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Two Popular Transforms: Fourier and Wavelet Transforms

@ Two most popular transforms are the Fourier transform and the wavelet
transform (and their variants).

@ If you signal or data are oscillating or periodic, then the Fourier transform is
often a good choice.

o If your signal or data are of multiscale nature, then the wavelet transform is
often a good choice.

@ Both transforms have wide applications in sciences, engineering and industry,
and can be combined with other techniques such as deep neural networks.
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Wavelet Scattering Networks

Wavelet Scattering Transform

Awavelet scattering transform processes data in stages. The output of one stage becomes input for the next stage. Each stage consists of three operations.

Convolution Nonlinearity Averaging
(Wavelets) (Modulus) (Scaling Function)

The zeroth-order scattering coefficients are computed by simple averaging of the input. Here is a tree view of the algorithm:
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Source: from MATLAB at
https://www.mathworks.com/help /wavelet/ug/wavelet-scattering.html



Wavelets can be used in Neural Networks: MLPs and KANs

Model | Multi-Layer Perceptron (MLP) | Kolmogorov-Arnold Network (KAN)
Theorem Universal Approximation Theorem Kolmogorov-Arnold Representation Theorem
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Figure 0.1: Multi-Layer Perceptrons (MLPs) vs. Kolmogorov-Arnold Networks (KANs)




Why Do We Need Transform-based Methods?
Given a particular signal to you:

[—21, 22, —23, 23, —25, 38, 36, 34].

Wavelet-based method: If you are allowed to send out only one
number about this signal,

which number shall you choose?

Your answer(s):
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5 Rl = —0.75.
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The Idea of Discrete Wavelet Transform Using Numbers
x = [~21,—22, 23, —23, —25, 38, 36, 34].

Averages at level 1 (Al): —0.75,

Average at level 2 (A2): —21.5, 21.5

Averages at level 3 (A3): 0.75, —0.75, —14.25, 14.25.
Averages at level 4 (A4): 0.5, —0.5, 0, 0, —31.5, 31.5, 1, —1.



Graph of Wavelet Coefficients Al
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Graph of Wavelet Coefficients A3
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Graph of Wavelet Coefficients A4
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Reconstruction: Al (1 number)

0.5

-1 1 1 1




Reconstruction: Al + A2 (2 numbers)
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Reconstruction: Al + A2 4+ A3 (4 numbers)
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Reconstruction: Al + A2 4+ A3 + A4 (8 numbers)
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Why Are Wavelets Useful?

x = [—21,-22, 23,23, 25,38, 36, 34].

Averages at level 1 (A1): .

Average at level 2 (A2): —21.5, 21.5
Averages at level 3 (A3): [0.75] —0.75, —14.25, 14.25.

Averages at level 4 (A4): [0.5], —0.5,[0], 0, —31.5, 31.5,[ 1],



Comparison: Original
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Reconstructed with 3 Numbers by Thresholding
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How to Compute Wavelet Coefficients Fast?
x = [-21,-22, —23, —23, —25, 38, 36, 34].
Averages at level 1 (Al): —0.75,
Average at level 2 (A2): —21.5, 21.5
Averages at level 3 (A3): 0.75, —0.75, —14.25, 14.25.
o Averages at level 4 (A4): 0.5, —0.5, 0, 0, —31.5, 31.5, 1, —1.
Are we missing something for wavelets? or can we expect more from wavelets?
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x = [-21,-22, —23, —23, —25, 38, 36, 34].
Averages at level 1 (Al): —0.75,
Average at level 2 (A2): —21.5, 21.5
Averages at level 3 (A3): 0.75, —0.75, —14.25, 14.25.
o Averages at level 4 (A4): 0.5, —0.5, 0, 0, —31.5, 31.5, 1, —1.
Are we missing something for wavelets? or can we expect more from wavelets?

For applications,
a fast computational algorithm
is highly demanded!



Fast Wavelet Transform (FWT): Decomposition
o x=[-21,-22| —23,-23| — 25,38 36,34].
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Problem about the Previous Fast Wavelet Transform

x=[-21,-22| —23,-23| — 25,38 36, 34].

Averages: [—21.5,—23 ] 6.5,35]. Difference: [0.5,0, —31.5, 1].
Averages: [—22.25,20.75]. Differences: [0.75, —14.25].

Averages: [—0.75]. Differences: [—21.5].

Is there any problem about the above transform?

Energy Preservation Property: The /5 energy of the signal x € R is

Ix|17, = 5§ + -+ + x§ = 6504.

But the sum of all the square of the wavelet coefficients is not 6504.

How to make the wavelet transform have the energy preservation property?
Without the energy preservation property, a small coefficient may carry
higher energy of the signal than a large coefficient.



Fast Wavelet Transform with Energy Preservation Property
o x = [-21,-22, 23, ~23, ~25,38,36, 34] with ||x||2, = 6504.
@ Original Averages: [—-21.5,—23 | 6.5, 35]. Difference: [0.5,0, —31.5,1].
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Fast Wavelet Transform with Energy Preservation Property
o x = [~21,-22,-23, 23,25, 38,36, 34] with |||, = 6504.
@ Original Averages: [—-21.5,—23 | 6.5, 35]. Difference: [0.5,0, —31.5,1].
o Weighted Average: v/2[—21.5,—23 | 6.5, 35]. Difference:
V/2[0.5,0, -31.5,1] = [0.7070, 0, 44.54,2.121]. Then its energy is

2[21.5% + 23% + 6.5° 4 35°] + 2[0.5° + 0° 4 31.5% + 1°] = 4517 + 1987 = 6504.
o We used the weighted average v/2[3, 1] and difference v2[3, —3].
o Weighted Averages: (1/2)?[—22.25,20.75]. Differences: [1.5, —28.5]. Then
22(22.25% 4+20.75%) = 3702.5 and 2%(1.5% + 28.5%) = 814.5.

Note that the energy preservation 3702.5 + 814.5 = 4517 and
3702.5 + 814.5 + 1987 = 6504.

o Weighted Averages: 23/2[—0.75] = [2.121]. Differences:
23/2[-21.5] = [60.80].

@ Then 23 %0.752 + 23 % 21.5%2 = 3702.5.



Discrete Orthogonal Wavelet Transform Through Linear Algebra
o x = [~21,-22,—23,—23, —25, 38, 36, 34].
@ Energy preservation property: ||y|ls, = ||x]l¢, = V6505 ~ 80.64:

y = [0.7070,0,44.54,2.121,1.5, —28.5,2.121, 60.80].
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@ The above orthogonal wavelet transform is generated through high-pass
wavelet filter [%, f%] and low-pass wavelet filter [%, %] and weighted by v/2.



Discrete Orthogonal Wavelet Transform Through Linear Algebra
o x = [~21,-22,—23,—23, —25, 38, 36, 34].
@ Energy preservation property: ||y|ls, = ||x]l¢, = V6505 ~ 80.64:

y = [0.7070,0,44.54,2.121,1.5, —28.5,2.121, 60.80].

@ Linear algebra interpretation: An orthonormal wavelet basis of R®:

AR
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o ¥ o0 0o -1 o ¥
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@ The above orthogonal wavelet transform is generated through high-pass
wavelet filter [%, f%] and low-pass wavelet filter [%, %] and weighted by v/2.

o Perfect representation: x = (x, v1)vq + - -+ + (x, vg)vg for all x € R® with
vi,...,Vvg being columns of the unitary matrix U, i.e., UUTx = x.



Haar Wavelet Basis Elements for R8
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Continuous Wavelet Transform (CWT)
@ Definition: For f :R - C and 1 < p < oo, f € L,(R) if

1l = ( /R f(X)I”dX>1/p o

o Definition: The Fourier transform of a function f € L;(R) is defined to be
(FF)(€) = f(€) = / f(x)e ™ dx, ¢eR
R
@ For ¢ : R — C, we define
Uni(t) = (NY2p(At — k), A eR\{0},k eR.

Note that [|¥ak|l2 = ||¢0]]2 for all A € R\{0} and k € R.
A function 1 is called an admissible wavelet if

_ [ 19©”?
Cﬂ,._/]R g dE <o

For f,1 € L5(R) such that ¢ is an admissible wavelet, the continuous
wavelet transform (CWT) of the function f is defined to be
_ x—p
Wb B) = (Fava15) = [ £G0lal 20 (= Yo,
R «

o~ (N O o~ T




Scales and Translations of Wavelet Functions
@ A typical example of admissible wavelets is given by
1 1
—(2—1)e "2, where G(t) —t/2,

v(x) = 6"(t) = 5= = e

o Recall that ¥y.x(t) := |A\|/?p(\t — k). A discretized version of continuous
wavelet transform leads a classical wavelet system:

Vojg = 22(2 - —k),  jEL ke

o Note that (f,1.4) = Wyf(277,277k) due to 1y-1.4-15 = thp.x With
a=277and g =277p.

- -4 2 o 2 4 20 -10 o 10 20 30 40 50

¥ (blue), 12,0 and Y219 (orange, left), and 1p-2.9 and 1y-2.19 (orange, right).

