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Two Popular Transforms: Fourier and Wavelet Transforms
Two most popular transforms are the Fourier transform and the wavelet
transform (and their variants).
If you signal or data are oscillating or periodic, then the Fourier transform is
often a good choice.
If your signal or data are of multiscale nature, then the wavelet transform is
often a good choice.
Both transforms have wide applications in sciences, engineering and industry,
and can be combined with other techniques such as deep neural networks.



Wavelet Scattering Networks

Source: from MATLAB at
https://www.mathworks.com/help/wavelet/ug/wavelet-scattering.html



Wavelets can be used in Neural Networks: MLPs and KANs

Source: Z. Liu et. al., KAN: Kolmogorov-Arnold Networks, arXiv: 2404.19756v3,
May 24, 2024.



Why Do We Need Transform-based Methods?

Given a particular signal to you:

[−21,−22,−23,−23,−25, 38, 36, 34].

Wavelet-based method: If you are allowed to send out only one
number about this signal,

which number shall you choose?

Your answer(s):

Average
−21− 22− 23− 23− 25 + 38 + 36 + 34

8
= −0.75.
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The Idea of Discrete Wavelet Transform Using Numbers
x = [−21,−22,−23,−23,−25, 38, 36, 34].
Averages at level 1 (A1): −0.75,
Average at level 2 (A2): −21.5, 21.5
Averages at level 3 (A3): 0.75, −0.75, −14.25, 14.25.
Averages at level 4 (A4): 0.5, −0.5, 0, 0, −31.5, 31.5, 1, −1.



Graph of Wavelet Coefficients A1



Graph of Wavelet Coefficients A2



Graph of Wavelet Coefficients A3



Graph of Wavelet Coefficients A4



Reconstruction: A1 (1 number)



Reconstruction: A1 + A2 (2 numbers)



Reconstruction: A1 + A2 + A3 (4 numbers)



Reconstruction: A1 + A2 + A3 + A4 (8 numbers)



Perfect Reconstruction: Reconstructed agrees with Original



Why Are Wavelets Useful?
x = [−21,−22,−23,−23,−25, 38, 36, 34].

Averages at level 1 (A1): -0.75 ,
Average at level 2 (A2): −21.5, 21.5

Averages at level 3 (A3): 0.75 , −0.75, −14.25, 14.25.

Averages at level 4 (A4): 0.5 , −0.5, 0 , 0, −31.5, 31.5, 1 , −1



Comparison: Original



Reconstructed with 3 Numbers by Thresholding



Comparison: Original−Reconstructed



How to Compute Wavelet Coefficients Fast?
x = [−21,−22,−23,−23,−25, 38, 36, 34].
Averages at level 1 (A1): −0.75,
Average at level 2 (A2): −21.5, 21.5
Averages at level 3 (A3): 0.75, −0.75, −14.25, 14.25.
Averages at level 4 (A4): 0.5, −0.5, 0, 0, −31.5, 31.5, 1, −1.

Are we missing something for wavelets? or can we expect more from wavelets?

For applications,
a fast computational algorithm

is highly demanded!
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Fast Wavelet Transform (FWT): Decomposition
x = [−21,−22 | − 23,−23 | − 25, 38 | 36, 34].

Averages: [−21.5,−23 | 6.5, 35]. Difference: [0.5, 0,−31.5, 1].
Averages: [−22.25, 20.75]. Differences: [0.75,−14.25].
Averages: [−0.75]. Differences: [−21.5].
Compare with Discrete Wavelet Transform:
Averages at level 1 (A1): −0.75,
Average at level 2 (A2): −21.5, 21.5
Averages at level 3 (A3): 0.75, −0.75, −14.25, 14.25.
Averages at level 4 (A4): 0.5, −0.5, 0, 0, −31.5, 31.5, 1, −1.
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Problem about the Previous Fast Wavelet Transform
x = [−21,−22 | − 23,−23 | − 25, 38 | 36, 34].
Averages: [−21.5,−23 | 6.5, 35]. Difference: [0.5, 0,−31.5, 1].
Averages: [−22.25, 20.75]. Differences: [0.75,−14.25].
Averages: [−0.75]. Differences: [−21.5].
Is there any problem about the above transform?

Energy Preservation Property: The ℓ2 energy of the signal x ∈ R8 is

∥x∥2ℓ2 = x21 + · · ·+ x28 = 6504.

But the sum of all the square of the wavelet coefficients is not 6504.
How to make the wavelet transform have the energy preservation property?
Without the energy preservation property, a small coefficient may carry
higher energy of the signal than a large coefficient.
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Fast Wavelet Transform with Energy Preservation Property
x = [−21,−22,−23,−23,−25, 38, 36, 34] with ∥x∥2ℓ2 = 6504.
Original Averages: [−21.5,−23 | 6.5, 35]. Difference: [0.5, 0,−31.5, 1].

Weighted Average:
√
2[−21.5,−23 | 6.5, 35]. Difference:√

2[0.5, 0,−31.5, 1] = [0.7070, 0, 44.54, 2.121]. Then its energy is

2[21.52 + 232 + 6.52 + 352] + 2[0.52 + 02 + 31.52 + 12] = 4517 + 1987 = 6504.

We used the weighted average
√
2[ 12 ,

1
2 ] and difference

√
2[ 12 ,−

1
2 ].

Weighted Averages: (
√
2)2[−22.25, 20.75]. Differences: [1.5,−28.5]. Then

22(22.252 + 20.752) = 3702.5 and 22(1.52 + 28.52) = 814.5.

Note that the energy preservation 3702.5 + 814.5 = 4517 and
3702.5 + 814.5 + 1987 = 6504.
Weighted Averages: 23/2[−0.75] = [2.121]. Differences:
23/2[−21.5] = [60.80].
Then 23 ∗ 0.752 + 23 ∗ 21.52 = 3702.5.
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We used the weighted average
√
2[ 12 ,

1
2 ] and difference

√
2[ 12 ,−

1
2 ].

Weighted Averages: (
√
2)2[−22.25, 20.75]. Differences: [1.5,−28.5]. Then

22(22.252 + 20.752) = 3702.5 and 22(1.52 + 28.52) = 814.5.

Note that the energy preservation 3702.5 + 814.5 = 4517 and
3702.5 + 814.5 + 1987 = 6504.
Weighted Averages: 23/2[−0.75] = [2.121]. Differences:
23/2[−21.5] = [60.80].
Then 23 ∗ 0.752 + 23 ∗ 21.52 = 3702.5.
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Discrete Orthogonal Wavelet Transform Through Linear Algebra

x = [−21,−22,−23,−23,−25, 38, 36, 34].

Energy preservation property: ∥y∥ℓ2 = ∥x∥ℓ2 =
√
6505 ≈ 80.64:

y = [0.7070, 0, 44.54, 2.121, 1.5,−28.5, 2.121, 60.80].

Linear algebra interpretation: An orthonormal wavelet basis of R8:
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
The above orthogonal wavelet transform is generated through high-pass
wavelet filter [ 12 ,−

1
2 ] and low-pass wavelet filter [ 12 ,

1
2 ] and weighted by

√
2.

Perfect representation: x = ⟨x , v1⟩v1 + · · ·+ ⟨x , v8⟩v8 for all x ∈ R8 with
v1, . . . , v8 being columns of the unitary matrix U, i.e., UUTx = x .
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Haar Wavelet Basis Elements for R8



Continuous Wavelet Transform (CWT)
Definition: For f : R → C and 1 ⩽ p ⩽ ∞, f ∈ Lp(R) if

∥f ∥p :=

(∫
R
|f (x)|pdx

)1/p

<∞.

Definition: The Fourier transform of a function f ∈ L1(R) is defined to be

(F f )(ξ) = f̂ (ξ) :=

∫
R
f (x)e−ixξ dx , ξ ∈ R.

For ψ : R → C, we define

ψλ;k(t) := |λ|1/2ψ(λt − k), λ ∈ R\{0}, k ∈ R.

Note that ∥ψλ;k∥2 = ∥ψ∥2 for all λ ∈ R\{0} and k ∈ R.
A function ψ is called an admissible wavelet if

Cψ :=

∫
R

|ψ̂(ξ)|2

|ξ|
dξ <∞.

For f , ψ ∈ L2(R) such that ψ is an admissible wavelet, the continuous
wavelet transform (CWT) of the function f is defined to be

Wψf (α, β) := ⟨f , ψα−1;α−1β⟩ =
∫
R
f (x)|α|−1/2ψ

(x − β

α

)
dx ,

α ∈ R\{0}, β ∈ R.



Scales and Translations of Wavelet Functions
A typical example of admissible wavelets is given by

ψ(x) = G ′′(t) =
1

2π
(t2 − 1)e−t2/2, where G (t) =

1

2π
e−t2/2.

Recall that ψλ;k(t) := |λ|1/2ψ(λt − k). A discretized version of continuous
wavelet transform leads a classical wavelet system:

ψ2j ;k = 2j/2ψ(2j · −k), j ∈ Z, k ∈ Z.

Note that ⟨f , ψ2j ;k⟩ = Wψf (2
−j , 2−jk) due to ψα−1;α−1β = ψ2j ;k with

α = 2−j and β = 2−jβ.

ψ (blue), ψ22;0 and ψ22;10 (orange, left), and ψ2−2;0 and ψ2−2;10 (orange, right).



Key Property of CWT

Theorem

Let ψ, η ∈ L2(R) such that

Cψ :=

∫
R

|ψ̂(ξ)|2

|ξ|
dξ <∞, Cη :=

∫
R

|η̂(ξ)|2

|ξ|
dξ <∞.

Then ∥Wψf ∥2 := ⟨Wψf ,Wψf ⟩ = Cψ∥f ∥2L2(R) and for all f , g ∈ L2(R),

⟨Wψf ,Wηg⟩ :=
∫
R

∫
R
Wψf (α, β)Wηg(α, β)dβ

dα

α2
= Cψ,η⟨f , g⟩,

where Cψ,η :=
∫
R
ψ̂(ξ)η̂(ξ)

|ξ| dξ <∞. In particular, if Cψ,η ̸= 0, then

f (·) = 1

Cψ,η

∫
R

∫
R
Wψf (α, β)ηα−1;α−1β(·)dβ

dα

α2

holds in the weak sense, that is,

⟨f , g⟩ = 1

Cψ,η

∫
R

∫
R
Wψf (α, β)⟨ηα−1;α−1β , g⟩dβ

dα

α2
, ∀ g ∈ L2(R).



