma);
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Plot the comparison of the Call option prices using
the script compareCallPlot.m:

% plot comparison of Call option prices in ...

binomial model and Black−Scholes model
K=0:.05:1.5;
[a,b] = compareCall(.05,.5,.2,1,K,10);
plot(K,a,K,b,'LineWidth',3);
set(gca,'fontsize',14,'FontWeight','bold');
xlabel('strike price','fontsize',14);
ylabel('option price','fontsize',14);
legend('Binomial model','Black−Scholes')
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5. Implied volatility

• The value of σ is hard to determine

→ idea: find σ by inverting the Black-Scholes

formula and using the market price of the option.

• The implied volatility σimpl is defined as the unique

σ such cBS(σ) = cmarket, where cmarket is the

market price of the option and cBS is the value of

the Black-Scholes formula (⋆) depending on σ.

• If the Black-Scholes model is correct, σimpl does

not depend on K, S0, T and ρ. But in reality,

one sees a strong dependence on K (volatility

smile/skew).

% The financial toolbox has the function ...

blsimpv to calculate implied volatility: ...

blsimpv(Current price of Stock S 0, ...

Strike K, Interest rate rho, Time to ...

maturity T, Option price)

>> blsimpv(100, 95, 0.05, 0.25, 10)

ans =
0.3339
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We now calculate the implied volatility on EUR/USD

Call options, writing a script volaEURUSD.m. The re-

sulting plot shows a volatility smile.

% volaEURUSD.m needs financial toolbox
% Implied volatility of currency options. ...

We have the following data: the risk−free ...

USD interest rate is 5%. 1 EUR = 1.0916 ...

USD (March 31, 2025); the matrix A gives ...

the prices (in USD) of call options with ...

maturity end of June [such data can be ...

found at http://www.cmegroup.com/]
A = [1.075 0.0355; 1.08 0.0312; 1.085 ...

0.0271; 1.09 0.0232; 1.095 0.0202; 1.1 ...

0.0174; 1.105 0.0146; 1.11 0.012; 1.115 ...

0.0104; 1.12 0.0093; 1.125 0.0082; 1.13 ...

0.0072; 1.135 0.0065];
% calculate the implied volatilities:
A(:,3) = ...

blsimpv(1.0916,A(:,1),0.05,3/12,A(:,2));
% from March 31 until end of June = 3 months
% A(:,2) means all numbers of the 2nd column
plot(A(:,1),A(:,3),'LineWidth',3);
set(gca,'fontsize',14,'FontWeight','bold');
xlabel('strike price','fontsize',14);
ylabel('implied volatility','fontsize',14);
xlim([A(1,1),A(end,1)])
title('volatility smile')
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There exist indices which measure the implied volatil-

ity. A popular measure is VIX, which reflects the im-

plied volatility of options on the stock index S&P500.

VIX is often referred to as “fear index”, because a high

level of VIX means a lot of uncertainty in the market;

see the development of VIX on the next page.
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Appendix: additional explanations

and proofs to Section 4

A.1 Choice in the continuous-time model

In the continuous-time situation, we model the termi-

nal value of the bank account as BT = exp(ρT ) and

the terminal value of the stock as

ST = S0 exp
(
(µ− σ2/2)T + σ

√
TN

)
, (1)

where ρ, µ and σ > 0 are constants and N is a stan-

dard normally distributed random variable.

A.2 Explanations behind choice

The reason behind these choices is as follows. In con-

tinuous time, the bank account models continuous in-

terest, which means

dBt = ρBt dt.

We can interpret this as that the infinitesimal change

dBt in the bank account is equal to the continuous

interest rate ρ times the capital Bt. This equation is
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equivalent to dBt
dt = ρBt, which yields BT = exp(ρT )

using that B0 = 1.

To explain the form (1) of the stock price, we can

say that on average (which means in expectation) the

stock should have a similar growth form than the bank

account. Hence, E[ST ] = S0 exp(µT ) for some con-

stant µ (typically µ will be bigger than ρ to compen-

sate for the risk in the stock), using that S starts at

S0 and not necessarily at 1, in contrast to the bank

account. Now, ST will not just be equal to the deter-

ministic value S0 exp(µT ), but will also reflect some

random factor because we do not know future prices.