60



Key Property of CWT

Theorem
Let ¥, n € Lo(R) such that

(e)? ok
— d C, = d
/R g fe<oe G /R g e

Then [[Wyfl|? := Wyf, Wyf) = C¢||f||f2(R) and for all f, g € Ly(R),

—— d
OVof We) : / | Wefta, 8 Wig@ 814855 = Cuntf.e),

where Cy,, = fR |£| df < 00. In particular, if Cy , # 0, then

do

1) = [ [ Worle Bnasaa 1655

Czl) n

holds in the weak sense, that is,

1 d
(r.6) = [ [ Werl0.B) 05, 8)9855. Ve € LalR)




Admissible Wavelets
o Y(x) = G"(t) = (> — 1)e /2, where G(t) = Le /2
o Morlet (or Gabor) wavelets: 9(t) = c,m~/4e~t'/2(el"t — e=7°/2) with
o =(14e 7 —2e7i) % and (&) = comi(e (/2 — o= (€40)/2),
@ Analytic wavelets 1 are often used such that zZ(f) =0 for all £ < 0.
@ The generalized Morse wavelet is given by

W(€) = ap X[0,1] (5)5%2 e,

where ag ., is a normalizing constant and -y characterizes the symmetry of the
Morse wavelet. The Morse wavelet is obtained by replacing P2/~ with 3.

—~ = 3 and P? = 60

—~ = 3 and P? = 60
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Scalogram Using CWT
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f(t) = ezm32tX[0.1,o.3] + 2e_2”'-6']"5)((0.7,00)
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Scalogram Using CWT

Magnitude Scalogram
Positive Component (Counterclockwise Rotation)
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Discrete Framelet Transform (DFrT) and Discrete Wavelet Transform
(DWT)
@ One-level discrete framelet transform
@ Discrete framelet transform vs discrete wavelet transform
@ Basic properties of DFrT: perfect reconstruction and sparsity.
@ Different types of wavelets and framelets.

In this course, we only consider real-valued filters, sequences and data.



Some Definitions and Notation

@ /(Z) consists of all real-valued sequences v = {v[k]}kez : Z — R.
@ h(Z) for signals: all real-valued sequences v € h(Z) such that

IVIZ, = D IVIKIP < oc.
keZ

o Ip(Z) for filters: all finitely supported real-valued sequences u = {u[k]}kez :
Z—RonZ,ie., {kecZ : ulk]# 0} is a finite subset of Z.



Some Definitions and Notation

@ /(Z) consists of all real-valued sequences v = {v[k]}kez : Z — R.
@ h(Z) for signals: all real-valued sequences v € h(Z) such that

IVIZ, = D IVIKIP < oc.
keZ

o Ip(Z) for filters: all finitely supported real-valued sequences u = {u[k]}kez :
Z—RonZ,ie., {kecZ : ulk]# 0} is a finite subset of Z.
o For v = {v[k]}kez € Ib(Z), define v*[k] := v[—K] for k € Z and define

v(z) = Z v[k]Z, z € C\{0},
keZ

where v(z) is called the symbol (or z-transform) of the sequence v.



Some Definitions and Notation

@ /(Z) consists of all real-valued sequences v = {v[k]}kez : Z — R.
@ h(Z) for signals: all real-valued sequences v € h(Z) such that

IVIZ, = D IVIKIP < oc.
keZ

o Ip(Z) for filters: all finitely supported real-valued sequences u = {u[k]}kez :
Z—RonZ,ie., {kecZ : ulk]# 0} is a finite subset of Z.
o For v = {v[k]}kez € Ib(Z), define v*[k] := v[—K] for k € Z and define

v(z) = Z v[k]Z, z € C\{0},
keZ

where v(z) is called the symbol (or z-transform) of the sequence v.
@ Convolution u * v and inner product:

(uxv)[n] := Z ulklv[n— k], neZ,

keZ

(vyw) =Y v[Kwlk], v,w € h(Z)

keZ



Some Definitions and Notation

@ /(Z) consists of all real-valued sequences v = {v[k]}kez : Z — R.
@ h(Z) for signals: all real-valued sequences v € h(Z) such that

IVIZ, = D IVIKIP < oc.
keZ

o Ip(Z) for filters: all finitely supported real-valued sequences u = {u[k]}kez :
Z—RonZ,ie., {kecZ : ulk]# 0} is a finite subset of Z.
o For v = {v[k]}kez € Ib(Z), define v*[k] := v[—K] for k € Z and define

v(z) = Z v[k]Z, z € C\{0},
keZ

where v(z) is called the symbol (or z-transform) of the sequence v.
@ Convolution u * v and inner product:

(uxv)[n] := Z ulklv[n— k], neZ,
P

(vyw) =Y v[Kwlk], v,w € h(Z)

keZ
e v*(z) = v(z7') and the symbol of u x v is u(z)v(z):

vi(z) = Z v*[k]zk = Z v[—k]zk = Z v[k]z_k = v(z_l).

keZ keZ keZ



Subdivision and Transition Operators
@ The subdivision operator S, : [(Z) — I(Z):
(Sev)[n] :=2) v[klb[n—2k], neZ
keZ

Often used in the reconstruction step in a fast wavelet transform.



Subdivision and Transition Operators
@ The subdivision operator S, : [(Z) — I(Z):
(Sev)[n] :=2) v[klb[n—2k], neZ
keZ

Often used in the reconstruction step in a fast wavelet transform.
@ The transition operator 7, : I(Z) — I(Z) is

(Tov)[n] =2 v[k]blk —2n], ne L.
keZ

Often used in the decomposition step in a fast wavelet transform.
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@ The subdivision operator S, : [(Z) — I(Z):
(Sev)[n] :=2) v[klb[n—2k], neZ
keZ

Often used in the reconstruction step in a fast wavelet transform.
@ The transition operator 7, : I(Z) — I(Z) is

(Tov)[n] =2 v[k]blk —2n], ne L.
keZ
Often used in the decomposition step in a fast wavelet transform.
e Upsampling operatortd : /(Z) — I(Z):
(vtd)[n] :=v[n/d] if n/d €Z and v1d[n] =0 otherwise.



Subdivision and Transition Operators
@ The subdivision operator S, : [(Z) — I(Z):
(Sev)[n] :=2) v[klb[n—2k], neZ
kEZ
Often used in the reconstruction step in a fast wavelet transform.
@ The transition operator 7, : I(Z) — I(Z) is
(Tov)[n] =2 v[k]blk —2n], ne L.
kEZ
Often used in the decomposition step in a fast wavelet transform.
e Upsampling operatortd : /(Z) — I(Z):
(vtd)[n] :=v[n/d] if n/d €Z and v1d[n] =0 otherwise.
e Downsampling (or decimation): (v]d)[n] := v[dn], n € Z.



Subdivision and Transition Operators
@ The subdivision operator S, : [(Z) — I(Z):
(Sev)[n] :=2) v[klb[n—2k], neZ
kEZ
Often used in the reconstruction step in a fast wavelet transform.
The transition operator T, : [(Z) — I(Z) is
(Tov)[n] =2 v[k]blk —2n], ne L.

kEZ

Often used in the decomposition step in a fast wavelet transform.
Upsampling operatortd : I(Z) — I(Z):

(vtd)[n] :=v[n/d] if n/d € Z and v71d[n] =0 otherwise.

Downsampling (or decimation): (vd)[n] := v[dn], n € Z.
Subdivision and transition operators:

Spv =2bx* (v12) and Tpv =2(b" xv)]2.

If the filter b € Ip(Z) has short support, then the length of Spv is almost
twice of that of v, while the length of T,v is only half of that of v.



One-level Discrete Framelet Transform (DFrT)
o Let by, ...,bs, by,...,bs € Io(Z) be finitely supported filters in Ih(Z).
@ For input data v € h(Z), a one-level discrete framelet decomposition:

sz?ﬂ;/jv:\@([ﬁ*v)il {=0,...,s,
or using a framelet decomposition operator:
Wy = %(T,;Ov,...,ﬂ)sv) =V2(bS % v,..., brxv)]2.

@ The total numper of nonzero coefficients of wy is approximately half of that
of v. Hence, Wv is roughly %(s+ 1) of that of v.



One-level Discrete Framelet Transform (DFrT)

o Let by, ...,bs, by,...,bs € Io(Z) be finitely supported filters in Ih(Z).
@ For input data v € h(Z), a one-level discrete framelet decomposition:

W412§7})[V:\/§(BZ*V)\L2, {=0,...,s,
or using a framelet decomposition operator:
Wy = %(T,;Ov,...,%sv) =V2(b xv,...,brxv)]2.

@ The total number of nonzero coefficients of w; is approximately half of that
of v. Hence, Wv is roughly %(s+ 1) of that of v.
o A one-level framelet reconstruction by V : (/(Z))**(+1) — I(Z):

V(wo,...,ws) = g ZSb[Wg = V2bg * (wo12) + -+ V2b, * (ws12).
/=0



One-level Discrete Framelet Transform (DFrT)
o Let by, ...,bs, by,...,bs € Io(Z) be finitely supported filters in Ih(Z).
@ For input data v € h(Z), a one-level discrete framelet decomposition:

sz?ﬂ;ﬂz\@(l}f*v)il {=0,...,s,
or using a framelet decomposition operator:
Wy = %(T,;Ov,...,ﬂ)sv) =V2(bS % v,..., brxv)]2.

