Wavelets/Framelets for Computer Graphics

The following is based on book manuscript: B. Han, Framedats Wavelets: Al-
gorithms, Analysis and Applications.

In this project, we only deal with computer generated cufaessurfaces). This is
an easier project than the project on wavelets/frameletsigmal/image processing.

To introduce a subdivision curve, we need some definitiodsrenation. Byl (Z)
we denote the linear space of all sequenceq v(K) }kez : Z — C of complex numbers
onZ. One -dimensional discrete input data or signal is ofteaté@ as an element in
1(Z). Similarly, bylp(Z) we denote the linear space of all sequences{u(k) }xez :
Z — ConZsuch thafk € Z : u(k) # 0} is a finite set. An element ikh(Z) is often
regarded as a finite-impulse-response (FIR) filter (aldeda finitely supported mask
in the literature of wavelet analysis). In this book we ofteseu for a general filter and
v for a general signal or data. It is often convenient to usédhmal Fourier series (or
symbol)v of a sequence = {v(k) }kcz, which is defined as follows:

V&)=Y vke ™, EeR, (1)
kez

wherei in this book always denotes the imaginary unit. ¥erlo(Z), Vis a 2r-periodic
trigonometric polynomial.

Let M be a positive integer greater than one. For a fédterlo(Z) andv € [(Z), the
subdivision operator A a: 1(Z) — |(Z) is defined to be

[“MmaV](n) =2 Z v(k)a(n— MKk), nez. 2
keZ

Given an initial control polygonal shap/(k)}kez. We can generate a smooth
curve through subdivision schemes. Faf N, define

o ol
Vi =Sl

That is, we apply the subdivision operatotimes (see the other project about how to
efficiently implement a subdivision operator). Now we defindunction” f; on the
lattice 2717 as: _

fj(27k) :=v;(k), keZ.

Then we connect these discrete points one-by-one to créateton f;. Whenj — o,
thenf; — f, wheref is the smooth subdivision curves. In practice, we only ajpipdy
subdivision scheme no more than 10 times.

To efficiently compute values’; mv on the refined reference mebtr1Z from v
on the coarse mesh we often rewrite the subdivision operator using coset maskl
convolution: FoiB,y € Z,

[Zamvl(y+MB) = M| 5 v(kaly-+MB —MKk) = M[v<a¥](B), (3
&/

where thecoset mask al¥! of the maska is defined to be

a’(k):=a(y+Mk), kyeZ. (4)



If Siezalk) =1, then|M| 5,z a¥ (k) = 1 for all y € Z. Hence, a subdivision scheme
is a local averaging rule. Moreover,

[Zamvi(y+MB) = IM|[vxaY|(B) = (v(B +),M[al(-)), ()

which is attached to the poi+ M1y — M~1c,. Consequently, the filter

{IM[a¥ (=K }kez = {IMla(y—MK)}kez, ~ y€{0,...,M~1}

is called theM~y-stencil of the maska for computing the valuesZa mv](y+ M-) on
the cosets iM~1y+ Z of the refined mesM~1Z. It is more convenient to use stencils
for subdivision schemes in computer graphics than a filteska.

To deal with curves in two or three dimensions, we simply giibé subdivision
scheme componentwise (that is, entrywise). Quite oftenlaereeda to have sym-
metry:

a(c—k) =a(k), keZ
for some integec. That is, we see tha has{1,—1}-symmetry. For a subdivision
scheme, we often use subdivision tripletst M, {—1,1}): a is the maskM is the
dilation factor, and —1,1} is the symmetry group. For dimension one and a dilation
factorM, the reference coarse méslis refined into a finer mesﬁZ by inserting new
vertices atf; + Zwith y=1,...,|M| - 1.
In the following, we provide a few examples of subdivisioplets.

Examplel (a,2,{—1,1}) is a primal subdivision triplet with
1
a= §{W37W25W17M7W17W27W3}[73,3]7

where

wo=31 wi=81 w=1' wy=-J4 with teR (6)
Fort = —%, thena= aB(- — 3) and sfa,2) = 6, [pm(a) = 2 and sm(a,2) =5+1/p
forall 1< p< . sia,2) =4ift £ —1/2. Sincea(&) = &3 (1+e¢)%(&) with
b(&) := — & + FHe ¥ — Le 28, py item (5) of Corollary??, we have sm(a,2) =
3—log,(1+t) providedt > —1/2. We only have sm(a,2) > 3—log, |t| fort < —1/2.
Whent = 0, a= a§(- — 2) is the centered B-spline filter of order 4 with(ar2) = 4
and Ipm(a) = 2. Whent = 1, ais an interpolatory 2-wavelet filter with @&, 2) = 4 and
Ipm(a) = 4. See Figure 1 for its subdivision stencils.