Admissible Wavelets
ψ(x) = G ′′(t) = 1

2π (t
2 − 1)e−t2/2, where G (t) = 1

2π e
−t2/2.

Morlet (or Gabor) wavelets: ψ(t) = cσπ
−1/4e−t2/2(e iσt − e−σ

2/2) with

cσ = (1 + e−σ
2 − 2e−

3
4σ

2

)−
1
2 and ψ̂(ξ) = cσπ

− 1
4 (e−(σ−ξ)2/2 − e−(ξ2+σ2)/2).

Analytic wavelets ψ are often used such that ψ̂(ξ) = 0 for all ξ < 0.
The generalized Morse wavelet is given by

ψ̂(ξ) := aP,γχ[0,1](ξ)ξ
P2

γ e−ξ
γ

,

where aβ,γ is a normalizing constant and γ characterizes the symmetry of the
Morse wavelet. The Morse wavelet is obtained by replacing P2/γ with β.



Scalogram Using CWT



f (t) = e2πi32tχ[0.1,0.3] + 2e−2πi64tχ(0.7,∞)



Scalogram Using CWT



Discrete Framelet Transform (DFrT) and Discrete Wavelet Transform
(DWT)

One-level discrete framelet transform
Discrete framelet transform vs discrete wavelet transform
Basic properties of DFrT: perfect reconstruction and sparsity.
Different types of wavelets and framelets.

In this course, we only consider real-valued filters, sequences and data.



Some Definitions and Notation
l(Z) consists of all real-valued sequences v = {v [k]}k∈Z : Z → R.
l2(Z) for signals: all real-valued sequences v ∈ l2(Z) such that

∥v∥2ℓ2 :=
∑
k∈Z

|v [k]|2 <∞.

l0(Z) for filters: all finitely supported real-valued sequences u = {u[k]}k∈Z :
Z → R on Z, i.e., {k ∈ Z : u[k] ̸= 0} is a finite subset of Z.

For v = {v [k]}k∈Z ∈ l0(Z), define v⋆[k] := v [−k] for k ∈ Z and define

v(z) :=
∑
k∈Z

v [k]zk , z ∈ C\{0},

where v(z) is called the symbol (or z-transform) of the sequence v .
Convolution u ∗ v and inner product:

(u ∗ v)[n] :=
∑
k∈Z

u[k]v [n − k], n ∈ Z,

⟨v ,w⟩ :=
∑
k∈Z

v [k]w [k], v ,w ∈ l2(Z)

v⋆(z) = v(z−1) and the symbol of u ∗ v is u(z)v(z):

v⋆(z) =
∑
k∈Z

v⋆[k]zk =
∑
k∈Z

v [−k]zk =
∑
k∈Z

v [k]z−k = v(z−1).
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Subdivision and Transition Operators
The subdivision operator Su : l(Z) → l(Z):

(Sbv)[n] := 2
∑
k∈Z

v [k]b[n − 2k], n ∈ Z

Often used in the reconstruction step in a fast wavelet transform.

The transition operator Tu : l(Z) → l(Z) is

(Tbv)[n] := 2
∑
k∈Z

v [k]b[k − 2n], n ∈ Z.

Often used in the decomposition step in a fast wavelet transform.
Upsampling operator ↑d : l(Z) → l(Z):

(v ↑d)[n] := v [n/d] if n/d ∈ Z and v ↑d[n] = 0 otherwise.

Downsampling (or decimation): (v ↓d)[n] := v [dn], n ∈ Z.
Subdivision and transition operators:

Sbv = 2b ∗ (v ↑2) and Tbv = 2(b⋆ ∗ v)↓2.
If the filter b ∈ l0(Z) has short support, then the length of Sbv is almost
twice of that of v , while the length of Tbv is only half of that of v .
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One-level Discrete Framelet Transform (DFrT)
Let b̃0, . . . , b̃s , b0, . . . , bs ∈ l0(Z) be finitely supported filters in l0(Z).
For input data v ∈ l2(Z), a one-level discrete framelet decomposition:

wℓ :=
√
2
2 Tb̃ℓv =

√
2(b̃⋆ℓ ∗ v)↓2, ℓ = 0, . . . , s,

or using a framelet decomposition operator:

W̃v :=
√
2
2 (Tb̃0v , . . . , Tb̃sv) =

√
2(b̃⋆0 ∗ v , . . . , b̃⋆s ∗ v)↓2.

The total number of nonzero coefficients of wℓ is approximately half of that
of v . Hence, W̃v is roughly 1

2 (s + 1) of that of v .

A one-level framelet reconstruction by V : (l(Z))1×(s+1) → l(Z):

V(w0, . . . ,ws) =

√
2

2

s∑
ℓ=0

Sbℓwℓ =
√
2b0 ∗ (w0 ↑2) + · · ·+

√
2bs ∗ (ws ↑2).

A filter bank ({b̃0, . . . b̃s}, {b0, . . . , bs}) has the perfect reconstruction (PR)
if VW̃v = v for all data v ∈ l2(Z).
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Diagram of One-level DFrTs

input
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processing
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processing
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2b1

√
2bs

output

Figure: Diagram of a one-level discrete framelet transform using a pair of filter banks
({b̃0, . . . , b̃s}, {b0, . . . , bs}). Decomposition: wℓ :=

√
2(b̃⋆ℓ ∗ v)↓2 for ℓ = 0, . . . , s.

Reconstruction:
√
2b0 ∗ (w0 ↑2) + · · ·+

√
2bs ∗ (ws ↑2).

It is called a wavelet filter bank for s = 1, and a framelet filter bank if s > 1.



Property of DFrT: Perfect Reconstruction (PR) Property

Theorem (PR of DFrT)

A pair of filter banks ({b̃0, . . . , b̃s}, {b0, . . . , bs}) has

Perfect Reconstruction (PR): v = VW̃v =
1

2

s∑
ℓ=0

SbℓTb̃ℓv , ∀ v ∈ l2(Z),

if and only if ({b̃0, . . . , b̃s}, {b0, . . . , bs}) is a dual framelet filter bank satisfying:

b̃0(z)b0(z
−1) + b̃1(z)b1(z

−1) + · · ·+ b̃s(z)bs(z
−1) = 1, (1)

b̃0(z)b0(−z−1) + b̃1(z)b1(−z−1) + · · ·+ b̃s(z)bs(−z−1) = 0. (2)

That is, [
b̃0(z) · · · b̃s(z)

b̃0(−z) · · · b̃s(−z)

] [
b0(z) · · · bs(z)
b0(−z) · · · bs(−z)

]⋆
= I2.

where I2 denotes the 2× 2 identity matrix and A⋆(z) := [A(z−1)]T for a general
matrix A.



Biorthogonal Wavelet Filter Banks
Definition: A dual framelet filter bank with s = 1 is called a biorthogonal wavelet
filter bank, a nonredundant filter bank. That is, ({b̃0, b̃1}, {b0, b1}) is a
biorthogonal wavelet filter bank if[

b̃0(z) b̃1(z)

b̃0(−z) b̃1(−z)

] [
b0(z) b1(z)
b0(−z) b1(−z)

]⋆
= I2.

Moreover, the above identity is equivalent to[
b0(z) b1(z)
b0(−z) b1(−z)

]⋆ [
b̃0(z) b̃1(z)

b̃0(−z) b̃1(−z)

]
= I2,

which is just [
b0(z

−1) b0(−z−1)
b1(z

−1) b1(−z−1)

] [
b̃0(z) b̃1(z)

b̃0(−z) b̃1(−z)

]
= I2,

that is,

b̃0(z)b0(z
−1) + b̃0(−z)b0(−z−1) = 1, b̃1(z)b1(z

−1) + b̃1(−z)b1(−z−1) = 1,

b̃0(z)b1(z
−1) + b̃0(−z)b1(−z−1) = 0, b̃1(z)b0(z

−1) + b̃1(−z)b0(−z−1) = 0.



Orthogonal Wavelet Filter Banks
Definition: {b0, b1} is called an orthogonal wavelet filter bank if
({b0, b1}, {b0, b1}) is a dual framelet filter bank, that is,[

b0(z) b1(z)
b0(−z) b1(−z)

] [
b0(z) b1(z)
b0(−z) b1(−z)

]⋆
= I2,

which is further equivalent to[
b0(z

−1) b0(−z−1)
b1(z

−1) b1(−z−1)

] [
b0(z) b1(z)
b0(−z) b1(−z)

]
= I2,

which is further equivalent to

b0(z)b0(z
−1) + b0(−z)b0(−z−1) = 1,

b1(z)b1(z
−1) + b1(−z)b1(−z−1) = 1,

b0(z)b1(z
−1) + b0(−z)b1(−z−1) = 0.

That is, the vectors

⟨b0(z), b0(−z)⟩ and ⟨b1(z), b1(−z)⟩
have ℓ2-norm one for all z ∈ C\{0} and they are mutually perpendicular in C2.



Role of
√
2
2

in DFrT: Norm Preservation Property

Theorem

Let b0, . . . , bs ∈ l0(Z). Then the following are equivalent to each other:

(i) ⟨Wv ,W ṽ⟩ = ⟨v , ṽ⟩ for all v , ṽ ∈ l2(Z), where

Wv :=
√
2
2 (Tb0v , . . . , Tbsv) =

√
2(b⋆0 ∗ v , . . . , b⋆s ∗ v)↓2.

(ii) ∥Wv∥2
(l2(Z))1×(s+1) = ∥v∥2l2(Z) for all v ∈ l2(Z), that is,

∥
√
2
2 Tb0v∥2l2(Z) + · · ·+ ∥

√
2
2 Tbs v∥2l2(Z) = ∥v∥2l2(Z), ∀ v ∈ l2(Z).

(iii) The filter bank ({b0, . . . , bs}, {b0, . . . , bs}) has PR:[
b0(z) · · · bs(z)
b0(−z) · · · bs(−z)

] [
b0(z) · · · bs(z)
b0(−z) · · · bs(−z)

]⋆
= I2.