@ The total numper of nonzero coefficients of wy is approximately half of that
of v. Hence, Wv is roughly %(s+ 1) of that of v.
o A one-level framelet reconstruction by V : (/(Z))**(+1) — I(Z):

V(wo,...,ws) = g ZSbfWg = V2bg * (wo12) + -+ V2b, * (ws12).
/=0

o A filter bank ({bo, ... bs},{bo,...,bs}) has the perfect reconstruction (PR)
if VWv = v for all data v € h(Z).



Diagram of One-level DFrTs

Vab @ rocessing @ V2by

P!
o e

Figure: Diagram of a one-level discrete framelet transform using a pair of filter banks
({bo,...,bs},{bo,...,bs}). Decomposition: wp := v/2(b} * v)|2 for £=0,...,s.
Reconstruction: v/2bg * (wo12) + - - + v/2bs * (ws12).

It is called a wavelet filter bank for s = 1, and a framelet filter bank if s > 1.



Property of DFrT: Perfect Reconstruction (PR) Property
Theorem (PR of DFrT)
A pair of filter banks ({Eo, cee Bs}, {bo,...,bs}) has

~ 1e
Perfect Reconstruction (PR): v =VWyv = 5 ZSbZ’EM v, YvehZ),
=0

if and only if ({bo, ..., bs},{bo, ..., bs}) is a dual framelet filter bank satisfying:
bo(2)bo(z ") + bi(2)ba(z ") + -+ + bs(2)bs(z 1) = 1, (1)
bo(2)bo(—z ') 4+ b1(2)bi(—z ") + - - - + bs(2)bs(—z ) = 0. (2)

That is,

Bo(z) - Bs(z)Hbo(z) cobe(2) T

bo(—z) -+ bs(=2)] [bo(=2) -+ bs(=2)]

where I, denotes the 2 x 2 identity matrix and A*(z) := [A(z71)]" for a general
matrix A.




Biorthogonal Wavelet Filter Banks

Definition: A dual framelet filter bank with s =1 is called a biorthogonal wavelet
filter bank, a nonredundant filter bank. That is, ({bo, b1}, {bo, b1}) is a
biorthogonal wavelet filter bank if

i s i o) -

Moreover, the above identity is equivalent to
[ bo(2) b1(2) ]* [~BO(Z) b1( ) :| — b
bo(~z) bi(~2)] |bo(—2z) bi(-2) ’

which is just
) Wl B B ],

bo(z)bo(z_l) + bo(—z)bo(—z_l) =1, Bl(z)bl(z_l) + Bl(—z)bl(—z_l) =1,
bo(Z)bl(Z_l) + Bo(—z)bl(—z_l) =0, Bl(Z)bo(Z_l) =+ Bl(—z)bo(—z_l) =0.



Orthogonal Wavelet Filter Banks

Definition: {bg, b } is called an orthogonal wavelet filter bank if
({bo, b1}, {bo, b1}) is a dual framelet filter bank, that is,

|: bo(Z) bl(Z) ] [ bo(Z) bl(Z) :|* _ Iz
bo(—Z) bl(—Z) bo(—Z) bl(—Z) ’
which is further equivalent to
{bo(z_l) bo(—z_l)} { bo(2) b1(2) } b
bl(Z_l) bl(—Z_l) bo(—Z) bl(—Z) ’
which is further equivalent to
bo(z)bo(z™") + bo(—z)bo(—2z ")
b1(2)b1(z71) + bi(—2)bi(—2z")
bo(Z)bl(Z_l) + bo(—Z)bl(—Z_l)
That is, the vectors
(bo(z),bo(—2)) and  (b1(2),b1(—-2))

have £>-norm one for all z € C\{0} and they are mutually perpendicular in C2.

)

1
L,
0



Role of ? in DFrT: Norm Preservation Property

Theorem

Let by, ..., bs € Io(Z). Then the following are equivalent to each other:
(i) Wv,W¥i) = (v, V) for all v,V € h(Z), where

Wv = Y2(Tpov, ..., Tov) = V2(b§ % v, ..., bE v) 2.
(ii) ||1/Vv||(,2 @)ixern = = |[Vli§g) for all v € b(Z), that is,
12TVl + - + 12 To vz = VG, Vv € b(2).
(iii) The filter bank ({bo, ..., bs},{bo,...,bs}) has PR:

bo(z) - bs(z)Hbo(z) ob(2) T
bo(=2) -+ bs(=2)] |bo(=2) --- bs(—2) .

{bo, ..., bs} with PR is called a tight framelet filter bank. If in
addition s = 1, it is called an orthogonal wavelet filter bank.



Examples of Orthogonal Wavelet Filter Banks
To list a filter b = {b[k]}kez with support [m, n],

b= {b[m],..., b[_l]aﬂv b(1],..., b[n]}[m,n]a
o {bg, b1} is the Haar orthogonal wavelet filter bank, where

bo={3.3tou,  b1={-33}pa



Examples of Orthogonal Wavelet Filter Banks
To list a filter b = {b[k]}kez with support [m, n],

b= {b[m],...,b[-1],b[0], b[1], ..., b[n]}{m n>
o {bg, b1} is the Haar orthogonal wavelet filter bank, where
bo = {3, 3} 0.1 bi={—3 3}

e Note bo(z) = 3(1+ 2), bi(z) = 3(z — 1). Hence, {bo, b} satisfies
bo(z)bo(z ") + bo(—2z)bo(—2z ") =1,
b1(z)b1(z™") + bi(—z)bi(—z71) =1,
bo(z)b1(z™*) + bo(—z)b1(—z"') = 0.



Examples of Orthogonal Wavelet Filter Banks
To list a filter b = {b[k]}kez with support [m, n],

b= {b[m],...,b[-1],b[0], b[1], ..., b[n]}{m n>

o {bg, b1} is the Haar orthogonal wavelet filter bank, where
bo = {3, 3} 0.1 bi={—3 3}

e Note bo(z) = 3(1+ 2), bi(z) = 3(z — 1). Hence, {bo, b} satisfies
bo(2)bo(2 ™) + bo(—2)bo(—2z"1) = 1,
bi(2)b1(z71) + bi(—2)ba(—z7") =1,
bo(z)b1(z™*) 4 bo(—2z)by(—2z71) = 0.

)

o The graphs of |bo(e~¢)[? = cos?(¢£/2) (blue) and |b;(e~7€)|? = sin(£/2)
(red):




Examples of Biorthogonal Wavelet Filter Banks
o ({ho, b1}, {bo, b1}) is a biorthogonal wavelet filter bank, where

EO:{_%7%3%7%3_%}[72,2]7 51:{_

bO:{%,i7%}[_1,1]7 blz{_,

_1
8 @

—4 3 302,

3 1 1

AR ST
Called the LeGall wavelet filter bank, used for image compression



Examples of Biorthogonal Wavelet Filter Banks

o ({ho, b1}, {bo, b1}) is a biorthogonal wavelet filter bank, where
EO:{_ 43%74 %}[ 2,2]» b _{ % %

bo={33 st b={-§ -3 %~ l}[ 13-

Called the LeGall wavelet filter bank, used for image compression.

o Note that by(z) = T+ 2)2(—2L—2)+4z71 - 1), bi(z) = —1z711-2)2

bo(z) = 2z} (1+ z)2 and by(z) = (1 — z)*(—z " — 4 — 2), satisfying

bo(z-1) bo(—i—l)} {ﬁdz) bi(2) ] — b,

1 1

e

bl(Z_l) bl(—



Examples of Biorthogonal Wavelet Filter Banks

o ({ho, b1}, {bo, b1}) is a biorthogonal wavelet filter bank, where
EO:{_ 43%74 %}[ 2,2]» b _{ % %

bo={33 st b={-§ -3 %~ l}[ 13-

Called the LeGall wavelet filter bank, used for image compression.

o Note that bo(z) = L(1+z)%(—2( = 2) + 4271 — 1), by(z) = —1z7}(1 — 2)?,

)
bo(z) = 1z71(1 +z)2 and by(z) = L(1 — 2)2(—z"1 — 4 — ), satisfying

bo(z_l) bo(—z_l):| ~~0(Z) ~Bl(z):|_12
bi(z™') bi(=z71)| |bo(~2) bi(~2) ’

o Frequency responses of |bg(e7€)|2, |bi(e™")[? and |bo(e7€)|?, |bi(e 7€) 2.

1 1

e

12



Discrete Wavelet Transform Using Haar Wavelet Filter Bank
Apply the Haar orthogonal wavelet filter bank to

v ={-21,-22 23,23, -25,38,36,34} 7

Note that Tp,v[n] = v[2n] + v[2n + 1] and Tp, v[n] = —v[2n] 4+ v[2n + 1]. We
have the wavelet coefficients:

wo = Y2{—43,-46,13,70}105, w1 = %2{-1,0,63, 2}
Note that
(Spewo)[2n] = wo[n], (Seewo)(2n+1) =wg[n], neZ
(Spyw1)(2n) = —wa[n], (Spywa)(2n+1) =wy[n], n€eZ.
Hence, we have
V25, wo = {43, 43, -46,-46,13,13,70,70}0 7,
V25, w = 1{1,-1,0,0,-63,63,2, —2}107.
Clearly, we have the perfect reconstruction of v:
V280 + 2 Spwi = {21, 22, ~23, ~23, ~25,38,36,34};07 = v
and the following energy-preserving identity

Iwollfzy + Iwallfz) = 4517 + 1987 = 6504 = ||v|[}, -



Property of DFrT: Sparsity

One key feature of DFrT is its sparse representation for smooth or piecewise
smooth signals.
It is desirable to have as many as possible negligible framelet coefficients for
smooth signals.
Smooth signals are modeled by polynomials. Let p: R — C be a polynomial:

m
p(x) = Z pnx".
n=0
a polynomial sequence p|z : Z — C by

(plz)[K] = p(k), k € Z.

