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A Network as a Directed Graph
A directed graph G = (V, E, A)
Vertex set:  V ={1,2,--- ,n}
Directed edge:  (/,j) from vertex i to j
Weights: A= (aj), aj #0 <= (j,i) exists.

Given a nonnegative matrix, there corresponds a digraph G4, for which A
is the weight matrix.
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Examples of Networks

Selected Hubs and Airport Destinations
in the Conterminous United States
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Dynamical Systems on Networks

Given a digraph G = (V, E), a dynamical system can be defined over G.

Vertex dynamics: v} = fi(t,u;), i=1,--- ,n.
ui € R™ and f; : R x R™ — R™,

Connections: gij : R x R™ x R™ — R™ influence of j on i
gi=0 <<= (j,f) does not exist.

Coupled system over G:

n
U,{: f’;'(l'7 u,-)—l—Zg,-j(L U,',Uj)7 i=12,...,n.

j=1
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Examples of Dynamical Systems on Networks
¢ Coupled Oscillators:

n
i+ aki+ i)+ Y (% — %) =0,
j=1
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Examples of Dynamical Systems on Networks

® Coupled Oscillators:
n
i+ aki+ i)+ Y (% — %) =0,
j=1

® Dispersal of a single species among n patches

X_XIIXI +§ dU OZUX, i:1,2,...,n.
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Examples of Dynamical Systems on Networks

® Coupled Oscillators:

n
i+ aki+ i)+ Y (% — %) =0,
j=1
® Dispersal of a single species among n patches
X_XIIXI +Zdu OZUX, l—1,27...,n.

® An n-patch predator-prey model

x! = x;(r; — bix; — eiy;) +Zd’1 — QjjXi),

yi=yi(=vi = diyi + €iXi)7

Main Result
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Examples of Dynamical Systems on Networks cont’ed

e Cellular Neural Network and Lattice Dynamical Systems
b

Figure 1: Cellular Neural Network
| 2D example
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Examples of Dynamical Systems on Networks cont’ed

® A Delayed Hopfield-Cohen-Grossberg Model of Neural
Networks

du(;gt) = —u(t) + Y Jif(y(t—7)), 1<i<n
i=1
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Examples of Dynamical Systems on Networks cont’ed

® A Delayed Hopfield-Cohen-Grossberg Model of Neural
Networks

du(;gt) = —u(t) + iJ,-jf(uj(t — 7—)), 1<i<n

®* An Epidemic Model in Heterogeneous Populations
n
Si=N—d?Si =Y Bifi(Si 1),
j=1

Zﬁljusl,l d +6)E," I‘:l’27...’n_

/,- = E;E,' — (d, +’}/,')I,'.



A Network of Autonomous Robotic Agents HPC Control Protocol HPC Control Protocol Main Result

00 00 000 00

Research Questions

Assume: Independent vertex dynamics are simple or identical

Investigate: If, what, how complex dynamic behaviours emerge
through network interactions.
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® Pattern formation
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Research Questions

Assume: Independent vertex dynamics are simple or identical

Investigate: If, what, how complex dynamic behaviours emerge
through network interactions.

® Pattern formation
® Synchronization and clustering
® Phase transition and bifurcation

® Stability and control
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Global Stability in Network Dynamics

Given a coupled system over a digraph G:

u/{:ﬁ(tvui)+zgﬁ(t7ui’uj)’ i=12...,n (1)
j=1

Assume: Each vertex ul = fi(t, u;) is globally stable, as insured by a
global Lyapunov function V;.



Global Stability in Network Dynamics

Given a coupled system over a digraph G:

u/{:ﬁ(tvui)+zgﬁ(t7ui’uj)’ i=12,....n
j=1

Assume: Each vertex ul = fi(t, u;) is globally stable, as insured by a
global Lyapunov function V;.

Question: Under what conditions on the underlying network and
coupling is the coupled system globally stable?

Of significance in disease control, stability of eco-systems, power
distribution grids etc.



Main Result

Theorem [Z. Shuai and ML, 2009] Assume
(1) There exist Fj(t, uj, u;) such that

n
°
V,(U) < Za,-jF,-j(t, u;, Uj), t>0, u € D,', uj € Dj,j = 1,‘ s, n.
=1

(2) Along each directed cycle C of G,

> Fu(tiunu) <0, t>0,u,€D, us€Ds. (3)
(r,s)€EE(C)

Then there exist constants ¢; > 0 such that V(u) = >_"_, ¢ Vi(u)
satisfies

V(u) <0, weDyx---xD,.
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Kirchhoff Matrix-Tree Theorem

Let (G, A) be a weighted digraph with weight matrix A = (aj;).
The Laplacian matrix of graph G is

Zk# alk —a12 T —dain
—an Dokpa @k —aon
L f—
—an —am D kn dnk

Let ¢; be the cofactor of the i-th diagonal element of L.
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Kirchhoff Matrix-Tree Theorem

Let (G, A) be a weighted digraph with weight matrix A = (aj;).
The Laplacian matrix of graph G is

Zk# alk —a12 T —dain
—an Dokpa @k —aon
L f—
—an —am D kn dnk

Let ¢; be the cofactor of the i-th diagonal element of L.