Definition: {b0, . . . , bs} with PR is called a tight framelet filter bank. If in
addition s = 1, it is called an orthogonal wavelet filter bank.



Examples of Orthogonal Wavelet Filter Banks
To list a filter b = {b[k]}k∈Z with support [m, n],

b = {b[m], . . . , b[−1],b[0], b[1], . . . , b[n]}[m,n],

{b0, b1} is the Haar orthogonal wavelet filter bank, where

b0 = { 1
2 ,

1
2}[0,1], b1 = {− 1

2 ,
1
2}[0,1].

Note b0(z) =
1
2 (1 + z), b1(z) =

1
2 (z − 1). Hence, {b0, b1} satisfies

b0(z)b0(z
−1) + b0(−z)b0(−z−1) = 1,

b1(z)b1(z
−1) + b1(−z)b1(−z−1) = 1,

b0(z)b1(z
−1) + b0(−z)b1(−z−1) = 0.

The graphs of |b0(e−iξ)|2 = cos2(ξ/2) (blue) and |b1(e−iξ)|2 = sin2(ξ/2)
(red):
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Examples of Biorthogonal Wavelet Filter Banks
({b̃0, b̃1}, {b0, b1}) is a biorthogonal wavelet filter bank, where

b̃0 = {− 1
8
, 1
4
, 3
4 ,

1
4
,− 1

8
}[−2,2], b̃1 = {− 1

4 ,
1
2
,− 1

4
}[0,2],

b0 = { 1
4
, 1
2 ,

1
4
}[−1,1], b1 = {− 1

8
,− 1

4 ,
3
4
,− 1

4
,− 1

8
}[−1,3].

Called the LeGall wavelet filter bank, used for image compression.

Note that b̃0(z) =
1
8 (1 + z)2(−z ( − 2) + 4z−1 − 1), b̃1(z) = − 1

4z
−1(1− z)2,

b0(z) =
1
4z

−1(1 + z)2, and b1(z) =
1
8 (1− z)2(−z−1 − 4− z), satisfying[

b0(z
−1) b0(−z−1)

b1(z
−1) b1(−z−1)

] [
b̃0(z) b̃1(z)

b̃0(−z) b̃1(−z)

]
= I2,

Frequency responses of |b0(e−iξ)|2, |b1(e−iξ)|2 and |b̃0(e−iξ)|2, |b̃1(e−iξ)|2.
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Discrete Wavelet Transform Using Haar Wavelet Filter Bank
Apply the Haar orthogonal wavelet filter bank to

v = {−21,−22,−23,−23,−25, 38, 36, 34}[0,7]
Note that Tb0v [n] = v [2n] + v [2n + 1] and Tb1v [n] = −v [2n] + v [2n + 1]. We
have the wavelet coefficients:

w0 =
√
2
2 {−43,−46, 13, 70}[0,3], w1 =

√
2
2 {−1, 0, 63,−2}[0,3].

Note that

(Sb0w0)[2n] = w0[n], (Sb0w0)(2n + 1) = w0[n], n ∈ Z
(Sb1w1)(2n) = −w1[n], (Sb1w1)(2n + 1) = w1[n], n ∈ Z.

Hence, we have
√
2
2 Sb0w0 =

1
2{−43,−43,−46,−46, 13, 13, 70, 70}[0,7],

√
2
2 Sb1w1 =

1
2{1,−1, 0, 0,−63, 63, 2,−2}[0,7].

Clearly, we have the perfect reconstruction of v :
√
2
2 Sb0w0 +

√
2
2 Sb1w1 = {−21,−22,−23,−23,−25, 38, 36, 34}[0,7] = v

and the following energy-preserving identity

∥w0∥2l2(Z) + ∥w1∥2l2(Z) = 4517 + 1987 = 6504 = ∥v∥2l2(Z).



Property of DFrT: Sparsity
One key feature of DFrT is its sparse representation for smooth or piecewise
smooth signals.
It is desirable to have as many as possible negligible framelet coefficients for
smooth signals.
Smooth signals are modeled by polynomials. Let p : R → C be a polynomial:

p(x) =
m∑

n=0

pnx
n.

a polynomial sequence p|Z : Z → C by

(p|Z)[k] = p(k), k ∈ Z.

N0 := N ∪ {0}.
Πm−1 is the set of all polynomials of degree less than m.



Transition Operator Acting on Polynomials

Theorem

Let b = {b[k]}k∈Z ∈ l0(Z). Then for any m ∈ N, the following are equivalent:

1 Tbp = 0 for all polynomial sequences p ∈ Πm−1, where
(Tbp)[n] := 2

∑
k∈Z p[k]b[k − 2n].

2 The filter b must have m vanishing moments:∑
k∈Z

b[k]k j = 0, j = 0, . . . ,m − 1.

3 b(1) = b′(1) = · · · = b(m−1)(1) = 0.

4 (1− z)m | b(z), i.e., b(z) = (1− z)mQ(z) for some Laurent polynomial Q.



Subdivision Operator Acting on Polynomials

Theorem

Let b = {b[k]}k∈Z ∈ l0(Z). For m ∈ N, the following are equivalent:

1 SbΠm−1 ⊆ Πm−1, where (Sbp)[n] = 2
∑

k∈Z p[k]b[n − 2k].

2 b has order m sum rules:∑
k∈Z

b[2k](2k)j =
∑
k∈Z

b[1 + 2k](1 + 2k)j , j = 0, . . . ,m − 1.

3 b has order m sum rules:

b(−1) = b′(−1) = · · · = b(m−1)(−1) = 0.

4 (1 + z)m | b(z), i.e., b(z) = (1 + z)mQ(z) for some Laurent polynomial Q.

Moreover, if any of the above holds, then for all p ∈ Πm−1,

Sbp = 2−1p(2−1·) ∗ b =
∞∑
j=0

(−i)j

2j j!
p(j)(2−1·)[b(e−iξ)](j)|ξ=0.

Equivalences among (2), (3), (4) are easy. So, we only prove (1) ⇐⇒ (2).



Vanishing Moments for Biorthogonal Wavelet Filter Banks

Theorem

Let ({b̃0, b̃1}, {b0, b1}) be a biorthogonal wavelet filter bank, i.e.,[
b0(z

−1) b0(−z−1)
b1(z

−1) b1(−z−1)

] [
b̃0(z) b̃1(z)

b̃0(−z) b̃1(−z)

]
= I2.

Then b̃1 has m vanishing moments if and only if b0 has m sum rules. That is,
vm(b̃1) = sr(b0) and vm(b1) = sr(b̃0).



Vanishing Moments for Orthogonal Wavelet Filter Banks

Corollary

Let {b0, b1} be an orthogonal wavelet filter bank. Then b1 has m vanishing
moments if and only if b0 has m sum rules. That is, vm(b1) = sr(b0).

We shall discuss multilevel discrete wavelet/framelet transform later and hence for
a dual framelet filter bank ({b̃0, b̃1, . . . , b̃s}, {b0, b1, . . . , bs}), we define

ã := b̃0, ã := b0

for low-pass filters, because ã(1) ̸= 0 and a(1) ̸= 0. We often normalize them so
that ã(1) = a(1) = 1, i.e.,

∑
k∈Z ã[k] =

∑
k∈Z a[k] = 1.

Hence, from now one, we shall use the notation

({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs})
for a dual framelet filter bank.



An Example of Tight Framelet Filter Banks
A tight framelet filter bank {a; b1, b2} is given by

a = { 1
4 ,

1
2 ,

1
4}[−1,1],

b1 = {−
√
2
4 , 0,

√
2
4 }[−1,1],

b2 = {− 1
4 ,

1
2 ,−

1
4}[−1,1].

Note that a(z) = 1
4z

−1(z + 1)2, b1(z) =
√
2
2 z−1(z − 1)2, and

b2(ξ) = − 1
4z

−1(z − 1)2

a(z)a(z−1) + b1(z)b1(z
−1) + b2(z)b2(z

−1) = 1,

a(z)a(−z−1) + b1(z)b1(−z−1) + b2(z)b2(−z−1) = 0

sr(a) = 2 and vm(b1) = 1, vm(b2) = 2.
Frequency responses of |a(e−iξ)|2 (blue), |b1(e−iξ)|2 (yellow) and |b2(e−iξ)|2
(red).
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Frequency responses of |a(e−iξ)|2 (blue), |b1(e−iξ)|2 (yellow) and |b2(e−iξ)|2
(red).



An Example of Tight Framelet Filter Banks
A tight framelet filter bank {a; b1, b2} is given by

a = { 1
4 ,

1
2 ,

1
4}[−1,1],

b1 = {−
√
2
4 , 0,

√
2
4 }[−1,1],

b2 = {− 1
4 ,

1
2 ,−

1
4}[−1,1].

Note that a(z) = 1
4z

−1(z + 1)2, b1(z) =
√
2
2 z−1(z − 1)2, and

b2(ξ) = − 1
4z

−1(z − 1)2

a(z)a(z−1) + b1(z)b1(z
−1) + b2(z)b2(z

−1) = 1,

a(z)a(−z−1) + b1(z)b1(−z−1) + b2(z)b2(−z−1) = 0

sr(a) = 2 and vm(b1) = 1, vm(b2) = 2.
Frequency responses of |a(e−iξ)|2 (blue), |b1(e−iξ)|2 (yellow) and |b2(e−iξ)|2
(red).



Discrete Framelet Transform using Tight Framelet Filter Banks

A test input data:

v̊ = {−21,−22,−23,−23,−25, 38, 36, 34}[0,7]

We extend v̊ to an 8-periodic sequence v on Z, given by

v = {. . . ,−25, 38, 36, 34,−21,−22,−23,−23,−25, 38, 36, 34,−21,−22,−23,−23, . . .}.

Then all sequences Tav , Tb1v , Tb2v are 4-periodic and

w0 =
√
2

2
Tav =

√
2
2
{. . . ,−15,− 91

2
,− 35

2
, 72,−15,− 91

2
,− 35

2
, 72,− 15,− 91

2
,− 35

2
, 72, . . .},

w1 =
√
2

2
Tb1v =

√
2
2
{. . . ,−28,− 1

2
, 61

2
,−2,−28,− 1

2
, 61

2
,−2,− 28,− 1

2
, 61

2
,−2, . . .},

w2 =
√
2

2
Tb2v = {. . . ,−27,− 1

2
,− 65

2
, 0,−27,− 1

2
,− 65

2
, 0,− 27,− 1

2
,− 65

2
, 0, . . .}.