Np := NU{0}.
My_1 is the set of all polynomials of degree less than m.



Transition Operator Acting on Polynomials

Theorem
Let b = {b[k]}kez € Ib(Z). Then for any m € N, the following are equivalent:
© 7Tup = 0 for all polynomial sequences p € N,,,_1, where

(Top)[n] := 2>z, PIK]bLK — 2n].
@ The filter b must have m vanishing moments:

> blkIK =0,  j=0,...,m—1.
keZ

Q b(1) =b/(1) =--- =bl™V(1) = 0.
Q@ (1—2)"|b(2), ie., b(z) =(1—2)"Q(z) for some Laurent polynomial Q.




Subdivision Operator Acting on Polynomials

Theorem
Let b= {b[k]}kez € Ib(Z). For m € N, the following are equivalent:
Q SpMm_1 € My1, where (Spp)[n] =23, , plk]b[n — 2k].
@ b has order m sum rules:
> b[2K|(2kY = b[1+2K|(1+2kY, j=0,....m—1.
ke, kEZ
© b has order m sum rules:

b(—1) = b’(—1) = - .- = bl™ V(1) = 0.

Q@ (1+2z2)"|b(z2), ie, b(z) = (1+ z)"Q(z) for some Laurent polynomial Q.
Moreover, if any of the above holds, then for all p € M,,_1,

9] _ ~ '
Sip =22 1) b= 30 EX 01 (e .
Jj=0

Equivalences among (2), (3), (4) are easy. So, we only prove (1) <= (2).



Vanishing Moments for Biorthogonal Wavelet Filter Banks
Theorem

Let ({bo, b1}, {bo, b1}) be a biorthogonal wavelet filter bank, i.e.,

S MO S

Then by has m vanishing moments if and only if by has m sum rules. That is,
vm(by) = sr(bg) and vm(by) = sr(by).




Vanishing Moments for Orthogonal Wavelet Filter Banks

Corollary

Let {bo, b1} be an orthogonal wavelet filter bank. Then by has m vanishing
moments if and only if by has m sum rules. That is, vim(by) = sr(by).

We shall discuss multilevel discrete wavelet/framelet transform later and hence for
a dual framelet filter bank ({bo, b1, ..., bs},{bo, b1, ..., bs}), we define

a.= Eo, a:= b()

for low-pass filters, because &(1) # 0 and a(1) # 0. We often normalize them so

that 3(1) = a(l) =1, i.e, Zkez ilk] = ZkeZ alk] = 1.
Hence, from now one, we shall use the notation

({3 by,...,bs},{a;by,...,bs})

for a dual framelet filter bank.



An Example of Tight Framelet Filter Banks
o A tight framelet filter bank {a; by, ba} is given by
a={3.3 1)1
b = {—Q, %}[71,1],
by={~%. 3 —3}-11-



An Example of Tight Framelet Filter Banks
o A tight framelet filter bank {a; by, ba} is given by
a= {%7ia %}[—1,1]7
b1 = {—ﬁ’ %}[71,1],
={-13 —#-11-
® Note that a(z) = 127Uz + 1), bi(2) = Lz Y(z - 1)%, and
by(¢) = —3z7H(z —1)?
a(2)a(z7") + bi(2)br(z77) + ba(2)ba(z77) = 1,
a(2)a(—z7") + ba(2)bs(—z ") + ba(2)ba(—277) = 0



An Example of Tight Framelet Filter Banks
o A tight framelet filter bank {a; by, ba} is given by
a={3.3 1)1
b1 = {—ﬁ, %}[71,1],
={-%5 31
® Note that a(z) = 127Uz + 1), bi(2) = Lz Y(z - 1)%, and
ba(¢) = —327}(z — 1)
a(z)a(z™1) 4 bi(2)b1(z71) 4+ ba(2)ba(z71) = 1,
") + bi(2)bi(~z7") + ba(2)ba(~2z7) = 0

a(z)a(—z~ z
@ sr(a) =2 and vm(by) =1, vim(by) = 2.



An Example of Tight Framelet Filter Banks
o A tight framelet filter bank {a; by, ba} is given by
a={3.3 1)1
bl = {_Q’ ?h—m],
={-%5 31
® Note that a(z) = 127Uz + 1), bi(2) = Lz Y(z - 1)%, and
by(¢) = —3z7H(z —1)?
a(z)a(z™1) 4 bi(2)b1(z71) 4+ ba(2)ba(z71) = 1,
a(z)a(—=z71) 4+ bi(2)by(—z71) + ba(z)ba(—2z71) =0
@ sr(a) =2 and vm(by) =1, vim(by) = 2.

e Frequency responses of |a(e™/¢)|? (blue),
(red).

sso oo
AV 0 bOINTO

¢ o0

~i€)]2 (yellow) and |bs(e

7i§)|2



Discrete Framelet Transform using Tight Framelet Filter Banks
A test input data:

v = {-21,-22, 23, -23, -25,38,36,34} o7

We extend v to an 8-periodic sequence v on Z, given by

v={...,—2538,36,34, —21, 22 —23,—23, —25 38, 36,34, —21, —22, —23, —23,...}.
Then all sequences T,v, 7Tp, v, Tp,v are 4-periodic and

wo=R2Tv=Y{. ., -15-% 3572 15 % 3 70 15 9 _35 7> 1
wo= 2T v=Y2{ . -28-18 o 28 16 5 g 16 o 3

wo = 2Tpv=1{.., -27,-1, % 27 1 %9 27 1 69 .}

It is also easy to check that ?(Sbo wo + Sp,wi + Sp,wo) = v. But

15571 3437 3571 22579
Iwoll? + wa* + [Iwa||* = === + == + == = =,— ~5644.8

[v|]> = 6504.



Example: LeGall Biorthogonal Wavelet Filter Bank

The LeGall biorthogonal wavelet filter bank is given by

Note that sr(a) = sr(&) = 2 and vm(b) = vm(b) =
Extend v by both endpoints non-repeated (EN):

v=1{..,—25 23 —23 22 —21,—22, —23,—23,—25,38,36,34,36,38, —25, —1,—1, ...

Then T5v is 7-periodic and is symmetric about 0, 7/2:

_ 2 _ 2 133 91 91 133 349 349 133
Wo = -5 7;5‘/_ 7{5_7 _7a_425_?’_T’TvTa_ 4 7"'}a

4072

and Tgv is 7-periodic and is symmetric about f%, 3:

wi=2Tv=%2{..,-2,%,001% -2%10,..}



Example: Tight Framelet Filter Bank from B,

Consider a tight framelet filter bank

a:{%aia%}[fl,lb b1:{—%79,§}[,1’1]7 b2:{_l i %}[ 1,1]-

Extend v with both endpoints non-repeated (EN). Then all T,v, Ty, v, Tp,v are
7-periodic and symmetric about 0 and 7/2:

wo=2Tv="{.72,-% 9 43 9% 37373 35 A 3
wo= 2T v="Y2{ . 2-% 1016 5o 61
wo=Y2Tpv=1{..,0-% 11 1 6990 6 17 3}

Compare with framelet coefficients through periodic extension:

wo=L2Tv="2{ . —15-% 3573 15 9% 3575 15 91 3575 3
wp = 2T, v="Y2( . 28 -18 o> 28 16 5 g 16 o 3

wo = 2T, v ={..., 27, —7,—%,0,—27,—%,—%,0, —27,-1,-% 0, }.



Multi-level Fast Framelet Transform (FFrT)
o Let {5, by,...,b} and {a; by, ..., bs} be filters in k(7).
@ For a positive integer J, a J-level discrete framelet decomposition is given by

vj::§7—5vj,1, WgJ::gﬂ;lvj,l, (=1,...;s,j=1,...,J,

where vy : Z — C is an input signal.

o WJVO = (W1717 ey Ws1, 0oy WL gy, W g, VJ).
@ a J-level discrete framelet reconstruction is
V2 V2 $ .
Vi1 = —8avj + — E Sp,wej, j=J,...,1
2 2
(=1
o VWi, oo, Wstyoooy Wi gyenn, Ws g, V) = V.

The perfect reconstruction property: V,W,vp = v for all J €N, v € h(Z).
@ The fast framelet transform has the perfect reconstruction property if and

only if ({&; by,...,bs},{a;by,...,bs}) is a dual framelet filter bank satisfying

az)  Bi(z) o bBs(2) H a(2) bi(z) - bs(2) ] _,
i(—z7Y) bi(—zY) - bs(—z7Y)| |a(=z71) bi(—=z71) -+ bs(—z71) 2

@ A fast framelet transform with s = 1 is called a fast wavelet transform.



