Fast Wavelet/Framelet Transform for Signal/lmage Prangss

The following is based on book manuscript: B. Han, Framelats Wavelets: Al-
gorithms, Analysis and Applications.

To introduce a discrete framelet transform, we need someitiefis and notation.
By |(Z) we denote the linear space of all sequences{v(k) }«cz : Z — C of complex
numbers orZ. One -dimensional discrete input data or signal is ofteaté® as an
element inl(Z). Similarly, bylo(Z) we denote the linear space of all sequences
{u(k)}kez : Z — C on Z such that{k € Z : u(k) # 0} is a finite set. An elementin
lo(Z) is often regarded as a finite-impulse-response (FIR) filitso(called a finitely
supported mask in the literature of wavelet analysis). is look we often usa for a
general filter andr for a general signal or data. It is often convenient to usddhaal
Fourier series (or symbal)of a sequence = {v(k) }kcz, which is defined as follows:

UE) = Y v(ke e, R, 1
v($) kgzv( )e 3= (1)

wherei in this book always denotes the imaginary unit. ¥erlo(Z), Vis a 2r-periodic
trigonometric polynomial.

A discrete framelet transform can be described using twealiroperators—the
subdivision operator and the transition operator. Forerfile 1o(Z) andv € 1(Z), the
subdivision operator#, : | (Z) — | (Z) is defined to be

[uwv(n —ZZV u(n—2k), nez 2
kezZ

and thetransition operator;, : | (Z) — 1(Z) is defined to be

_222 u(k—2n), nez. (3)

The transition operator plays the role of coarsening angueacy-separating the data
to lower resolution levels; while the subdivision operaitays the role of refining and
predicting the data to higher resolution levels.

In terms of Fourier series, the subdivision operatfy in (2) and the transition
operatorZ, in (3) can be equivalently rewritten as

FWV(E) =2(28)0(E), E€R (4)
and
T(E) =V(E/2)0(E/2) +U(E 2+ mUE/2+m), E€R (5)

for u,v € Ig(Z), wheret denotes the complex conjugate of a complex nunslzeC.
Let 4,by,...,bs be filters for decomposition. For a positive integera J-level
discrete framelet decompositigsgiven by

Vj = %Z%Vj,]_, Wy j = %zygfvj,l, (=1....,s, j=1,....3, (6)

wherevp : Z — C is an input signal. The filteaiS often called a dual low-pass filter and
the filtershy, ..., bs are called dual high-pass filters. Afteddevel discrete framelet



decomposition, the original input signglis decomposed into one sequengef low-
pass framelet coefficients asd sequencew, j of high-pass framelet coefficients for
¢=1,...,sandj=1,...,J. Such framelet coefficients are often processed for various
purposes. One of the most commonly employed operationsdshblding so that the
low-pass framelet coefficientg and high-pass framelet coefficies ; becomev;)
andw j, respectively. More precisely j (k) = n(wy,j(k)).k € Z, wheren : C — C

is a thresholding function. For example, for a given thrédlvalueA > 0, the hard

thresholding functiom 3" and soft-thresholding function;° " are defined to be

z if|Z>A; z—¢e5, if|lZ>=A;
m“afd()—{ 220 ang ni"“(){ @ NEZA g

0, otherwise 0, otherwise.

Another commonly employed operation is quantization, Wwitian be applied after
or without thresholding. For example, for a given quantaatevelq > 0, the quanti-
zation function? : R — qZ is defined to be2(x) := q| § + 1], x€ R, where|-| is the
floor function such thatx| = nif n < x < n+ 1 for an integen.
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Figure 1: The hard thresholding functlmrj‘ard the soft thresholding function,™ ",
and the quantization function, respectively. Both thrégding and quantization opera-
tions are often used to process framelet coefficients in@etis framelet transform.
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Leta,by,...,bs be filters for reconstruction. Noa/J-level discrete framelet recon-
structionis

\O/jfl:— yaj‘i‘ /Zyb/W[J, J:J,71 (8)

The filtera is often called a primal low-pass filter and the filtéxs. .., bs are called
primal high-pass filters.

We say that{&;b;,...,bs},{a;bs,...,bs}) is a dual framelet filter bank if it satis-
fies the perfect reconstruction condition:
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{a;b,...,bs}) is called a tight frameletfilter bank {f a; by, ..., bs}, {a;bs,...,bs})
is a dual framelet filter bank.



If s=1, adual framelet filter ban{a; b}, {a; b}) is called a biorthogonal wavelet
filter bank. Ifs= 1, a tight framelet filter banka; b} is called an orthogonal wavelet
filter bank.