Example2 (a,2,{—1,1}) is a dual subdivision triplet with

1
a= E{W23W17M7W05W17W2}[72,3]7

where

=123 W =82 w=-3%  with teR. (7)

Wo 16



w2 Wo w2 w3 w1 w1 w3
G © 5} G ®

Figure 1: The 0-stencil (left) and tr%stencil (right) of the primal subdivision scheme
in Example 1, whereav, ..., w3 are given in (6). It is an interpolatory 2-wavelet filter
if wp = 8 = 0. SinceM = 2, each line segment (with endpoin)sn the coarse mesh
Z is equally split into two line segments with one new vertexif the middle.

Fort = —£, a=a8(-—2) and sta,2) = 5,lpm(a) = 2 and sm(a,2) = 4+ 1/pfor all
1< p< . Slncea(E) = &2 (1+e4)3p(&) with b(&) := -2 + 4§23te 1§ Sgizg,
by item (5) of Corollary??, we have s@,2) = 3 and sm,(a,2) = 4 —log,(4+ 3t)

provided > —2/3. We only have sm(a, 2) > 1—log,(3[t|) fort < —2/3. Whent =0,
a=aS(- — 1) is the shifted B-spline filter of order 3 with (g 2) = 3 and Ipnfa) =
Whent = 1, si(a,2) = 3 and Ipn{a) = 4. See Figure 2 for its subdivision stencils.
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Figure 2: The 0-stencil (left) and tl'%stencil (right) of the dual subdivision scheme in
Example 2, whergig, w1, W, are given in (7). Th%-stencil is the same as the 0-stencil.
The valug.#,2v|(K) for k € Z is attached to the cent!—ifyl of the line segmenrfk— 1,k
instead of the verteg. SinceM = 2, each line segment is equally split into two.

Example3 (a,3,{—1,1}) is a primal subdivision triplet with
a= 3{Ws,Ws, Ws,Wo, W1, Wo, W1, W2, W, Ws, W5} 55,

where

7—2t1 -8ty 6—2t1 5t 3+t 4+t
9 9 9

Wp = W1 = Wo =

. with t3,t, € R. (8)

t
W3 = Wy =152, Ws=3%

Fort; =2/9 andt, =1/9, si(a,3) =5 and sm(a,3) =4+ 1/pforall 1< p< o whose
3-refinable function is the B-spline of order 5. Sir&é ) = (¢ +1+e1¢)3b(&) with
b(E) = 26% + Lt 4 A2 | Lgity g2
by a similar result to item (5) of Corollary?, we have
Srn”(aa 2) >2- Iog3ma)<(|1— 2t — 2tZ|7 |2t1|1 |2t2|)

Fort; = 7/9 andt, = —4/9, a is an interpolatory 3-wavelet filter with & 3) =

= Ipm(a) and sma(a,3) > log; 14— 4 ~ 1.5978. Fort; = 5/11 andty = —4/11,
ais an interpolatory 3-wavelet filter with @&,3) = 3 =Ipm(a) and sm,(a,3) > 2+
logs(11/10) =~ 2.0867 (Using joint spectral radius, we in fact haveém3) = log; 11~
2.18266). See Figure 3 for its subdivision stencils.
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We now provide some subdivision curves in Figure 4 using tieva subdivision
triplets.
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Figure 3: The 0-stencil (left), thé-stencil (middle), anc%—stencil of the subdivision
scheme in Example 3, wheve), ..., ws are given in (8). Due to symmetrg,—stencil
is the same as thé—stencil. It is an interpolatory 3-wavelet filter iz = 1“1—9““2 =
0. SinceM = 3, each line segment (with endpoinrfsis equally split into three line

segments with two new inserted vertice$&t 3 + Z and2 + Z.



Figure 4: Subdivision curves at levels213 with the initial control polygons at the
first row. The subdivision tripleta,2,{—1,1}) in Example 1 is used with = —%
(aB(- — 2)) for the 2nd row and with = 1 (interpolatory) for the 3rd row(a, 2, {—1,1}

in Example 2 is used with=0 (ag(- —1), the corner cutting scheme) for the 4th row
and witht = 1 and Ipna) = 4 for the 5th row.(a, 3, {—1,1}) is used wittt; = Z,t, =
for the 6th row and withy = 2 ,t, = —1; (interpolatory, sm(a,3) = logz 11) for the
7th row.
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