Variants of FFrT: Undecimated FFrT

processing

processing

Figure: Diagram of a two-level discrete framelet transform using a pair of filter banks

({5 b1,...,bs},(a; by, ..., bs}).

processing

processing

processing

Undecimated DFrT using a framelet filter bank ({5; by, ... s}N(a by,...,
which is required to satisfy d(z)a(z™1) + b1(z)b1(z7 1) + -+ + bg(2)bs(z 7!

bs}),
)=1.



Express J-level FFrT using Discrete Wavelets in h(Z)

v € h(Z)

\/55{ 12 Wi processing 12
2

-4
12 Ws 1 processing

Figure: Diagram of a two-level discrete framelet transform using a pair of filter banks
({3, b1,...,bs}, (a; b1, ..., bs}).



Refinable Functions
o Let a € h(Z) with ZkeZ alk] = 1.
o The refinable function ¢(¢) := 15 a(e=27¢) is well defined for £ € R and
satisfies
x) =2 a[klp(2x — k) Qe $(2€) =a(e™)e(&).
keZ
Indeed,

a(e™27¢) = a(e7)g(¢).

IIa — 2t —@)
o Note that the Fourier transform of ¢(2x — k) is
— . 1 . 1 .~
6@ R = [ oex-Reax =3 [ aly)e 0 Edy = Je (e,
R R
Therefore, the Fourier transform of 2, ., a[k]¢(2x — k) is

2Za[k]%e_’kf/2$(§/2)=Za[k]e_”‘5/2 (€/2) = a(e™"*/)g(&/2) = 9(¢).

kEZ keZ

.::18

Il
-

J

This proves 2, ., alk]p(2x — k) = ¢(x).



Some Basics on Wavelets in L(R)
e For ¢, 91, ... 9 € L»(R), define an affine system as
AS(di ot 0%) == {o(- — k) = ke Z}
Uiy =225 —k) + j>0,keZ,l=1,...,5}.

e We say that {¢; !, ... 9%} is a framelet in Lo(R) if AS(¢; 9!, ... ¢°) is a
framelet in Ly(R), that is, there exist positive constants C;, G, > 0 such that

GlIfFIE < Y I(F, o |2+ZZZI o) P < GIfI3, Y F € L(R).

ke, ¢=1 j=0 k€Z

e In particular, {¢; 9!, ... 1} is called a tight framelet in L(R) if

D O 6(-— k) |2+ZZZ| Wy lP = 1F13, Ve L(R).
keZ (=1 j=0 keZ
@ Then f = Zkez<f7 @( - k)>§/)( - k) + Zfio 22:1 Zk@“a’@éﬂ’@é@k-
o {¢;,... 9%} is called an orthogonal wavelet in Lp(R) if AS(¢; !, ..., %%)
is an orthonormal basis in Ly(R).
e {¢; 9!, ...,4"} is an orthogonal wavelet in Ly(R) if and only if it is a tight
framelet in Ly(R) and [|¢]l2 = ||[¥1]la =+ = ||[¢°]2 = 1.



Dual Framelets in L(R)

For qNS oL, ..,1/;5 € Lr(R) and ¢, 91, ..., ¥° € Lo(R), we say that
({; wl U5}, {¢ P, ... 1p°}) is a dual framelet in Lo(R) if
Q {41, ..., %) is a framelet in Ly(R).
Q {¢;, ..., 9%} is a framelet in Lo(R).
© The following identity holds:

(f.g) =Y (F.d(-—k))(e(-— k)g+ZZZ 50 (V50 8), V £, 8 € Lo(R)

keZ ¢=1 j=0 keZ
with series converging absolutely.
Consequently, we have the wavelet representation of functions in Lp(R):

F= (F00 = kNS =K+ DD D (Do) e

keZ Jj=0 (=1 keZ

with the series converging unconditionally.



Characterization of Dual Framelets in L(R)

Theorem

Let 3,by,...,bs,a,by,...,bs € Io(Z) such that a(1) = 4(1) = 1. Define
?(8) == Hj:l a(e " Jé) (5(5) Hf.;é(e_mﬂ&) and

PHE) = bu(eE/2)p(e/2),  BH(E) = bu(e D)B(E/2),  L=1,.

Then the following are equivalent to each other

Q ({1, ..., 0%}, {¢: ¥, ..., 4°}) is a dual framelet in Ly(R).

@ 6,6 € Ly(R), by(1) = --- = bs(1) =0, by(1) = --- = bs(1) = 0, and
({3; by, ..., bs},{a; b1,...,bs}) is a dual framelet filter bank, i.e.,

i(2) bi(z) - bs(2) } [ a(2) bi(z) - bs(2)

8(—z7Y) bi(—=z7Y) -+ Bs(—z7Y| [a(=z1) bi(—z1) - bs(—z71

ey

)

*

S.

= bh.




Wavelet Transform in Ly(R)

o Let ({&;d1,... 0} {¢9?,...,¥°}) is a dual framelet in Lo(R) with a dual
framelet filter bank ({3; b1,...,bs}, {a; b1,..., bs}).

@ For a given function f € Ly(R), we define

VJ( ) - < ¢2J k> W[’J(k) = <f)QZ§j;k>7 ./7k € Zag = 17 . .,5

They can be computed by fast wavelet transform:

2 , 2

-1 _ \27 We’J_l = %%KVJ’
V2. i1 V2 -
v = TSaVJ 1 + Z TSE(WZ’J 1.
(=1

For J € N, approximate f = f; := 37,z Vi(K)$214 = Yyez!f Boiotc) Dok
Because [ ¢(x)dx = $(0) = 1, (f, dps) =~ F(277k)(1, dois) = 27//2F(277 k).
fi = i1+ ey Coken W TG 1y = fioi+ Yo Doken (D5 ) ¥

s J-1 s J-1

fy= fOJFZZZW J(k Yoi = Z< (g +ZZZ J}gf';kd)ﬂ;k'

¢=1 j=0 keZ kEZ =1 j=0 keZ

v

v/ =1 ...,s,



Why Wavelets?
A wavelet ¢ often has

© 0 © o000

compact support = good spatial localization.

high smoothness/regularity = good frequency localization.

high vanishing moments = multiscale sparse representation. That is, most
wavelet coefficients are small for smooth functions/signals.

associated filter banks = fast wavelet transform to compute coefficients
(f,z/)g,;l) through filter banks.

singularities of signals and their locations can be captured in large wavelet
coefficients.

function spaces (Sobolev and Besov spaces) can be characterized by
wavelets. This is important in harmonic analysis and numerical PDEs.



Explanation for Sparse Representation
@ A wavelet function ¢ has m vanishing moments if

/x”u‘)(x)dX:O, n=20,...,m—1.
R

That is, (0) = ¢/(0) = -+ = ¢)("1(0) = 0. Define vm(1)) :=
o If (&) := b(e*i5/2)q5(£/2) and ¢(0) # 0, then vm(yp) = vm(b).

@ The multiscale wavelet representation of f € L,(R) is

RN LEIES 3 9b IATMIN

kez J=0 kezd (=1
with ﬁ)éj;k(x) = /2 (2 x — k).
° suppz/jgj;k = 27k 4+ 2 supptp? ~ 277k when j — occ.
o Wavelet coefficient (f, 77715];0 only depends f in the support of 1/~1§j;k. If fis
smooth and can be well approximated by a polynomial P of degree < m, then

(050 = 1 = Pyl = I(F = P)xsuppesz, ) l2lI9ll2 =0,
where (P ¢§j ) =272 [ PO (2x — k)dx = 27172 [, P(2—J(x + k))wt(y)dy = 0.

o If <f7¢2,;k> is large for large j, we know the position of singularity, since
suppthly , = 2 Jsuppdh’ + 27k ~ 27k

m largest.



Dilates and Shifts of Multiscale Affine Systems




Tensor Product (Separable) Wavelets and Framelets in R?
o Let ({4 by,...,b.},{a;by,...,bs}) be a dual framelet filter bank.

@ Tensor product filters: [y ® -+ ® ug](ky, ..., kq) = v1(k1) - - - ug(kq).
@ Tensor product two-dimensional dual framelet filter bank:
({5;131,...,55}@{5;Bl,...,Bs},{a;bl,...,bs}@g{a;bl,...,bs}).
That is,
{a;b1,...,bs} ®{a; b1,...,bs} ={a®a; by ®a,...,bs ® a,
b1 ®by,....,bs@by1,...,bs @ by,..., bR}

consists of one low-pass tensor product filter a ® a and total

(s +1)> — 1 = s + 2s high-pass tensor product filters.
@ Tensor product functions: [ ® -+ @ fg](x1,...,%q) = f(x1) - - - fa(xq).
o Let ({dN) D1, ,1/75}, {&;¢1,...,1%s}) be a dual framelet in Lr(R).

@ Tensor product two-dimensional dual framelet in L(R?):

({&;&la"'ais}(g{(5;7517'"71/;5}7{¢;w17'--77/}s}®{¢;7/}13"'71/)s})'

@ Advantages: fast and simple algorithm.