In the following, let us provide a few examples to illustratious types of filter
banks. For afiltea = {u(K) }kez such that(k) = 0 for all k € Z\ [m,n] andu(m)u(n) #

0, we denote by fsugp) := [m,n] as itsfilter support To list the filteru, we shall
adopt the following notation throughout the book:

u={u(m),u(m+1),...,u(=1),u(0),u(1),...,u(n—1),u(n) }mpn; (20)

where we underlined and boldfaced the numb@) to indicate its position at the
origin.

Examplel {a;b} is an orthogonal wavelet filter bank (called the Haar orthagb
wavelet filter bank), where

a:{év%}[o,l], b={-%3}pu- (11)

Example2 ({&b},{a;b})is a biorthogonal wavelet filter bank, where

Example3 {a;by,b,} is a tight framelet filter bank, where
a=1{333}-11 by ={—¥2,0,%2} 11, b ={-%,3:—3}11-
Example4 ({&bi,b,},{a;b1,bs}) is a dual framelet filter bank, where
&=1{3,3}oy, b1={-3.3} 10, B2={-3.3}0y
and
a= {%év 23 1, b= {—%é}[fl,o]v by = {—%7—_3, 3812

Atthe end of this section, we illustrate a one-level disefeamelet transform using
the Haar orthogonal wavelet filter bank in (11). Let

v={1,0,—-1,-1,—4,60,58 56} 07] (12)
be atest input signal. Note that
[ZaV](n) = v(2n+1) 4 v(2n), [ZV](n) = v(2n+ 1) — v(2n), nez.
Therefore, we have the wavelet coefficients:

wo = ¥2{1,-2,56, 11403, Wi= +2{-1,0,64, ~2}og-



On the other hand, we have
[ZaWp](2n) = Wo(N), [ZaWo](2n+ 1) = Wp(n), nez
and
(B ] (2n) = =i (n), [-ApWi](2n+ 1) = vy (), nez.

Hence, we have

V2 S = ${1,1,-2,-2,56,56,114, 114} g 7,
V2 Sy = £{1,-1,0,0,-64,64,2,~2} /0 7.

Clearly, we have the perfect reconstruction of the originalt signalv;
2 Fawo + Y2 Swy = {1,0,~1,—1,—4,60,58,56} (0.7 = v
and the following energy-preserving identity
IWolIf, z) + IwallFyz) = 2%+ 43 = 10119= |Ivi[E, ).

Next, let us describe how to efficiently implement discregerfelet/wavelet trans-
form.

The subdivision operator and the transition operator idiegions are often imple-
mented through the widely used convolution operation irhmaatics and engineering.
Foru € 1p(Z) andv € [(Z), the convolutiorux vis defined to be

[uxV](n) = z u(k)v(in—Kk), nez. (13)
keZ

Note thatuxVv(&) = G(&)V(E). To implement the subdivision and transition opera-
tors using the convolution operation, we also need the upkaghand downsam-
pling operators on sequenceslitZ). The downsampling (or decimation) operator
1d:1(Z) — 1(Z) and theupsampling operatord : [ (Z) — 1(Z) with a sampling factor

d € Z\{0} are given by

v(n/d), if n/dis an integer;

. (14)
0, otherwise

[vid](n) :=v(dn) and [vfd](n) ;:{

for n € Z. For a sequence= {v(k) }kcz, we denote its complex conjugate sequence
reflected about the origin by, which is defined to be

v (K) := v(—k), keZ.

Note thatv*(&) = V(€). Now the subdivision operata#,, in (2) and the transition
operatorZ, in (3) can be equivalently expressed as follows:

ANV=2(v12)xu and Fv=2(vxUu*)]2. (15)



Foru = {u(k) }kez andy € Z, we define the associatedset sequence*uof u at the
cosety+ 2Z by

Ui(£) = gzu(y+ 2kje ™ ie, U =u(y+-)l2={u(y+ 22K }kez.  (16)
ke
Using the coset sequencespfve can rewrite (15) as
[V = 2vsul®, (A = 2vsult],

(7)
TN = 2(\,[0] % (u[O] >+ vl & (u[l] )*) )
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Figure 2: Diagram of a two-level discrete framelet transf@mploying filter banks
{&by,.. '755} and{a;by,...,bs}. Note that¥2 Fi v =V2(vxb;) |2 and 2 | p,v =
V2(v12)xbyfort=1,...,s.