It is also easy to check that
√
2
2 (Sb0w0 + Sb1w1 + Sb2w2) = v . But

∥w0∥2 + ∥w1∥2 + ∥w2∥2 =
15571

2
+

3437

2
+

3571

2
=

22579

4
≈ 5644.8

∥v∥2 = 6504.



Example: LeGall Biorthogonal Wavelet Filter Bank

The LeGall biorthogonal wavelet filter bank is given by

a = { 1
4 ,

1
2 ,

1
4}[−1,1], ã = {− 1

8 ,
1
4 ,

3
4 ,

1
4 ,−

1
8}[−2,2]

b = {− 1
8 ,−

1
4 ,

3
4 ,−

1
4 ,−

1
8}[−1,3], b̃ = {− 1

4 ,
1
2 ,−

1
4}[0,2],

Note that sr(a) = sr(ã) = 2 and vm(b) = vm(b̃) = 2.
Extend v̊ by both endpoints non-repeated (EN):

v = {. . . ,−25,−23,−23,−22,−21,−22,−23,−23,−25, 38, 36, 34, 36, 38,−25,−1,−1, . . .}.

Then Tãv is 7-periodic and is symmetric about 0, 7/2:

w0 =
√
2
2 Tãv =

√
2
2 {. . . ,− 133

4 ,−
91
2 ,−42,− 91

2 ,−
133
4 ,

349
4 ,

349
4 ,−

133
4 , . . .},

and Tb̃v is 7-periodic and is symmetric about − 1
2 , 3:

w1 =
√
2
2 Tb̃v =

√
2
2 {. . . ,−2, 652 , 0, 0, 1,

65
2 ,−2, 652 , 1, 0, . . .}.



Example: Tight Framelet Filter Bank from B2

Consider a tight framelet filter bank

a = { 1
4 ,

1
2 ,

1
4}[−1,1], b1 = {−

√
2
4 , 0,

√
2
4 }[−1,1], b2 = {− 1

4 ,
1
2 ,−

1
4}[−1,1].

Extend v̊ with both endpoints non-repeated (EN). Then all Tav , Tb1v , Tb2v are
7-periodic and symmetric about 0 and 7/2:

w0 =
√
2

2
Tav =

√
2

2
{. . . , 72,− 35

2
,− 91

2
,−43,− 91

2
,− 35

2
, 72, 72,− 35

2
,− 91

2
, . . .},

w1 =
√
2

2
Tb1v =

√
2

2
{. . . , 2,− 61

2
, 1
2
, 0,− 1

2
, 61

2
,−2, 2,− 61

2
, 1
2
, . . .}.

w2 =
√
2

2
Tb2v = {. . . , 0,− 65

2
,− 1

2
, 1,− 1

2
,− 65

2
, 0, 0,− 65

2
,− 1

2
, 1, . . .}.

Compare with framelet coefficients through periodic extension:

w0 =
√
2

2
Tav =

√
2

2
{. . . ,−15,− 91

2
,− 35

2
, 72,−15,− 91

2
,− 35

2
, 72,− 15,− 91

2
,− 35

2
, 72, . . .},

w1 =
√
2

2
Tb1v =

√
2

2
{. . . ,−28,− 1

2
, 61

2
,−2,−28,− 1

2
, 61

2
,−2,− 28,− 1

2
, 61

2
,−2, . . .},

w2 =
√
2

2
Tb2v = {. . . ,−27,− 1

2
,− 65

2
, 0,−27,− 1

2
,− 65

2
, 0,− 27,− 1

2
,− 65

2
, 0, . . .}.



Multi-level Fast Framelet Transform (FFrT)
Let {ã; b̃1, . . . , b̃s} and {a; b1, . . . , bs} be filters in l0(Z).
For a positive integer J, a J-level discrete framelet decomposition is given by

vj :=
√
2
2 Tãvj−1, wℓ,j :=

√
2
2 Tb̃ℓvj−1, ℓ = 1, . . . , s, j = 1, . . . , J,

where v0 : Z → C is an input signal.
W̃Jv0 := (w1,1, . . . ,ws,1, . . . ,w1,J , . . . ,ws,J , vJ).
a J-level discrete framelet reconstruction is

vj−1 :=

√
2

2
Savj +

√
2

2

s∑
ℓ=1

Sbℓwℓ,j , j = J, . . . , 1.

VJ(w1,1, . . . ,ws,1, . . . ,w1,J , . . . ,ws,J , vJ) = v0.

The perfect reconstruction property: VJW̃Jv0 = v0 for all J ∈ N, v0 ∈ l2(Z).
The fast framelet transform has the perfect reconstruction property if and
only if ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) is a dual framelet filter bank satisfying[

ã(z) b̃1(z) · · · b̃s(z)

ã(−z−1) b̃1(−z−1) · · · b̃s(−z−1)

] [
a(z) b1(z) · · · bs(z)

a(−z−1) b1(−z−1) · · · bs(−z−1)

]⋆
= I2.

A fast framelet transform with s = 1 is called a fast wavelet transform.



Variants of FFrT: Undecimated FFrT

input v0

√
2ã⋆

√
2b̃⋆1

√
2b̃⋆s

↓ 2
v1

↓ 2
w1,1

↓ 2
ws,1

processing

processing

↑ 2

↑ 2

↑ 2

√
2a

√
2b1

√
2bs

output

√
2ã⋆

√
2b̃⋆1

√
2b̃⋆s

↓ 2
v2

↓ 2
w1,2

↓ 2
ws,2

processing

processing

processing

↑ 2

↑ 2

↑ 2

√
2a

√
2b1

√
2bs

Figure: Diagram of a two-level discrete framelet transform using a pair of filter banks
({ã; b̃1, . . . , b̃s}, (a; b1, . . . , bs}).

input

ã⋆

b̃⋆1

b̃⋆s

processing

processing

a

b1

bs

output

ã⋆ ↑2

b̃⋆1 ↑2

b̃⋆s ↑2

processing

processing

processing

a↑2

b1 ↑2

bs ↑2

Undecimated DFrT using a framelet filter bank ({ã; b̃1, . . . , b̃s}, (a; b1, . . . , bs}),
which is required to satisfy ã(z)a(z−1) + b̃1(z)b1(z

−1) + · · ·+ b̃s(z)bs(z
−1) = 1.



Express J-level FFrT using Discrete Wavelets in l2(Z)

v0 ∈ l2(Z)

√
2ã⋆

√
2b̃⋆1

√
2b̃⋆s

↓ 2
v1

↓ 2
w1,1

↓ 2
ws,1

processing

processing

↑ 2

↑ 2

↑ 2

√
2a

√
2b1

√
2bs

output

√
2ã⋆

√
2b̃⋆1

√
2b̃⋆s

↓ 2
v2

↓ 2
w1,2

↓ 2
ws,2

processing

processing

processing

↑ 2

↑ 2

↑ 2

√
2a

√
2b1

√
2bs

Figure: Diagram of a two-level discrete framelet transform using a pair of filter banks
({ã; b̃1, . . . , b̃s}, (a; b1, . . . , bs}).



Refinable Functions
Let a ∈ l0(Z) with

∑
k∈Z a[k] = 1.

The refinable function ϕ̂(ξ) :=
∏∞

j=1 a(e
−i2−jξ) is well defined for ξ ∈ R and

satisfies

ϕ(x) = 2
∑
k∈Z

a[k]ϕ(2x − k) i.e., ϕ̂(2ξ) = a(e−iξ)ϕ̂(ξ).

Indeed,

ϕ̂(2ξ) =
∞∏
j=1

a(e−i21−jξ) = a(e−iξ)
∞∏
j=1

a(e−i2−jξ) = a(e−iξ)ϕ̂(ξ).

Note that the Fourier transform of ϕ(2x − k) is

̂ϕ(2 · −k)(ξ) =

∫
R
ϕ(2x−k)e−ixξdx =

1

2

∫
R
ϕ(y)e−i 12 (y+k)ξdy =

1

2
e−ikξϕ̂(ξ/2).

Therefore, the Fourier transform of 2
∑

k∈Z a[k]ϕ(2x − k) is

2
∑
k∈Z

a[k]
1

2
e−ikξ/2ϕ̂(ξ/2) =

∑
k∈Z

a[k]e−ikξ/2ϕ̂(ξ/2) = a(e−iξ/2)ϕ̂(ξ/2) = ϕ̂(ξ).

This proves 2
∑

k∈Z a[k]ϕ(2x − k) = ϕ(x).



Some Basics on Wavelets in L2(R)
For ϕ, ψ1, . . . , ψs ∈ L2(R), define an affine system as

AS(ϕ;ψ1, . . . , ψs) := {ϕ(· − k) : k ∈ Z}
∪ {ψℓ2j ;k := 2j/2ψℓ(2j · −k) : j ⩾ 0, k ∈ Z, ℓ = 1, . . . , s}.

We say that {ϕ;ψ1, . . . , ψs} is a framelet in L2(R) if AS(ϕ;ψ1, . . . , ψs) is a
framelet in L2(R), that is, there exist positive constants C1,C2 > 0 such that

C1∥f ∥22 ⩽
∑
k∈Z

|⟨f , ϕ(·−k)⟩|2+
s∑
ℓ=1

∞∑
j=0

∑
k∈Z

|⟨f , ψℓ2j ;k⟩|
2 ⩽ C2∥f ∥22, ∀ f ∈ L2(R).

In particular, {ϕ;ψ1, . . . , ψs} is called a tight framelet in L2(R) if∑
k∈Z

|⟨f , ϕ(· − k)⟩|2 +
s∑
ℓ=1

∞∑
j=0

∑
k∈Z

|⟨f , ψℓ2j ;k⟩|
2 = ∥f ∥22, ∀ f ∈ L2(R).

Then f =
∑

k∈Z⟨f , ϕ(· − k)⟩ϕ(· − k) +
∑∞

j=0

∑s
ℓ=1

∑
k∈Z⟨f , ψℓ2j ;k⟩ψ

ℓ
2j ;k .