Sparsity and Multiscale Structure for Images
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Connections of Tight Framelets and Tight Framelet Filter Banks

Theorem
Let a, by, ..., bs € b(Z) with )", _, a[k] = 1. Define

GE Ha(e—'2 ), B = bl E2)(E/2),
Then {¢; 9, ..., 0%} is a tight framelet in Lo(R), that is,
F= (00— kDo —K) +D 3> {5V

kEZ j=0 £=1 keZ

if and only if {a; by, ..., bs} is a tight framelet filter bank:

V f € Ly(R)

4D bu(2)be(—z7N) =1, a(2)a(-z7)+ D be(2)be(—2z71) =0.
{=1

The key: The tight framelet filter bank forces ¢ € L,(R) and
by(1) = - = by(1) = 0.




Orthogonal Wavelets vs Orthogonal Wavelet Filter Banks
Theorem

Let a, b € Io(Z) with ", ., alk|] = 1. Define

#(€) : Ha S8 (e) = b(eT /)¢ /2).

Then the following are equivalent to each other:
Q {&;4} is an orthogonal wavelet in Ly(R), that is,

AS(¢i9p) i={(- — k) : k € Z} U {thayp := 2/2p(2 - —k) : j 2 0,k € Z}

is an orthonormal basis of L>(R).
@ {a; b} is an orthogonal wavelet filter bank and [¢, $](¢) = 1 almost

everywhere (Note that [p,$] =1 <= (¢, ¢(- — k)) = d(k) for k € Z)

{a; b} is an orthogonal wavelet filter bank and sm(a) > 0.

For f,g € L»(R), we define the bracket product to be
[, ](

keZ,

Zf$+27rk g(&+2mk) = <{f(5+2“k)}ke {g(£+27k)}ke/>

h(Z)



A Basic ldentity
For m,n € N, Pp, , is the unique polynomial of degree at most n — 1 satisfying
n—1
-1
Pmn(x) = (1-x)""+0(x"), x—0, thatis, Ppn( Z <m+J )
j=0
Theorem

(1 =x)"Pmm(x) + X"Pm.m(l —x) =1 for all x e R, m € N.




A Basic ldentity

For m,n € N, Pp, , is the unique polynomial of degree at most n — 1 satisfying

n—1
-1
Pmn(x) = (1-x)""+0(x"), x—0, thatis, Ppn( Z <m+J )
Jj=0

Theorem
(1 =x)"Pmm(x) + X"Pm.m(l —x) =1 for all x e R, m € N.

Proof. Define P(y,x) := 75" (*"71)x/y™~~1. Then

2m—1

m— 2m—1 i 2m—1—j m m

(x+y)Pm =Y ( J )XJYz Y = X"P(x,y) + y"P(y, x).
Jj=0

Note deg(P(1 — x,x)) < m and x™P(x,1 — x) + (1 — x)"P(1 — x,x) = 1, from
which we have

P(1-—x,x)=(1-=x)""[(1=x)"P(1—-x,x)]=(1—x)""[1—x"P(x,1— x)]
=(1-x)""+0(x"), x—0.
By the uniqueness of Py, ,, we must have P(x,1 — x) = Py, ,. Hence, we proved

(1 =x)"Pmm(x) + x"Pmm(l —x) =1.



Construction of Interpolatory Filters
o Afilter a € [h(Z) is interpolatory if a(z) + a(—z) =1, i.e,,

al0] = % and a[2k] =0, Vke Z\{0}.

a(z) +a(—z) = 2Zk€Z a[2k] 2%k,

Ity it lz=0"2(1+ 2711 +2).

2~ 2( +z‘1)(1+z)—|(1+z)/2|2—cos (€/2) for z = e 'S,
Z 1—|—% 12—2 21-zH(1-2). .

2- e 1-2z 1)(1—2):|(1—z)/2|2:sin2(£/2) for z = e~ ¢,

For m € N, a family of interpolatory filters a,, is given by a}, (e™¢) :=

am(e™®) = 2721+ 27 (1 + 2)]"Pmm(272(1 — 27)(1 - 2)).

asm(e ") 1= cos™™(£/2)P m,m(sin (€/2))-

Set x = sin?(£/2). Then sin?((€ + 7)/2) = cos?(£/2). Hence, for z = e~ %,

aym(2) = (1 = X)"Pmm(x) and  ab,(—2) = x™Pp.m(1 — x).
Therefore, a},.(z) + abn(—2) = (1 — X)™Pm.m(x) + X"Pmm(l — x) = 1.
The mask ab,, has 2m sum rules satisfying (1 + z)2™ | a},.(2).
Hence, sr(a,,) = 2m, a},,(1) =1, and fsupp(ab,,,) = [1 — 2m,2m — 1].
ab (e7"¢) >0 for all £ € R.
The filters are called Deslauriers-Dubuc interpolatory filters.



Interpolatory Filters a}

1

4
1 9 1 9 1
7a07§72a§707_§}[73,3]7

_ 25 75 1 75 4 _ 25 3
0, 512’0’ 256 2° 256’07 512707 512}[—5,5]7
5 49 245 1225 1 1225 245

0 0,— 0 0, —

" 40067 ) 4096 4096 Y7 4096 27 4096°
0 49

5
» 4096 ° 0, - 2096 }[—777]'

4096’

m 1 2 3 4 5
sm(al, ) | 1.5 | 2.440765 | 3.175132 | 3.793134 | 4.344084

Theorem

Let a € lo(Z) be interpolatory: a[2k] = 18[k] for k € Z. Define a refinable
function by $(€) := [[2,a(e™7¢) for ¢ € R. If sm(a) > 1/2, then ¢ is a
compactly supported continuous function and is interpolating:

o(k) = S[K], ke

In particular, if a= ab,, with m € N, then ¢(k) = 8[K] for all k € Z.




Compactly Supported Interpolating Function

/

(a) ¢ (b) ¢% (c) ¢%

(d) ¢% (e) ¢%o (F) o2



Fejér-Riesz Lemma

Lemma

Let ©® be a 2m-periodic trigonometric polynomial with real coefficients (or with
complex coefficients) such that ©(&) > 0 for all £ € R. Then there exists a
27-periodic trigonometric polynomial @ with real coefficients (or with complex
coefficients) such that |0(£)|? = ©(&) for all ¢ € R. Moreover, if ©(0) # 0, then
we can further require 8(0) = 1/©(0).

Definition: The Laurent polynomial of a filter a = {a[k]}kez € Ib(Z) is

a(z) 1=y alk]z" for z € C\{0}.

Fact: Let ©(z) be the Laurent polynomial for ©, i.e., ® = ©(e~'¢). Define
Z :={ze C\{0} : ©(z) =0} counting multiplicity of zeros.

L and

Then ® > 0 for all £ € R <= Z is invariant under the mapping z + z—
any point in Z N T has even multiplicity. Then there is a unique subset

YCZn{zeC : |z| <1} suchthat Z={(,("! : ¢ € Y}. Define
p(z) = [Tz -0
ey

Then 0(¢) := ce~"p(e~'¢) satisfies |9(¢)|? = O(¢) for all £ € R with
c:=+/0(0)/|p(1)] and n € Z (we often choose n = 0).



Daubechies Orthogonal Wavelets
Let ab,. be the interpolatory filter. Since a,_(e='¢) > 0, by Fejér-Riesz lemma,
there exists a2 € Iy(Z) such that a(1) = 1 and

lan(e™)|? = apn(e77) 1= cos™(€/2)Pmm(sin*(£/2))-
Then sr(al) = m (i.e., a5 has m sum rules) and
lan(2) + lan(=2)* = abm(2) + apm(—2) = 1.

Define ¢ through o(€) = 12, an(e ~i277€)  Then we shall prove later that

(¢(- — k), @) = d[k] for all k € Z:
[6,0]:= D |6(¢ + 2mk)* =
keZ
and {a2; b2} is an orthogonal wavelet filter bank with
bP(z) := zal(-z71).
Then vm(bE) = m and {¢; 4} is a compactly supported orthogonal wavelet, where
¥(€) = bP(e7/?)g(¢/2)

such that the low-pass filter a2 has order m sum rules and the high-pass filter b2
has m vanishing moments, called the Daubechies orthogonal wavelet of order m.



Daubechies Orthogonal Filters

D__ 11
a —{275}[0,1],
D_{1+\/§ 3+v3 3-3 1—\/5}

- 8 ° 8 ° 8 7 8 [-1,2]
D7{1+\/ﬁ+\/5+2\/m 5+\/E+3\/5+2\/E 5—\/ﬁ+\/5+2\/10
3 = ) 32

32

5—1/10—v/542/10 5+\/ﬁ—3\/5+2ﬁ 1+ﬁ—\/5+2 }[ 23]
16 ) 32 —2,3]»

aP = {—0.0535744507091, —0.0209554825625, 0.351869534328,
0.568329121704,0.210617267102, —0.0701588120893,
— 0.00891235072084,0.0227851729480 }[_3 4]

m 1 2 3 4 5 6

sm(aP) [ 0.5 | 1.0 | 1.415037 | 1.775565 | 2.096787 | 2.388374




Example aP Using the Interpolatory Filter a)

Consider z := e~¢. Note e~ /(6+™) = g=i€e=im — _7 and e/¢ = 771

1 1

1
cos?(£/2) = 5 + szl + 2= 2721+ 2)(1+z7Y),
1 1 ., 1

sin?(£/2) = cos?((¢ +m)/2) = 5= 7% %= 272(1—z)(1—z7h).