Theorem [Kirchhoff (1847)] Assume n > 2. Then

a=> w(T), i=12..,n (4)

TET;

where T is the set of all spanning trees T of (G, A) rooted at vertex i,
and w(7) is the weight of T.



Reordering of a Double Sum

Proposition [Tree-Cycle-Identity, Z. Shuai and ML 2009] Let ¢; be given
by the Matrix-Tree Theorem. Then the following identity holds.

Z ¢ ajj Fij(xi, x;)) = Z w(Q) Z Frs(xr, Xxs), (5)

ij=1 QeQ (rs)€E(Ca)

where Fjj(xi, x;),1 < i,j < n, are arbitrary functions, Q is the set of all
spanning unicyclic graphs Q of (G, A), w(Q) is the weight of Q, and Cgo
denotes the oriented cycle of Q.



Reordering of a Double Sum
Proposition [Tree-Cycle-Identity, Z. Shuai and ML 2009] Let ¢; be given
by the Matrix-Tree Theorem. Then the following identity holds.

Z ¢ ajj Fij(xi, x;)) = Z w(Q) Z Frs(xr, Xxs), (5)

ij=1 QeQ (rs)€E(Ca)

where Fjj(xi, x;),1 < i,j < n, are arbitrary functions, Q is the set of all
spanning unicyclic graphs Q of (G, A), w(Q) is the weight of Q, and Cgo
denotes the oriented cycle of Q.

Proof: Note w(T) aj = w(Q),
where Q is the unicyclic graph
obtained by adding an arc (j, i) to
T.
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Proof of Main Theorem

V= Z qV; < Z ciajjFij(t, ui, u;) (assumption (1))
i=1 ij=1

= Z w(Q) Z F.s(t,ur, us) (Proposition)
QeQ (r,s)EE(Co)
<0
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Proof of Main Theorem

V= Z qV; < Z ciajjFij(t, ui, u;) (assumption (1))
i=1 ij=1
= Z w(Q) Z F.s(t,ur, us) (Proposition)
QeQ (r,s)EE(Co)
<0

Our Theorem offers a systematic way to construct global Lyapunov
functions for the coupled system, using individual Lyapunov functions for
the vertex dynamics.
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Proof of Main Theorem

V= Z qV; < Z ciajjFij(t, ui, u;) (assumption (1))
i=1 ij=1
= Z w(Q) Z F.s(t,ur, us) (Proposition)
QeQ (r,s)EE(Co)
<0

Our Theorem offers a systematic way to construct global Lyapunov
functions for the coupled system, using individual Lyapunov functions for
the vertex dynamics.

Is the theorem any good?
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Application I: A Network of Coupled Oscillators

n
Ko+ ki + fi(xi) + Y e(xi — %) =0, (6)
j=1
or in systems
Xi =Yi
: . 7)
yi=—aiy;i — () = > _ €i(yi — ))- (
j=1

Each vertex dynamics is given by a damped nonlinear oscillator
X; + ax; + f,'(X,') =0.
Assume that the damping «; > 0 and the potential energy
Fi(x;) = | fi(s)ds has a strictly global minimum at x; = x*. Then
x = x* is globally stable (using the Lyapunov function)

y?
Vi(xi, yi) = Fi(x;) + 7’
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Application I: A Network of Coupled Oscillators

Theorem Assume «y > 0 for some k and digraph G is strongly
connected. Then E*(x;,0,x5,0,---,x%,0) is globally asymptotically
stable in R2".