{ϕ;ψ1, . . . , ψs} is called an orthogonal wavelet in L2(R) if AS(ϕ;ψ1, . . . , ψs)
is an orthonormal basis in L2(R).
{ϕ;ψ1, . . . , ψs} is an orthogonal wavelet in L2(R) if and only if it is a tight
framelet in L2(R) and ∥ϕ∥2 = ∥ψ1∥2 = · · · = ∥ψs∥2 = 1.



Dual Framelets in L2(R)
For ϕ̃, ψ̃1, . . . , ψ̃s ∈ L2(R) and ϕ, ψ1, . . . , ψs ∈ L2(R), we say that
({ϕ̃; ψ̃1, . . . , ψ̃s}, {ϕ;ψ1, . . . , ψs}) is a dual framelet in L2(R) if

1 {ϕ̃; ψ̃1, . . . , ψ̃s} is a framelet in L2(R).
2 {ϕ;ψ1, . . . , ψs} is a framelet in L2(R).
3 The following identity holds:

⟨f , g⟩ =
∑
k∈Z

⟨f , ϕ̃(·−k)⟩⟨ϕ(·−k), g⟩+
s∑
ℓ=1

∞∑
j=0

∑
k∈Z

⟨f , ψ̃ℓ2j ;k⟩⟨ψ
ℓ
2j ;k , g⟩, ∀ f , g ∈ L2(R)

with series converging absolutely.
Consequently, we have the wavelet representation of functions in L2(R):

f =
∑
k∈Z

⟨f , ϕ̃(· − k)⟩ϕ(· − k) +
∞∑
j=0

s∑
ℓ=1

∑
k∈Z

⟨f , ψ̃ℓ2j ;k⟩ψ
ℓ
2j ;k .

with the series converging unconditionally.



Characterization of Dual Framelets in L2(R)

Theorem

Let ã, b̃1, . . . , b̃s , a, b1, . . . , bs ∈ l0(Z) such that a(1) = ã(1) = 1. Define

ϕ̂(ξ) :=
∏∞

j=1 a(e
−i2−jξ), ̂̃ϕ(ξ) := ∏∞

j=1 ã(e
−i2−jξ) and

ψ̂ℓ(ξ) := bℓ(e
−iξ/2)ϕ̂(ξ/2), ̂̃ψℓ(ξ) := b̃ℓ(e

−iξ/2)̂̃ϕ(ξ/2), ℓ = 1, . . . , s.

Then the following are equivalent to each other

1 ({ϕ̃; ψ̃1, . . . , ψ̃s}, {ϕ;ψ1, . . . , ψs}) is a dual framelet in L2(R).
2 ϕ, ϕ̃ ∈ L2(R), b1(1) = · · · = bs(1) = 0, b̃1(1) = · · · = b̃s(1) = 0, and

({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) is a dual framelet filter bank, i.e.,[
ã(z) b̃1(z) · · · b̃s(z)

ã(−z−1) b̃1(−z−1) · · · b̃s(−z−1)

] [
a(z) b1(z) · · · bs(z)

a(−z−1) b1(−z−1) · · · bs(−z−1)

]⋆
= I2.



Wavelet Transform in L2(R)
Let ({ϕ̃; ψ̃1, . . . , ψ̃s}, {ϕ;ψ1, . . . , ψs}) is a dual framelet in L2(R) with a dual
framelet filter bank ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}).
For a given function f ∈ L2(R), we define

v j(k) := ⟨f , ϕ̃2j ;k⟩, w ℓ,j(k) := ⟨f , ψ̃ℓ2j ;k⟩, j , k ∈ Z, ℓ = 1, . . . , s.

They can be computed by fast wavelet transform:

v j−1 =

√
2

2
Tãv j , w ℓ,j−1 =

√
2

2
Tb̃ℓv

j , ℓ = 1, . . . , s,

v j =

√
2

2
Sav

j−1 +
s∑
ℓ=1

√
2

2
Sb̃ℓ

w ℓ,j−1.

For J ∈ N, approximate f ≈ fJ :=
∑

k∈Z vJ(k)ϕ2J ;k =
∑

k∈Z⟨f , ϕ̃2j ;k⟩ϕ2j ;k .
Because

∫
ϕ̃(x)dx = ̂̃ϕ(0) = 1, ⟨f , ϕ̃2j ;k⟩ ≈ f (2−jk)⟨1, ϕ̃2j ;k⟩ = 2−J/2f (2−jk).

fj = fj−1+
∑s
ℓ=1

∑
k∈Z w

ℓ,j−1ψℓ2j−1;k = fj−1+
∑s
ℓ=1

∑
k∈Z⟨f , ψ̃ℓ21−j ;k⟩ψ

ℓ
2j−1;k .

fJ = f0+
s∑
ℓ=1

J−1∑
j=0

∑
k∈Z

w ℓ,j(k)ψ2j ;k =
∑
k∈Z

⟨f , ϕ̃(·−k)⟩ϕ(·−k)+
s∑
ℓ=1

J−1∑
j=0

∑
k∈Z

⟨f , ψ̃ℓ2j ;kψ2j ;k .



Why Wavelets?
A wavelet ψ often has

1 compact support ⇒ good spatial localization.
2 high smoothness/regularity ⇒ good frequency localization.
3 high vanishing moments ⇒ multiscale sparse representation. That is, most

wavelet coefficients are small for smooth functions/signals.
4 associated filter banks ⇒ fast wavelet transform to compute coefficients

⟨f , ψℓ2j ;k⟩ through filter banks.
5 singularities of signals and their locations can be captured in large wavelet

coefficients.
6 function spaces (Sobolev and Besov spaces) can be characterized by

wavelets. This is important in harmonic analysis and numerical PDEs.



Explanation for Sparse Representation
A wavelet function ψ has m vanishing moments if∫

R
xnψ(x)dx = 0, n = 0, . . . ,m − 1.

That is, ψ̂(0) = ψ̂′(0) = · · · = ψ̂(m−1)(0) = 0. Define vm(ψ) := m largest.

If ψ̂(ξ) := b(e−iξ/2)ϕ̂(ξ/2) and ϕ̂(0) ̸= 0, then vm(ψ) = vm(b).
The multiscale wavelet representation of f ∈ L2(R) is

f =
∑
k∈Z

⟨f , ϕ(· − k)⟩ϕ̃(· − k) +
∞∑
j=0

∑
k∈Zd

s∑
ℓ=1

⟨f , ψ̃ℓ2j ;k⟩ψ
ℓ
2j ;k

with ψℓ2j ;k(x) := 2j/2ψℓ(2jx − k).

suppψ̃ℓ2j ;k = 2−jk + 2−jsuppψ̃ℓ ≈ 2−jk when j → ∞.

Wavelet coefficient ⟨f , ψ̃ℓ2j ;k⟩ only depends f in the support of ψ̃ℓ2j ;k . If f is
smooth and can be well approximated by a polynomial P of degree < m, then

|⟨f , ψ̃ℓ2j ;k⟩| = |⟨f − P, ψ̃ℓ2j ;k |⟩ = ∥(f − P)χsupp(ψ̃ℓ

2j ;k
)∥2∥ψ̃

ℓ∥2 ≈ 0,

where ⟨P, ψℓ
2j ;k

⟩ = 2j/2
∫
R P(x)ψℓ(2jx − k)dx = 2−j/2

∫
R P(2−j (x + k))ψℓ(y)dy = 0.

If ⟨f , ψ̃ℓ2j ;k⟩ is large for large j , we know the position of singularity, since

suppψ̃ℓ2j k = 2−jsuppψ̃ℓ + 2−jk ≈ 2−jk .



Dilates and Shifts of Multiscale Affine Systems

−20 −15 −10 −5 0 5 10 15 20 25

−0.5

0

0.5

1

1.5

seven

eight

nine

−20 −10 0 10 20 30 40

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

one two

0 2 4 6 8 10 12 14 16

−0.5

0

0.5

1

1.5 five six



Tensor Product (Separable) Wavelets and Framelets in Rd

Let ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) be a dual framelet filter bank.
Tensor product filters: [u1 ⊗ · · · ⊗ ud ](k1, . . . , kd) = u1(k1) · · · ud(kd).
Tensor product two-dimensional dual framelet filter bank:(

{ã; b̃1, . . . , b̃s} ⊗ {ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs} ⊗ {a; b1, . . . , bs}
)
.

That is,

{a; b1, . . . , bs} ⊗ {a; b1, . . . , bs} = {a⊗ a; b1 ⊗ a, . . . , bs ⊗ a,

b1 ⊗ b1, . . . , bs ⊗ b1, . . . , bs ⊗ b1, . . . , bs⊗}
consists of one low-pass tensor product filter a⊗ a and total
(s + 1)2 − 1 = s2 + 2s high-pass tensor product filters.
Tensor product functions: [f1 ⊗ · · · ⊗ fd ](x1, . . . , xd) = f1(x1) · · · fd(xd).
Let ({ϕ̃; ψ̃1, . . . , ψ̃s}, {ϕ;ψ1, . . . , ψs}) be a dual framelet in L2(R).
Tensor product two-dimensional dual framelet in L2(R2):(

{ϕ̃; ψ̃1, . . . , ψ̃s} ⊗ {ϕ̃; ψ̃1, . . . , ψ̃s}, {ϕ;ψ1, . . . , ψs} ⊗ {ϕ;ψ1, . . . , ψs}
)
.

Advantages: fast and simple algorithm.



Sparsity and Multiscale Structure for Images



Connections of Tight Framelets and Tight Framelet Filter Banks

Theorem

Let a, b1, . . . , bs ∈ l0(Z) with
∑

k∈Z a[k] = 1. Define

ϕ̂(ξ) :=
∞∏
j=1

a(e−i2−jξ), ψ̂ℓ(ξ) := bℓ(e
−iξ/2)ϕ̂(ξ/2), ℓ = 1, . . . , s.

Then {ϕ;ψ1, . . . , ψs} is a tight framelet in L2(R), that is,

f =
∑
k∈Z

⟨f , ϕ(· − k)⟩ϕ(· − k) +
∞∑
j=0

s∑
ℓ=1

∑
k∈Z

⟨f , ψℓ2j ;k⟩ψ
ℓ
2j ;k , ∀ f ∈ L2(R)

if and only if {a; b1, . . . , bs} is a tight framelet filter bank:

a(z)a(−z−1) +
s∑
ℓ=1

bℓ(z)bℓ(−z−1) = 1, a(z)a(−z−1) +
s∑
ℓ=1

bℓ(z)bℓ(−z−1) = 0.