Hence, ST is of the form

ST = S0 exp(µT )× (positive random factor). (2)

The reason for this positive random factor is related

to the so-called Brownian motion. At the moment,

you should just accept that we can model it with a

normally distributed random variable, but because it

should be positive, we take the exponential of this

normally distributed random variable so that

positive random factor = exp(cN) (3)
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where c is some constant and N is a standard normally

distributed random variable. The bigger T , the longer

the time horizon is and more uncertain ST is. There-

fore, c should depend on T , and we will again see later

that the right form is c = σ
√
T , hence it grows like

square root in T times some constant σ, which gives

us how big the fluctuation in ST is. Combining this

with (2) and (3), we get

ST = S0 exp
(
µT + σ

√
TN

)
(4)

for some normally distributed N . Recall we wanted to

have E[ST ] = S0 exp(µT ) so that µ has the interpre-

tation of the mean growth rate, but we can calculate

E
[
S0 exp

(
µT + σ

√
TN

)]
= S0 exp(µT )E

[
exp

(
σ
√
TN

)]
= S0 exp

(
µT + σ2T/2

)
,

using the formula that E[exp(αN)] = exp(α2/2) for

any constant α and standard normally distributed N .

Therefore, to get E[ST ] = S0 exp(µT ), we need to

divide (3) by exp(σ2T/2), which leads to (1).
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A.3 Convergence proofs
We show now that under suitable choices of rn, dn and

un, the terminal values of the bank account and stock

in the binomial model converge to BT = exp(ρT ) and

ST given in (1).

Proposition 1 For rn = ρT/n, we have

lim
n→∞(1 + rn)

n = exp(ρT ).

Proof.

lim
n→∞(1 + ρT/n)n = exp

(
ln
(

lim
n→∞(1 + ρT/n)n

))
= exp

(
lim

n→∞ ln(1 + ρT/n)n
)

= exp
(

lim
n→∞n ln(1 + ρT/n)

)
= exp

(
lim

n→∞
ln(1 + ρT/n)

1/n

)
,

which equals

exp
(

lim
n→∞

ln(1 + ρT/n)

1/n

)
(∗)
= exp

(
lim
s↘0

ln(1 + ρTs)

s

)
(∗∗)
= exp

(
lim
s↘0

ρT

1 + ρTs

)
= exp(ρT )
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(∗) set s = 1/n, then n → ∞ ⇐⇒ s ↘ 0

(∗∗) L’Hôpital’s rule using d
ds ln(1 + ρTs) = ρT

1+ρTs

Proposition 2 Set p = 1/2 and define

un = exp

((
µ− σ2/2

)T
n

+ σ

√
T

n

)
,

dn = exp

((
µ− σ2/2

)T
n

− σ

√
T

n

)
then Sn in the n-period binomial model converges to

ST in (1).

Proof. If Sn reflects j times un and n− j times dn,

we have

Sn = S0u
j
nd

n−j
n

= S0 exp

((
µ− σ2/2

)T
n
j + σ

√
T

n
j

)

× exp

((
µ− σ2/2

)T
n
(n− j)− σ

√
T

n
(n− j)

)

= S0 exp

((
µ− σ2/2

)
T + σ

√
T
2j − n
√
n

)
.
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Comparing this with (1), it remains to show that 2j−n√
n

converges to a standard normally distributed random

variable. Define random variables Xi by

Xi =

1, if we have un in period i

−1, if we have dn in period i
(5)

and note that if we have j times un and n− j times

dn, then

n∑
i=1

Xi = j + (n− j)(−1) = 2j − n.