Proof. V,'(X,',y,') = F,'(X,') + y?'
Vi = —aiy? =Y ei(yi —y)yi
j=1
. 1 1 1

< ZGU[_E(W —y)? - 5)/,'2 + 5)’12]
j=1

<> eiFi(yiy)
j=1

where

1 1
Fi(yi,y;) = —Ey,? + Eyf.
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Application Il: A Single Species Model with Dispersal

n
x! :x,-f,-(x,-)—i—Zd,-j(xj—oz,-jx,-), i=1,2,...,n. (8)
=1
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Application Il: A Single Species Model with Dispersal

n
x! :x,-ﬁ(x,-)—i—Zd,-j(xj—a,-jx,-), i=1,2,...,n. (8)

j=1

Theorem [Z. Shuai and ML (2009)] Assume

(1) matrix (dj) is irreducible;

(2) f/(x) <0,x;>0,i=1,2,...,n; 3k, f/(xk) Z 0 in any open
interval of RT;

(3) system (8) is uniformly persistent;

(4) solutions of (8) are uniformly bounded.

Then system (8) has a globally asymptotically stable positive equilibrium
E*.
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Application Il: A Single Species Model with Dispersal

n
x! :x,-ﬁ(x,-)—i—Zd,-j(xj—a,-jx,-), i=1,2,...,n. (8)

j=1

Theorem [Z. Shuai and ML (2009)] Assume
(1) matrix (dj) is irreducible;

(2) f/(x) <0,x;>0,i=1,2,...,n; 3k, f/(xk) Z 0 in any open
interval of RT;

(3) system (8) is uniformly persistent;

(4) solutions of (8) are uniformly bounded.

Then system (8) has a globally asymptotically stable positive equilibrium
E*.

Note: Lu and Tacheuchi (1993) proved the result under the assumption
f/(x;) <0, x; > 0 for all i, using the theory of monotone dynamical
systems.
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Application Ill: An n-Patch Predator-Prey Model

n
xi = xi(ri — bix; — eiy;) + Z di(x — aijxi),
= i=1,2,...,n (9)

yi = yi(—=yi = diyi + €ixi),
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Application Ill: An n-Patch Predator-Prey Model

xi = xi(ri — bix; — eiy;) + Z dii(x; — aijxi),
i=1,2

j:l PRI

yi = yi(—=yi = diyi + €ixi),

n. (9)

Theorem [Z. Shuai and ML (2009)] Assume that (dj;) is irreducible, and
that 3 k such that bidx > 0. Then the positive equilibrium E*, whenever
it exists, is unique and globally asymptotically stable in the positive cone
R2".
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Application Ill: An n-Patch Predator-Prey Model

xi = xi(ri — bix; — eiy;) + Z dii(x; — aijxi),
= i=12,....,n.  (9)

yi = yi(=i = diyi + €ixi),
Theorem [Z. Shuai and ML (2009)] Assume that (dj;) is irreducible, and

that 3 k such that bidx > 0. Then the positive equilibrium E*, whenever

it exists, is unique and globally asymptotically stable in the positive cone
R2",
+

Kuang and Tacheuchi (1994) proved the two-patch case.
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Application Ill: An n-Patch Predator-Prey Model

xi = xi(ri — bix; — eiy;) + Z dii(x; — aijxi),
= i=12,....,n.  (9)

yi = yi(—=yi = diyi + €ixi),

Theorem [Z. Shuai and ML (2009)] Assume that (dj;) is irreducible, and
that 3 k such that bidx > 0. Then the positive equilibrium E*, whenever

it exists, is unique and globally asymptotically stable in the positive cone
R2",
+

Kuang and Tacheuchi (1994) proved the two-patch case.

Vilxi, yi) = €i(xi — xi" Inx;) + ei(yi — yi" Iny;)
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Application IV: A Multi-group Delayed Epidemic Model
Si=N—d’Si =Y BiSili(t — 1),

Jj=1

n i:1727...7n. (10)
17 =" BySili(t —75) — (d] + i),
=1
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Application IV: A Multi-group Delayed Epidemic Model
Sl =N —d’Si = BySili(t — 7).

j=t

) i=1,2,---,n.  (10)
11 =" B5Sili(t — ) = (df + 7)1,
j=1

Theorem [Z. Shuai and ML (2009)] Assume that B = () is irreducible.
If Ry > 1, then the unique endemic equilibrium P* for system (10) is

o
globally asymptotically stable in ©.
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Application IV: A Multi-group Delayed Epidemic Model
Sl =N —d’Si = BySili(t — 7).

j=t

) i=1,2,---,n  (10)
= BySili(t — 1) = (d! + )i,
j=1

Theorem [Z. Shuai and ML (2009)] Assume that B = () is irreducible.
If Ry > 1, then the unique endemic equilibrium P* for system (10) is

o
globally asymptotically stable in ©.