The key: The tight framelet filter bank forces ϕ ∈ L2(R) and
b1(1) = · · · = bs(1) = 0.



Orthogonal Wavelets vs Orthogonal Wavelet Filter Banks

Theorem

Let a, b ∈ l0(Z) with
∑

k∈Z a[k] = 1. Define

ϕ̂(ξ) :=
∞∏
j=1

a(e−i2−jξ), ψ̂(ξ) := b(e−iξ/2)ϕ̂(ξ/2).

Then the following are equivalent to each other:

1 {ϕ;ψ} is an orthogonal wavelet in L2(R), that is,

AS(ϕ;ψ) := {ϕ(· − k) : k ∈ Z} ∪ {ψ2j ;k := 2j/2ψ(2j · −k) : j ⩾ 0, k ∈ Z}

is an orthonormal basis of L2(R).
2 {a; b} is an orthogonal wavelet filter bank and [ϕ̂, ϕ̂](ξ) = 1 almost

everywhere (Note that [ϕ̂, ϕ̂] = 1 ⇐⇒ ⟨ϕ, ϕ(· − k)⟩ = δ(k) for k ∈ Z)
3 {a; b} is an orthogonal wavelet filter bank and sm(a) > 0.

For f , g ∈ L2(R), we define the bracket product to be

[f , g ](ξ) :=
∑
k∈Z

f (ξ + 2πk)g(ξ + 2πk) =
〈
{f (ξ + 2πk)}k∈Z, {g(ξ + 2πk)}k∈Z

〉
l2(Z)

.



A Basic Identity
For m, n ∈ N, Pm,n is the unique polynomial of degree at most n − 1 satisfying

Pm,n(x) := (1−x)−m+O(xn), x → 0, that is, Pm,n(x) =
n−1∑
j=0

(
m + j − 1

j

)
x j .

Theorem

(1− x)mPm,m(x) + xmPm,m(1− x) = 1 for all x ∈ R,m ∈ N.

Proof. Define P(y , x) :=
∑m−1

j=0

(
2m−1

j

)
x jym−j−1. Then

(x + y)2m−1 =
2m−1∑
j=0

(
2m − 1

j

)
x jy2m−1−j = xmP(x , y) + ymP(y , x).

Note deg(P(1− x , x)) < m and xmP(x , 1− x) + (1− x)mP(1− x , x) = 1, from
which we have

P(1− x , x) = (1− x)−m[(1− x)mP(1− x , x)] = (1− x)−m[1− xmP(x , 1− x)]

= (1− x)−m + O(xm), x → 0.

By the uniqueness of Pm,m, we must have P(x , 1− x) = Pm,m. Hence, we proved

(1− x)mPm,m(x) + xmPm,m(1− x) = 1.
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Construction of Interpolatory Filters
A filter a ∈ l0(Z) is interpolatory if a(z) + a(−z) = 1, i.e.,

a[0] =
1

2
and a[2k] = 0, ∀ k ∈ Z\{0}.

a(z) + a(−z) = 2
∑

k∈Z a[2k]z
2k .

1
4z

−1 + 1
2 + 1

4z = 2−2(1 + z−1)(1 + z).
2−2(1 + z−1)(1 + z) = |(1 + z)/2|2 = cos2(ξ/2) for z = e−iξ.
− 1

4z
−1 + 1

2 − 1
4z = 2−2(1− z−1)(1− z).

2−2(1− z−1)(1− z) = |(1− z)/2|2 = sin2(ξ/2) for z = e−iξ.
For m ∈ N, a family of interpolatory filters aI2m is given by aI2m(e

−iξ) :=

aI2m(e
−iξ) := [2−2(1 + z−1)(1 + z)]mPm,m(2

−2(1− z−1)(1− z)).

aI2m(e
−iξ) := cos2m(ξ/2)Pm,m(sin

2(ξ/2)).

Set x = sin2(ξ/2). Then sin2((ξ + π)/2) = cos2(ξ/2). Hence, for z = e−iξ,

aI2m(z) = (1− x)mPm,m(x) and aI2m(−z) = xmPm,m(1− x).

Therefore, aI2m(z) + aI2m(−z) = (1− x)mPm,m(x) + xmPm,m(1− x) = 1.
The mask aI2m has 2m sum rules satisfying (1 + z)2m | aI2m(z).
Hence, sr(aI2m) = 2m, aI2m(1) = 1, and fsupp(aI2m) = [1− 2m, 2m − 1].
aI2m(e

−iξ) ⩾ 0 for all ξ ∈ R.
The filters are called Deslauriers-Dubuc interpolatory filters.



Interpolatory Filters aI2m

aI2 = { 1
4 ,

1
2 ,

1
4}[−1,1],

aI4 = {− 1
32 , 0,

9
32 ,

1
2 ,

9
32 , 0,−

1
32}[−3,3],

aI6 = { 3
512 , 0,−

25
512 , 0,

75
256 ,

1
2 ,

75
256 , 0,−

25
512 , 0,

3
512}[−5,5],

aI8 = {− 5
4096 , 0,

49
4096 , 0,−

245
4096 , 0,

1225
4096 ,

1
2 ,

1225
4096 , 0,−

245
4096 ,

0, 49
4096 , 0,−

5
4096}[−7,7].

m 1 2 3 4 5
sm(aI2m) 1.5 2.440765 3.175132 3.793134 4.344084

Theorem

Let a ∈ l0(Z) be interpolatory: a[2k] = 1
2δ[k] for k ∈ Z. Define a refinable

function by ϕ̂(ξ) :=
∏∞

j=1 a(e
−i2−jξ) for ξ ∈ R. If sm(a) > 1/2, then ϕ is a

compactly supported continuous function and is interpolating:

ϕ(k) = δ[k], k ∈ Z.

In particular, if a = aI2m with m ∈ N, then ϕ(k) = δ[k] for all k ∈ Z.



Compactly Supported Interpolating Function
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Fejér-Riesz Lemma

Lemma

Let Θ be a 2π-periodic trigonometric polynomial with real coefficients (or with
complex coefficients) such that Θ(ξ) ⩾ 0 for all ξ ∈ R. Then there exists a
2π-periodic trigonometric polynomial θ with real coefficients (or with complex
coefficients) such that |θ(ξ)|2 = Θ(ξ) for all ξ ∈ R. Moreover, if Θ(0) ̸= 0, then
we can further require θ(0) =

√
Θ(0).

Definition: The Laurent polynomial of a filter a = {a[k]}k∈Z ∈ l0(Z) is
a(z) :=

∑
k∈Z a[k]z

k for z ∈ C\{0}.
Fact: Let Θ(z) be the Laurent polynomial for Θ, i.e., Θ = Θ(e−iξ). Define

Z := {z ∈ C\{0} : Θ(z) = 0} counting multiplicity of zeros.

Then Θ ⩾ 0 for all ξ ∈ R ⇐⇒ Z is invariant under the mapping z 7→ z̄−1 and
any point in Z ∩ T has even multiplicity. Then there is a unique subset
Y ⊂ Z ∩ {z ∈ C : |z | ⩽ 1} such that Z = {ζ, ζ̄−1 : ζ ∈ Y }. Define

p(z) =
∏
ζ∈Y

(z − ζ).

Then θ(ξ) := ce−inξp(e−iξ) satisfies |θ(ξ)|2 = Θ(ξ) for all ξ ∈ R with
c :=

√
Θ(0)/|p(1)| and n ∈ Z (we often choose n = 0).



Daubechies Orthogonal Wavelets
Let aI2m be the interpolatory filter. Since aI2m(e

−iξ) ⩾ 0, by Fejér-Riesz lemma,
there exists aDm ∈ l0(Z) such that aDm(1) = 1 and

|aDm(e−iξ)|2 = aI2m(e
−iξ) := cos2m(ξ/2)Pm,m(sin

2(ξ/2)).

Then sr(aDm) = m (i.e., aDm has m sum rules) and

|aDm(z)|2 + |aDm(−z)|2 = aI2m(z) + aI2m(−z) = 1.

Define ϕ through ϕ̂(ξ) :=
∏∞

j=1 a
D
m(e

−i2−jξ). Then we shall prove later that
⟨ϕ(· − k), ϕ⟩ = δ[k] for all k ∈ Z:

[ϕ̂, ϕ̂] :=
∑
k∈Z

|ϕ̂(ξ + 2πk)|2 = 1

and {aDm; bDm} is an orthogonal wavelet filter bank with

bDm(z) := zaDm(−z−1).

Then vm(bDm) = m and {ϕ;ψ} is a compactly supported orthogonal wavelet, where

ψ̂(ξ) := bDm(e
−iξ/2)ϕ̂(ξ/2)

such that the low-pass filter aDm has order m sum rules and the high-pass filter bDm
has m vanishing moments, called the Daubechies orthogonal wavelet of order m.



Daubechies Orthogonal Filters

aD1 = { 1
2 ,

1
2}[0,1],

aD2 = { 1+
√
3

8 , 3+
√
3

8 , 3−
√
3

8 , 1−
√
3

8 }[−1,2]

aD3 = { 1+
√
10+

√
5+2

√
10

32 , 5+
√
10+3

√
5+2

√
10

32 , 5−
√
10+

√
5+2

√
10

16 ,

5−
√
10−

√
5+2

√
10

16 , 5+
√
10−3

√
5+2

√
10

32 , 1+
√
10−

√
5+2

√
10

32 }[−2,3],

aD4 = {−0.0535744507091,−0.0209554825625, 0.351869534328,

0.568329121704, 0.210617267102,−0.0701588120893,

− 0.00891235072084, 0.0227851729480}[−3,4].

m 1 2 3 4 5 6
sm(aDm) 0.5 1.0 1.415037 1.775565 2.096787 2.388374



Example aD1 Using the Interpolatory Filter aI2
Consider z := e−iξ. Note e−i(ξ+π) = e−iξe−iπ = −z and e iξ = z−1.

cos2(ξ/2) =
1

2
+

1

4
z−1 +

1

4
z = 2−2(1 + z)(1 + z−1),

sin2(ξ/2) = cos2((ξ + π)/2) =
1

2
− 1

4
z−1 − 1

4
z = 2−2(1− z)(1− z−1).