Therefore, we can write

2j − n
√
n

=
1
√
n

n∑
i=1

Xi. (6)

We now apply the Central Limit Theorem, which says

that for independent and identically distributed ran-

dom variables X1, X2, . . . with mean µ = E[Xi] and

finite variance σ2 = Var(Xi),
√
n

σ

(
1

n

n∑
i=1

Xi − µ

)
(7)

converges (in distribution) to a standard normally dis-

tributed random variable. In our case of Xi given by
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(5) with equal probability 1/2 for the two cases (be-

cause p = 1/2 by assumption), we have

µ = E[Xi] =
1

2
· 1 +

1

2
· (−1) = 0,

σ2 = Var(Xi) = E
[
X2

i

]
=

1

2
· 12 +

1

2
· (−1)2 = 1.

Therefore, (7) simplifies in our case to 1√
n

∑n
i=1Xi.

Because of (6), this shows that 2j−n√
n

= 1√
n

∑n
i=1Xi

converges (in distribution) to a standard normally dis-

tributed random variable.

A.4 Derivation of the Black-Scholes formula

Similarly to the binomial model, the price for a pay-

off f in the Black-Scholes model is given by 1
eρT

EQ[f ]

where the terminal value of the stock price is

ST = S0 exp
(
(ρ− σ2/2)T + σ

√
TÑ

)
with Ñ standard normally distributed under Q. In the

case of a call option with strike price K, the price
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equals

c =
1

eρT
EQ[max{ST −K, 0}]

=
1

eρT
EQ

[
max

{
S0e

(ρ−σ2/2)T+σ
√
TÑ −K, 0

}]
=

1

eρT

∫ ∞

−∞
max

{
S0e

(ρ−σ2/2)T+σ
√
Tx −K, 0

}e−x2/2
√
2π

dx

=
∫ ∞

−∞
max

{
S0e

−σ2T/2+σ
√
Tx −Ke−ρT , 0

}e−x2/2
√
2π

dx.

Now, we use the equivalences

S0e
−σ2T/2+σ

√
Tx −Ke−ρT ≥ 0

⇐⇒ S0e
−σ2T/2+σ

√
Tx ≥ Ke−ρT

⇐⇒ e−σ2T/2+σ
√
Tx ≥

K

S0
e−ρT

⇐⇒ −σ2T/2 + σ
√
Tx ≥ log

(
K

S0

)
− ρT

⇐⇒ x ≥
log(K/S0)− ρT

σ
√
T

+ σ
√
T/2.

Therefore, defining d =
log(K/S0)−ρT

σ
√
T

+σ
√
T/2 allows

us to write
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c =
∫ ∞

−∞
max

{
S0e

−σ2T/2+σ
√
Tx −Ke−ρT , 0

}e−x2/2
√
2π

dx

=
∫ ∞

d

(
S0e

−σ2T/2+σ
√
Tx −Ke−ρT

)e−x2/2
√
2π

dx

=
∫ ∞

d
S0e

−σ2T/2+σ
√
Txe

−x2/2
√
2π

dx

−
∫ ∞

d
Ke−ρT e

−x2/2
√
2π

dx.

For the first term, we calculate∫ ∞

d
S0e

−σ2T/2+σ
√
Txe

−x2/2
√
2π

dx

= S0e
−σ2T/2

∫ ∞

d

eσ
√
Tx−x2/2
√
2π

dx

= S0e
−σ2T/2

∫ ∞

d

e−(x−σ
√
T )2/2eσ

2T/2
√
2π

dx

= S0

∫ ∞

d−σ
√
T

e−y2

√
2π

dy

= S0

(
1− Φ

(
d− σ

√
T
))

= S0Φ
(
− d+ σ

√
T
)
.
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For the second term, we have∫ ∞

d
Ke−ρT e

−x2/2
√
2π

dx = Ke−ρT
∫ ∞

d

e−x2/2
√
2π

dx

= Ke−ρT
(
1− Φ(d)

)
= Ke−ρTΦ(−d).

Defining

d1 = −d+ σ
√
T =

log(K/S0) + ρT

σ
√
T

+
1

2
σ
√
T .

we obtain

c =
∫ ∞

d
S0e

−σ2T/2+σ
√
Tx e−x2/2

√
2π

dx

−
∫ ∞

d
Ke−ρT e−x2/2

√
2π

dx

= S0Φ(d1)−Ke−ρTΦ
(
d1 − σ

√
T
)
,

which is the Black-Scholes formula.