By definition, ab(e7¢) = cos?(&/2)P1.1(sin*(£/2)) with Py 1(x) = 1.
Hence, the Laurent polynomial representation of the filter a} is
ab(z) =221+ 2)(1+z7Y).
Hence, The zero set Z of a} is {—1, 1} and we can take Y = {—1}. Define
p(z) = z+ 1 and c := \/ab(0)/|p(1)| = 1/2.
Hence, aP(z) = cp(z) =271(1 + z) and aP (&) = 2711 + e~ 7¢).
bP(z) == zaP(~z7 ) =271z(1 - z7Y) =27} (z - 1).
al = {1 1}y and bP = {—1, 1} with sr(aP) = 1 and vm(bP) = 1.
Fact: For the high-pass filter b(z) := za(—z71), we have
b(z) = za(—z ') = > a(k)(-1)*z" K = > (~1)""a(1 - n)z".
kez nez
Hence, b(n) = (—1)'7"a(1 — n) for all n € Z.



Example a2 Using the Interpolatory Filter a}
o By definition, aj(e~"¢) = cos*(&/2)Pa.2(sin%(£/2)) with Pya(x) = 1 + 2x.
@ Hence, the Laurent polynomial representation of the filter a} is
ay(z) =2"*(1+2)*(1+z ")%q(z) with q(z):=2-3z—3z""
o Because the root of —2zq(z) = z2 — 4z + 1 is 2 + /3, the zero set Z of a} is
{-1,-1,-1,-1,2+ 3,2 V/3}
and we can take Y = {—1,—1,2 — v/3}. Define

p(2) = (z+1)2(z — 2+ V/3) and ¢ := 1/a}(0)/|p(1)| = ¥E£L.
@ Hence, we obtain the low-pass filter

3+1
() = cplz) = L 1+ 2Pz -2+ V)
1-— — 1
_ ﬁ+3 \@H 3+¢§Z3+ +V3 5
8 8 8 8
Hence, 23 = {178\6’ 378\/§7 3+8\/§’ 1+8\/§}[0}3] and sr(a?) = 2.
@ By b(n) = (—1)'""a(1 — n) for all n € Z, we have vm(b?) = 2 and
b2 :{_1+\/§ 3+v3 _3-3 1—\/5}
D 8 8 8 J[-21]

) 8 b

@ We can also choose Y = {—1,—1,2 ++/3}.




Daubechies Orthogonal Wavelets

D

(a) Filter aP (b) $7 (c)

(d) Filter af (e) 6% (F) 2%



An Example: Daubechies Orthogonal Wavelets

2= {1+8\/§7 3+8¢§, 3—8\/57 1—8¢§}’ b— {71—8\@’ 3—8\/57 73+8x/§7 1+8\/§}_

(8) a1 (h) 2 (i) a3 (i) 2
‘ L { ‘ SR ) NH e e
] ] ‘ i lw w
(k) by () b (m) bs (n) by

Figure: DAS,({a; b}) is an orthonormal basis of h(Z) for all J € N




Daubechies Orthogonal Wavelets

(a) Filter a? (b) % (c) ¥

s

I I

(d) Filter a? (e) 9% (F) %



Biorthogonal Wavelets in L,(R)

o Let ¢, 1) € L5(R) and ¢, € Ly(R).
o ({49}, {#;7}) is a biorthogonal wavelet in L>(R) if
© Both {¢;4} and {¢; ¢} are Riesz wavelets in L>(R), i.e.,

C1 Z ‘Ch‘2 < H Z ChhHl(R) <G Z |Ch|2,

hEAS(¢;9) hEAS(9;v) heAS(¢;)

where
AS(¢; ) :=={¢(- — k) : keZ}
U {yi = 2"20(2 - —k) : j >0,k e Z}.
@ AS(; 1) and AS(¢; 1)) are biorthogonal to each other:
(hyhy =1 and (h,g) =0, VgeAS(¢;9)\{h}.

@ The linear span of AS(¢; ) is dense in Ly(R). The linear span of AS(¢; 1)) is
dense in L>(R).



Characterization of Biorthogonal Wavelets

Theorem
Let a,b,3,b € Io(Z) with 3", alk] = X4y, 3[k] = 1. Define

~

B(8) : Ha TR () = b(eT2)g(¢/2),

() Ha =278y () = b(eT¢/2)d(¢/2).

Then ({¢; 4}, {¢;¥}) is a biorthogonal wavelet in Ly(R) if and only if
smy(a) > 0, sm ( 5) > 0, and ({5; b}, {a; b}) is a biorthogonal wavelet filter bank:

E(z) ~B(23)H azh) b))

—z) B( (—z71) b(-z7YH] ~




Construction of Biorthogonal Wavelet Filter Bank
Proposition

Let a,b,3, b € Io(Z). Then ({5; b}, {a; b}) is a biorthogonal wavelet filter bank:
[ 5(z)  B(z) ] [ azh) bz _,
i(—z) b(-z)| [a(=z7') b(-z71) 2
if and only if (3, a) is a biorthogonal low-pass filter:
i(z)a(z7 ') +3(—z)a(-z7H) =1

and there exist ¢ # 0 and n, i € Z such that

b(z) = cz™2"a(—z71),  b(z) = ¢z~ Nz(—z71).

o We often take

b(z) = za(—z71), b(z) = za(—z71).

@ (&, a) is a biorthogonal low-pass filter if and only if ¢ := a* x § is an
interpolatory mask.




Example of Biorthogonal Wavelets
We can obtain a pair of biorthogonal wavelet filters by splitting interplatory filters

8m(2 " am(2) = agy(2) = cos"™(€/2)Pm m(sin?(£/2))
as follows: P(x)P(x) = P m(x) and
am(z) = 27mzM/21(1 4 2)™P(sin?(¢/2)), bm(2) := z3m(—2z71),
Bm(z) = 27mz7 M2 (1 4 2)™B(sin?(€/2)),  bm(z) == zam(—z7Y).
The functions in a biorthogonal wavelet ({¢; 4}, {¢;1}) are defined by

96 =[Tane 7). 30 =]an(e ™7,

£/2
/2

BE) = bn(e /2)3(/2). D(E) = bule /2)d(¢/2).

For m =1, we have Py ;(x) = 1. Taking P(x) = 1 and P(x) = 1, we have the

Haar orthogonal wavelet filter bank. _

For m = 2, we have Py 5(x) =1+ 2x. Taking P(x) =1 and P(x) =1+ 2x, we

have the LeGall biorthogonal wavelet filter bank:
32:{%757%}[71,1]7 52:{_%5%

Note that sm(ap) = 1.5 and sm(4;) = 0.440765.

31 1
40 40 5}[22]



Examples: LeGall Biorthogonal Wavelet
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The Most Famous Biorthogonal Wavelet
For m = 4, we have
Psa(x) =1+ 4x + 10x* + 20x>.
Picking P(x) = 1+ tx and P(x) = 1+ (4 — t)x + (10 — 4t + t2)x? with

ti= tjs‘;ﬁ ~ 2.92069 with ty = (350 + 105v/15)%/3, we have

_f_t 2—t 164+t 6+t 16+t 2—t _ t
a={-55%7 "1 16 64> 3> 6at1-3.3"

5_{ ?—4t+10 t—4 —t’+6t—14 20—t 3t2—20t+110 20—t
4= 256’ 64 ° 64 ) 64 0 128 » 64 0

—t246t—14 t—4 t274t+10}
64 )64 0 256 [—4,4]-

The derived biorthogonal wavelet is called Daubechies 7/9 filter and has very
impressive performance in many applications.

Note that
sm(a) = 2.122644, sm(3) =~ 1.409968.



Example: Daubechies 7/9 Biorthogonal Wavelets
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Example from a5
Let
a2B = {ia %a %}[072]
be the B-spline filter of order 2. Let
b = {*Q 0, Q}[o 2]
b, = { 4 27 }[0 2]-

Then {a%; by, by} is a tight framelet filter bank such that aZ has order 2 sum
rules and both by, by have 1 vanishing moments.




Tight Framelet from B,
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Example from B;
Let

be the B-spline filter of order 3. Let
b = ﬁ{_]‘ 1}[0 1]»
_{ 87 8’8’8}[03]

Then {a; b1, by} is a tight framelet filter bank such that af has order 3 sum rules
and both by, by have 1 vanishing moments.



Tight Framelet from Bs
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Wavelet applications

The general procedure of wavelet applications in signal and image processing: For
an input data v,

@ Perform multi-level wavelet/framelet decomposition: w = Wv.
@ Process the wavelet coefficients w to obtain new wavelet coefficients w.
@ Perform multi-level wavelet/framelet reconstruction v = V.

Most data are supported on a bounded interval and we have to perform fast
wavelet/framelet transform (FFrT) on data on bounded intervals!.