By definition, aI2(e
−iξ) = cos2(ξ/2)P1,1(sin

2(ξ/2)) with P1,1(x) = 1.
Hence, the Laurent polynomial representation of the filter aI2 is

aI2(z) = 2−2(1 + z)(1 + z−1).

Hence, The zero set Z of aI2 is {−1,−1} and we can take Y = {−1}. Define

p(z) := z + 1 and c :=

√
âI2(0)/|p(1)| = 1/2.

Hence, aD1 (z) = cp(z) = 2−1(1 + z) and âD1 (ξ) = 2−1(1 + e−iξ).
bD1 (z) := zaD1 (−z−1) = 2−1z(1− z−1) = 2−1(z − 1).
aD1 = { 1

2 ,
1
2}[0,1] and bD1 = {− 1

2 ,
1
2}[0,1] with sr(aD1 ) = 1 and vm(bD1 ) = 1.

Fact: For the high-pass filter b(z) := za(−z−1), we have

b(z) = za(−z−1) =
∑
k∈Z

a(k)(−1)kz1−k =
∑
n∈Z

(−1)1−na(1− n)zn.

Hence, b(n) = (−1)1−na(1− n) for all n ∈ Z.



Example aD2 Using the Interpolatory Filter aI4
By definition, aI4(e

−iξ) = cos4(ξ/2)P2,2(sin
2(ξ/2)) with P2,2(x) = 1 + 2x .

Hence, the Laurent polynomial representation of the filter aI4 is

aI4(z) = 2−4(1 + z)2(1 + z−1)2q(z) with q(z) := 2− 1
2z −

1
2z

−1.

Because the root of −2zq(z) = z2 − 4z + 1 is 2±
√
3, the zero set Z of aI4 is

{−1,−1,−1,−1, 2 +
√
3, 2−

√
3}

and we can take Y = {−1,−1, 2−
√
3}. Define

p(z) := (z + 1)2(z − 2 +
√
3) and c :=

√
âI4(0)/|p(1)| =

√
3+1
8 .

Hence, we obtain the low-pass filter

aD2 (z) = cp(z) =

√
3 + 1

8
(1 + z)2(z − 2 +

√
3)

=
1−

√
3

8
+

3−
√
3

8
z +

3 +
√
3

8
z3 +

1 +
√
3

8
z3.

Hence, a2D = { 1−
√
3

8 , 3−
√
3

8 , 3+
√
3

8 , 1+
√
3

8 }[0,3] and sr(aD2 ) = 2.

By b(n) = (−1)1−na(1− n) for all n ∈ Z, we have vm(bD2 ) = 2 and

b2D = {− 1+
√
3

8 , 3+
√
3

8 ,− 3−
√
3

8 , 1−
√
3

8 }[−2,1].

We can also choose Y = {−1,−1, 2 +
√
3}.



Daubechies Orthogonal Wavelets
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An Example: Daubechies Orthogonal Wavelets

a = { 1+
√
3

8 , 3+
√
3

8 , 3−
√
3

8 , 1−
√
3

8 }, b = {− 1−
√
3

8 , 3−
√
3

8 ,− 3+
√
3

8 , 1+
√
3

8 }.
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Figure: DASJ({a; b}) is an orthonormal basis of l2(Z) for all J ∈ N



Daubechies Orthogonal Wavelets
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Biorthogonal Wavelets in L2(R)
Let ϕ, ψ ∈ L2(R) and ϕ̃, ψ̃ ∈ L2(R).
({ϕ̃; ψ̃}, {ϕ;ψ}) is a biorthogonal wavelet in L2(R) if

1 Both {ϕ̃; ψ̃} and {ϕ;ψ} are Riesz wavelets in L2(R), i.e.,

C1

∑
h∈AS(ϕ;ψ)

|ch|2 ⩽
∥∥∥ ∑

h∈AS(ϕ;ψ)

chh
∥∥∥2

L2(R)
⩽ C2

∑
h∈AS(ϕ;ψ)

|ch|2,

where

AS(ϕ;ψ) := {ϕ(· − k) : k ∈ Z}

∪ {ψ2j ;k := 2j/2ψ(2j · −k) : j ⩾ 0, k ∈ Z}.

2 AS(ϕ̃; ψ̃) and AS(ϕ;ψ) are biorthogonal to each other:

⟨h, h̃⟩ = 1 and ⟨h, g⟩ = 0, ∀ g ∈ AS(ϕ;ψ)\{h}.
3 The linear span of AS(ϕ̃; ψ̃) is dense in L2(R). The linear span of AS(ϕ;ψ) is

dense in L2(R).



Characterization of Biorthogonal Wavelets

Theorem

Let a, b, ã, b̃ ∈ l0(Z) with
∑

k∈Z a[k] =
∑

k∈Z ã[k] = 1. Define

ϕ̂(ξ) :=
∞∏
j=1

a(e−i2−jξ), ψ̂(ξ) := b(e−iξ/2)ϕ̂(ξ/2),

̂̃ϕ(ξ) := ∞∏
j=1

ã(e−i2−jξ), ̂̃ψ(ξ) := b̃(e−iξ/2)̂̃ϕ(ξ/2).
Then ({ϕ̃; ψ̃}, {ϕ;ψ}) is a biorthogonal wavelet in L2(R) if and only if
sm2(a) > 0, sm2(ã) > 0, and ({ã; b̃}, {a; b}) is a biorthogonal wavelet filter bank:[

ã(z) b̃(z)

ã(−z) b̃(−z)

] [
a(z−1) b(z−1)
a(−z−1) b(−z−1)

]T
= I2.



Construction of Biorthogonal Wavelet Filter Bank

Proposition

Let a, b, ã, b̃ ∈ l0(Z). Then ({ã; b̃}, {a; b}) is a biorthogonal wavelet filter bank:[
ã(z) b̃(z)

ã(−z) b̃(−z)

] [
a(z−1) b(z−1)
a(−z−1) b(−z−1)

]T
= I2

if and only if (ã, a) is a biorthogonal low-pass filter:

ã(z)a(z−1) + ã(−z)a(−z−1) = 1

and there exist c ̸= 0 and n, ñ ∈ Z such that

b̃(z) = cz1−2na(−z−1), b(z) = c−1z−(2ñ−1)ã(−z−1).

We often take

b̃(z) = za(−z−1), b(z) = z ã(−z−1).

(ã, a) is a biorthogonal low-pass filter if and only if c := a⋆ ∗ ã is an
interpolatory mask.



Example of Biorthogonal Wavelets
We can obtain a pair of biorthogonal wavelet filters by splitting interplatory filters

ãm(z
−1)am(z) := aI2m(z) = cos2m(ξ/2)Pm,m(sin

2(ξ/2))

as follows: P(x)P̃(x) = Pm,m(x) and

am(z) = 2−mz−⌊m/2⌋(1 + z)mP(sin2(ξ/2)), bm(z) := z ãm(−z−1),

ãm(z) = 2−mz−⌊m/2⌋(1 + z)mP̃(sin2(ξ/2)), b̃m(z) := zam(−z−1).

The functions in a biorthogonal wavelet ({ϕ̃; ψ̃}, {ϕ;ψ}) are defined by

ϕ̂(ξ) =
∞∏
j=1

am(e
−i2−jξ), ̂̃ϕ(ξ) = ∞∏

j=1

ãm(e
−i2−jξ),

ψ̂(ξ) = bm(e
−iξ/2)ϕ̂(ξ/2), ̂̃ψ(ξ) = b̃m(e

−iξ/2)̂̃ϕ(ξ/2).
For m = 1, we have P1,1(x) = 1. Taking P(x) = 1 and P̃(x) = 1, we have the
Haar orthogonal wavelet filter bank.
For m = 2, we have P2,2(x) = 1 + 2x . Taking P(x) = 1 and P̃(x) = 1 + 2x , we
have the LeGall biorthogonal wavelet filter bank:

a2 = { 1
4 ,

1
2 ,

1
4}[−1,1], ã2 = {− 1

8 ,
1
4 ,

3
4 ,

1
4 ,−

1
8}[−2,2].

Note that sm(a2) = 1.5 and sm(ã2) = 0.440765.



Examples: LeGall Biorthogonal Wavelet
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The Most Famous Biorthogonal Wavelet
For m = 4, we have

P4,4(x) = 1 + 4x + 10x2 + 20x3.

Picking P(x) = 1 + tx and P̃(x) = 1 + (4− t)x + (10− 4t + t2)x2 with
t := 30t0

t20+5t0−35
≈ 2.92069 with t0 = (350 + 105

√
15)1/3, we have

a4={− t
64 ,

2−t
32 ,

16+t
64 , 6+t

16 ,
16+t
64 , 2−t

32 ,−
t
64}[−3,3],

ã4={ t2−4t+10
256 , t−4

64 ,
−t2+6t−14

64 , 20−t
64 , 3t

2−20t+110
128 , 20−t

64 ,

−t2+6t−14
64 , t−4

64 ,
t2−4t+10

256 }[−4,4].

The derived biorthogonal wavelet is called Daubechies 7/9 filter and has very
impressive performance in many applications.

Note that
sm(a) ≈ 2.122644, sm(ã) ≈ 1.409968.



Example: Daubechies 7/9 Biorthogonal Wavelets

−3 −2 −1 0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(k) ϕ

−3 −2 −1 0 1 2 3 4

−0.5

0

0.5

1

1.5

(l) ψ

−4 −3 −2 −1 0 1 2 3 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(m) ϕ̃

−3 −2 −1 0 1 2 3 4

−1

−0.5

0

0.5

1

1.5

(n) ψ̃



Example from aB2
Let

aB2 = { 1
4 ,

1
2 ,

1
4}[0,2]

be the B-spline filter of order 2. Let

b1 = {−
√
2
4 , 0,

√
2
4 }[0,2],

b2 = {− 1
4 ,

1
2 ,−

1
4}[0,2].

Then {aB2 ; b1, b2} is a tight framelet filter bank such that aB2 has order 2 sum
rules and both b1, b2 have 1 vanishing moments.



Tight Framelet from B2
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Example from B3

Let
aB3 = { 1

8 ,
3
8 ,

3
8 ,

1
8}[0,3]

be the B-spline filter of order 3. Let

b1 =
√
3
4 {−1, 1}[0,1],

b2 = {− 1
8 ,−

3
8 ,

3
8 ,

1
8}[0,3]

Then {a; b1, b2} is a tight framelet filter bank such that aB2 has order 3 sum rules
and both b1, b2 have 1 vanishing moments.



Tight Framelet from B3
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Wavelet applications
The general procedure of wavelet applications in signal and image processing: For
an input data v ,

Perform multi-level wavelet/framelet decomposition: w = Wv .
Process the wavelet coefficients w to obtain new wavelet coefficients ẘ .
Perform multi-level wavelet/framelet reconstruction v̊ = Vẘ .

Most data are supported on a bounded interval and we have to perform fast
wavelet/framelet transform (FFrT) on data on bounded intervals!.



Variants of FFrT: Undecimated FFrT
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Figure: Diagram of a two-level discrete framelet transform using a pair of filter banks
({ã; b̃1, . . . , b̃s}, (a; b1, . . . , bs}).
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bs ↑2

Undecimated DFrT using a framelet filter bank ({ã; b̃1, . . . , b̃s}, (a; b1, . . . , bs}),
which is required to satisfy ã(z)a(z−1) + b̃1(z)b1(z

−1) + · · ·+ b̃s(z)bs(z
−1) = 1.



Processing Wavelet Coefficients
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Figure: The hard thresholding, soft thresholding, and quantization.

Quantization is used for compression: convert a real number into a discrete set
{. . . ,−2q,−q, 0, q, 2q, . . .}.
The hard or soft thresholding is used for denoising and processing.



Tensor Product (Separable) Tight Framelet
Let ({ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs}) be a 1D dual framelet filter bank.
If s = 1, it is called a biorthogonal wavelet filter bank.
Tensor product filters: [u1 ⊗ · · · ⊗ ud ](k1, . . . , kd) = u1(k1) · · · ud(kd).
Tensor product two-dimensional dual framelet filter bank:(

{ã; b̃1, . . . , b̃s} ⊗ {ã; b̃1, . . . , b̃s}, {a; b1, . . . , bs} ⊗ {a; b1, . . . , bs}
)
.

That is,

{a; b1, . . . , bs} ⊗ {a; b1, . . . , bs} = {a⊗ a; b1 ⊗ a, . . . , bs ⊗ a,

b1 ⊗ b1, . . . , bs ⊗ b1, . . . , bs ⊗ b1, . . . , bs⊗}
consists of one low-pass tensor product filter a⊗ a and total
(s + 1)2 − 1 = s2 + 2s high-pass tensor product filters.
Advantages: fast and simple algorithm.



Wavelets for Image/Signal Compression
The most popular wavelets used for the compression purpose are biorthogonal
wavelet filter banks with symmetry and 4 ∼ 6 vanishing moments, in
particular, LeGall and Daubechies 7/9 biorthogonal wavelet filter banks.
For filter banks having symmetry, signals on intervals and images on
rectangles are often extended by symmetry extension.
Dauchies orthogonal wavelet filter banks are also used. Due to lack of
symmetry, periodic extension of data on intervals and rectangles is often used.
Grey scale images I : each entry of I takes discrete values [0, 1, . . . , 255]
(28 = 256).
Color images I has three channel: Red (R), Green (G), Blue (B). With each
entry in each channel takes values discrete values [0, 1, . . . , 255].



Most Popular Wavelets for Compression
LeGall biorthogonal wavelet filter bank ({ã; b̃}, {a; b}):

a = { 1
4 ,

1
2 ,

1
4}[−1,1], ã = {− 1

8 ,
1
4 ,

3
4 ,

1
4 ,−

1
8}[−2,2]

b = { 1
8 ,

1
4 ,−

3
4 ,

1
4 ,

1
8}[−1,3], b̃ = { 1

4 ,−
1
2 ,

1
4}[0,2],

where b[k] = (−1)1−k ã[1− k] and b̃[k] = (−1)1−ka[1− k]. Both a and ã
have order 2 sum rules, while both b and b̃ have 2 vanishing moments. Use
{a; b} for reconstruction.
Dauchies 7/9 biorthogonal wavelet filter bank ({ã; b̃}, {a; b}):

a={− t
64 ,

2−t
32 ,

16+t
64 , 6+t

16 ,
16+t
64 , 2−t

32 ,−
t
64}[−3,3],

ã={ t2−4t+10
256 , t−4

64 ,
−t2+6t−14

64 , 20−t
64 , 3t

2−20t+110
128 , 20−t

64 ,

−t2+6t−14
64 , t−4

64 ,
t2−4t+10

256 }[−4,4],

where t ≈ 2.92069 such that both a and ã have order 4 sum rules, while both
b and b̃ have 4 vanishing moments.



LeGall Biorthogonal Wavelets
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Daubechies 7/9 Biorthogonal Wavelets
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Test Image: Barbara



Tree Structure of Wavelet coefficients



Tree Structure of Wavelet coefficients



Tree structure of wavelet coefficients



Image compression by wavelets

The original image of Lena



Image compression by wavelets

Compressed Lena image with compression ratio 32



Image compression by wavelets

Compressed Lena image with compression ratio 128



For Other Signal and Image Processing
Beyond compression purpose, framelet filter banks are often used instead.
Orthogonal wavelets and biorthogonal wavelets suffer a few key desired
properties: translation invariant (see next page from Selesnick’s paper) and
directionality.
For image denoising, people often use undecimated wavelet transforms, which
are just special cases of framelets.
Processing wavelet or framelet coefficients through thresholding is a key
issue. Statistics and probability theory are often involved.



Signal/Image/Video Denoising and Inpainting
Let g = (g1, . . . , gd)

T be an observed corrupted data:

gj =

{
fj + nj , if j ∈ Ω,

mj , if j ∈ Ωc := {1, . . . , d}\Ω,

f=true data (signal/image.video).
Ω ⊆ {1, . . . , d} is a (known or unknown) observable region.
n= i.i.d. Gaussian noise with zero mean and variance σ2.
m= either unknown missing pixel or impulse noise.
Goal: Recover the true unknown data f from the corrupted g by suppressing
noise n or inpainting unknown m.
Denoising problem if Ω = {1, . . . , d}.
Inpainting problem if Ω is known.
Removing mixed noise problem if Ω is unknown.



Image Denoising
Image denoising model is

z = x+ n.

where
z=noisy image,
x=true image,
n=i.i.d. Gaussian noise of zero mean and variance σ2.
Coefficients y = DTz after transform with a tight frame D.
Perform thresholding on y to get ỹ.
Take inverse transform to get a reconstructed image x̃ = D ỹ.



Bivariate Shrinkage
Image model z = x+ n. where z=noisy image, x=true image, and n=i.i.d.
Gaussian noise of zero mean and variance σ2.
Coefficients y = Dz after transform with transform/dictionary D

Bivariate shrinkage by Selesnick: T =
√
3σ2

σx

√
y2
1+y2

2

.

This figure is from Selesnick’s paper.



Test Images, Videos, and Inpainting Masks

(i) Barbara (j) Lena (k) C.man (l) House (m) Peppers

(n) Boat (o) F.print (p) Mobile (q) C.guard (r) Mask



Denoising Results: Barbara

Barbara
σ UDWT DT CTF4 CTF6(Gain) CTF4 CTF6(Gain)
5 36.90 37.36 37.41 37.82(0.46) 37.75 38.10(0.74)
10 32.66 33.52 33.62 34.14(0.48) 34.10 34.47(0.95)
15 30.31 31.38 31.47 32.02(0.64) 31.97 32.32(0.94)
20 28.71 29.87 29.91 30.49(0.62) 30.43 30.77(0.90)
25 27.52 28.70 28.71 29.31(0.61) 29.26 29.57(0.87)
30 26.58 27.77 27.74 28.34(0.57) 28.32 28.61(0.84)
50 24.27 25.26 25.21 25.71(0.45) 25.69 26.02(0.76)

The larger PSNR (= 10 log10
2552

MSE ) the better performance, where
MSE (u, v) := 1

|S|
∑

k∈S |u(k)− v(k)|2 is the mean squared error.



Denoising Results: Barbara

The original image is on the left, the noisy image with σ = 30 is in the middle,
and the denoised image is on the right.



Image Inpainting Model: y = χΩx+ n
Let Ω ⊆ {1, . . . , d} be an observable region.

yj =

{
xj + nj , j ∈ Ω,

arbitray (unknown), j ̸∈ Ω.

y = (y1, . . . , yd)
T is the given observed image on Ω.

n = (n1, . . . , nd)
T is i.i.d. Gaussian noise with variance σ2.

The inpainting mask Ωc is known in advance.
Goal: recover the unknown true image x by restoring missing pixels of x
outside Ω and suppress its noise on Ω.
Solve the inpainting problem y = χΩx+ n through the minimization scheme:

min
c∈Rn

1

2
∥χΩDc− y∥22 + λ∥c∥1 + κ∥(I −DTD)c∥22,

where D ∈ Rn×d is a tight frame satisfying DDT = Id and a reconstructed
image is given by x = Dc.



Random Missing Pixels or Corrupted by Texts

Figure: 80% missing pixels. Recovered by our algorithm: PSNR=31.67.

Figure: Corrupted by text with σ = 20. Recovered with PSNR= 28.93.



Image Inpainting Algorithm

1: Initialization: x0 = 0, λ = λ0, ℓ = 0.
2: while not convergent do
3: cℓ+1 = Thresholdingλ(VT(χΩy + (I − χΩ)xℓ)).
4: xℓ+1 = Vcℓ+1.
5: error = ∥(I − χΩ)−−(xℓ − xℓ+1)∥2/∥y∥2.
6: if error < tolerence then
7: Update the thresholding value λ.
8: end if
9: ℓ = ℓ+ 1.

10: end while
11: return xℓ+1.



Remove Mixed Gaussian and Impulse Noises

Gaussian and Pepper–and–Salt impulse noise. Cameraman: σ = 0, p = 0.3,

PSNR = 32.50. Lena: σ = 15, p = 0.5, PSNR = 30.95.

Gaussian and Random-valued impulse noises: Barbara: σ = 30, p = 0.2, PSNR = 25.93.

Peppers: σ = 20, p = 0.1, PSNR = 27.31.