Variants of FFrT: Undecimated FFrT

OO

(OO

@0

L2 [rv——
processing @—» V2b,

Figure: Diagram of a two-level discrete framelet transform using a pair of filter banks
({5 b1,...,bs}, (a; b1,..., bs}).

processing

processing

} (a5 by, ...

Undecimated DFrT using a framelet filter bank ({3; by,..., bs . ,
(z71) + - 4 bs(z)bs(z7!

which is required to satisfy 3(z)a(z™!) + by (z)by



Processing Wavelet Coefficients

A A 1|
o—=e
[N [N o )
il ’ /7| 1 ’ -2| 1
2 2 2 2 2
o—=e
o—=e

Figure: The hard thresholding, soft thresholding, and quantization.

Quantization is used for compression: convert a real number into a discrete set

{' ) 72q —-q, Ov q, 2q~ e }
The hard or soft thresholding is used for denoising and processing.



Tensor Product (Separable) Tight Framelet

Let ({&; b1,...,bs},{a;by,...,bs}) be a 1D dual framelet filter bank.
If s =1, it is called a biorthogonal wavelet filter bank.

Tensor product filters: [y ® -+ ® ug](k1, ..., ka) = v1(k1) - - - ug(kq).
Tensor product two-dimensional dual framelet filter bank:

({5;51,...,135}®{5;51,...,135},{3;bl,...,bs}®{a;bl,...,b5}>.
That is,
{a;b1,....bs}®@{a;b1,....bs} ={a®a; by ®a,...,bs @ a,
by ®by,....,bs@by,...,bs @ by,..., bs®}

consists of one low-pass tensor product filter a ® a and total
(s +1)2 — 1 = s% + 2s high-pass tensor product filters.
@ Advantages: fast and simple algorithm.



Wavelets for Image/Signal Compression

The most popular wavelets used for the compression purpose are biorthogonal
wavelet filter banks with symmetry and 4 ~ 6 vanishing moments, in
particular, LeGall and Daubechies 7/9 biorthogonal wavelet filter banks.

For filter banks having symmetry, signals on intervals and images on
rectangles are often extended by symmetry extension.

Dauchies orthogonal wavelet filter banks are also used. Due to lack of
symmetry, periodic extension of data on intervals and rectangles is often used.

Grey scale images / : each entry of / takes discrete values [0, 1,...,255]
(28 = 256).
Color images | has three channel: Red (R), (G), Blue (B). With each

entry in each channel takes values discrete values [0,1,...,255].



Most Popular Wavelets for Compression

o LeGall biorthogonal wavelet filter bank ({3; b}, {a; b}):
a:{%v%v%}[—l 1] 52{_%7%7ia%7_§}[—272]
1 T_ g1 _11
b= %a17_2717§}[ 1,3]» b:{iv_ﬁvZ}[O,Z]a

where b[k] = (—1)'~*3[1 — k] and b[k] = (—1)'~*a[1 — k]. Both a and &
have order 2 sum rules, while both b and b have 2 vanishing moments. Use
{a; b} for reconstruction.

o Dauchies 7/9 biorthogonal wavelet filter bank ({3; b}, {a; b}):

a= { 2—t 16+t 6+t 16+t 2—t L}
64’ 320764 0 16 64 > 32 64J[-3.3]

5_{t—4t+10 t—4 —t>46t—14 20—t 3t2—20t+110 20—t
_ 256 7 64 64 764 0 128 > 64

—t?46t—14 t—4 t2—4t+10}
64 > 64 1 256 [—4,4]>

where t ~2.92069 such that both a and 3 have order 4 sum rules, while both
b and b have 4 vanishing moments.




LeGall Biorthogonal Wavelets
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Daubechies 7/9 Biorthogonal Wavelets
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Test Image: Barbara




Tree Structure of Wavelet coefficients




Tree Structure of Wavelet coefficients




Tree structure of wavelet coefficients
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Image compression by wavelets

The original image of Lena



Image compression by wavelets

Compressed Lena image with compression ratio 32



Image compression by wavelets

Compressed Lena image with compression ratio 128



For Other Signal and Image Processing

Beyond compression purpose, framelet filter banks are often used instead.
Orthogonal wavelets and biorthogonal wavelets suffer a few key desired
properties: translation invariant (see next page from Selesnick’s paper) and
directionality.

For image denoising, people often use undecimated wavelet transforms, which
are just special cases of framelets.

Processing wavelet or framelet coefficients through thresholding is a key
issue. Statistics and probability theory are often involved.



Signal /Image/Video Denoising and Inpainting
o Let g = (g1,...,84)" be an observed corrupted data:

f4ny, ifjeq,
¥ \m,  ifjeQi={1,....d\Q,

f=true data (signal /image.video).

QC{1,...,d} is a (known or unknown) observable region.
n=i.i.d. Gaussian noise with zero mean and variance o2.

m= either unknown missing pixel or impulse noise.

Goal: Recover the true unknown data f from the corrupted g by suppressing
noise n or inpainting unknown m.

Denoising problem if Q = {1,...,d}.

Inpainting problem if © is known.

@ Removing mixed noise problem if © is unknown.



Image Denoising

@ Image denoising model is
z=Xx+n.
where
z=noisy image,
x=true image,
n=i.i.d. Gaussian noise of zero mean and variance o2.
Coefficients y = DTz after transform with a tight frame D.
Perform thresholding on y to get y.
Take inverse transform to get a reconstructed image X = Dy.



Bivariate Shrinkage

@ Image model z = x + n. where z=noisy image, x=true image, and n=i.i.d.
Gaussian noise of zero mean and variance o?.

o Coefficients y = Dz after transform with transform/dictionary D

@ Bivariate shrinkage by Selesnick: T = L‘#.
ge by ey

y,(Noisy Parent) scale|
/ j+1
©o O coarser
//
y,(Noisy Chid) / © © 0 © 0 © © O/
Y0000 00, saej

o

/ 4

/ kh pixel
N(k) : Neighbor "€
coefficients

This figure is from Selesnick's paper.



Test Images, Videos, and Inpainting Masks

(n) Boat

(o) F.print

(p) Mobile

(1) House

(q) C.guard

(m) Peppers

Mathematical

i}l approximation theory

suggests choosing a
basis that can
construct precise
signal approximations
with a linear
combination of a small
number of vectors

selected Inside the

(r) Mask



Denoising Results: Barbara

Barbara
o ||[UDWT| DT | CTF4 | CTF6(Gain) || CTF4 | CTF6(Gain)
5 || 36.90 | 37.36 | 37.41 | 37.82(0.46) || 37.75 | 38.10(0.74)
10 || 32.66 | 33.52 | 33.62 | 34.14(0.48) || 34.10 | 34.47(0.95)
15 || 30.31 | 31.38 | 31.47 | 32.02(0.64) || 31.97 | 32.32(0.94)
20 || 28.71 | 29.87 | 29.91 | 30.49(0.62) || 30.43 | 30.77(0.90)
25 || 27.52 | 28.70 | 28.71 | 29.31(0.61) || 29.26 | 29.57(0.87)
30 || 26.58 | 27.77 | 27.74 | 28.34(0.57) || 28.32 | 28.61(0.84)
50 || 24.27 | 25.26 | 25.21 | 25.71(0.45) || 25.69 | 26.02(0.76)
The larger PSNR (= 101logyq %) the better performance, where

MSE (u, v) := ﬁ > kes lu(k) = v(k)|? is the mean squared error.




The original image is on the left, the noisy image with ¢ = 30 is in the middle,
and the denoised image is on the right.



Image Inpainting Model: y = yox +n
o Let Q C {1,...,d} be an observable region.

o Xj + n;, ./ € Qa
7 ) arbitray (unknown), ;& Q.

y = (y1,---,Y4)" is the given observed image on Q.
n=(ny,...,ng)" isi.i.d. Gaussian noise with variance o2.
The inpainting mask Q¢ is known in advance.

Goal: recover the unknown true image x by restoring missing pixels of x
outside £ and suppress its noise on Q.

Solve the inpainting problem y = xox + n through the minimization scheme:

o1
min > | xeDc — y|3 + Allcll + &[(/ = DT D)el3,
ceRn 2

where D € R"*? is a tight frame satisfying DD’ = I; and a reconstructed
image is given by x = Dc.



Random Missing Pixels or Corrupted by Texts

Figure: 80% missing pixels. Recovered by our algorithm: PSNR=31.67.

Figure: Corrupted by text with o = 20. Recovered with PSNR= 28.93.



Image Inpainting Algorithm

1: Initialization: xg =0, A = Ag, £ = 0.
2. while not convergent do

3:

9:

© Nk

€1 = Thresholding, (VT (xay + (I — xa)x¢))-
Xey1 = Vepy1.
error = [|(/ — xa) — —(x¢ — xe1) 2/ 1y 2
if error < tolerence then
Update the thresholding value .
end if
=041

10: end while
11: return Xgpi1.



Remove Mixed Gaussian and Impulse Noises

Gaussian and Pepper—and—Salt impulse noise. Cameraman: ¢ =0, p = 0.3,
PSNR = 32.50. Lena: o0 = 15, p = 0.5, PSNR = 30.95.

i
Gaussian and Random-valued impulse noises: Barbara: ¢ =30, p = 0.2, PSNR = 25.93.
Peppers: o =20, p=0.1, PSNR = 27.31.