When n =1, C. McCluskey proved the global stability with Lyapunov
function

= (S — 5*+S*In%) (-1 /*|/’7)

. K Li(t—r
Zﬁj,-s,.*/o (/j(t—r)—/j*—/j*m i - )>dr.
j=1

J
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Synchronization of metronomes: a video

https://www.youtube.com/watch?v=Aaxw4zbULMs

Main Result
(o]


https://www.youtube.com/watch?v=Aaxw4zbULMs
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Coupled Oscillators Revisited

Consider a system of coupled oscillators:

X + f:(x;) Zeu ) =0,

Assume that f(x;) and F;(x;) f fi(t)dt satisfy
(Cl) f;'(X,')X,' >0, x; 75 0,i=1,2,--
(&) Fi(x;)) = o0 as |x;| = o0, i = 1,2,~~~ , n.

Both (C;) and (G,) are satisfied for f;(x;) = x7.

Main Result
(o]



Global Synchronization

Definition: System (21) is said to achieve global synchronization if, for
every solution x(t) of system (21) and all 1 </,j < n,

s(t) — %(8) = .

Question: Under what conditions of matrix A = (a;;) does the system
(21) achieves global synchronization?
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A Theorem

Theorem (P. Du and ML 2015)

In system (21), suppose that the direct graph Ga is strongly connected,
and assumptions (Cy) and (G,) are satisfied. Then system (21) achieves
global synchronization.

For the proof, considering the equivalent system

Xi = Yi
XI +ZEU y:

Using Lyapunov functions:

and



Proof

The vertex Lyapunov function is the total energy function
1 Xi
Vibsn) = 378 + Fix). o) = [ xids
Consider a Lyapunov function for the coupled system

§ CI XHyl

We verify the V; satisfies the assumptions of the Li-Shuai Theorem:

V— X,}G"‘Zky YIYI+fXI Zk’l ’

_221(11[ +.yj _y/]gzzklj Yi

Li-Shuai Theorem implies that V/(x,y) < 0 and V = 0 if and only if
Y1 = Y2 = -+ = y¥,. The conclusion then follows from the LaSalle
Invariance Principle.



A video on Youtube
https://www.youtube.com/watch?v=QmWD76 jwjbQ

GRASP Lab, University of Pennsylvania


https://www.youtube.com/watch?v=QmWD76jwjbQ

[ 1o}

Each robotic agent has position vector r; = (x;, ;) € R? and velocity
vector v; = f; = (X, ¥i)-

The system'’s evolution is governed by Newton's equation

= v, )
. i=1-- n. (11)
vi = uj,
Here
® y;, i=1,---,n, define the control protocol

® Formation control is achieved through communications among
agents

® Network represents the communication graph (topology)

® A complete communication graph is too costly.
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Formation Stabilization Problem

Definition A control protocol is said to solve the formation stabilization
problem if solutions of (11) converge asymptotically to a state such that

(a) the relative positions of each agent (i, ;) within a cluster are such
that a local minimum of the total vertex potential Pj; is achieved,

(b) the headings of any two agents (/,;) and (h, k) satisfy 6 = Opx.
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Gradient Systems and Potential Functions

Let x € R” and x — V/(x) € R be a scalar-valued function that is
Lipchitz continuous. A gradient system has the form

x'(t) = -VV(x(t)), x€DCR",

with the potential function V/(x).

Unique characteristics of a gradient system: V/(x(t) decreases at the rate
of steepest decent.

V(x(t)) = VV(x(£))-x'(t) = VV(x(£)) [-VV(x(t)] = ~[[VV(x(1)[*,

and the gradient —V V/(x) points to the direction of the steepest decent
and the maximum speed of decent is ||V V/(x(t))]°.
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Gradient Systems and Potential Functions

Let x € D C R" and V/(x) = ||x — x|[>. Consider the gradient system

x'=-VV(x), xe€D.

Then from the preceding discussion we know that:
(1) x is an equilibrium

(2) All other solutions x(t) satisfy ||x(t) — X|| — 0 as t — oo.

This illustrates how to use the gradient of appropriate potential functions
as control functions.
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Hierarchical Potential Clustering (HPC) Protocol

Proposed by J. Maidens and ML:

1) Divide the agents into clusters
2) Assign a leader to each cluster

3) Implement an artificial potential scheme (with a complete graph)
within each cluster

4) Implement a velocity consensus scheme among the cluster leaders.
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HPC Control Protocol
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A Network of Autonomous Robotic Agents
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HPC Protocol: control within a cluster i

For j # 1, (i.e. rj is not a leader in cluster i)

(05 — Oillvill .
ujj = 7V”JPU o Z T|r —r HJ A(ij),
P ij ik
s

where
n;

_ § ik
k=1

controls distance of agents in the
cluster and

0 = tan_1<ﬁ>
Xij d=Ilri; = il

is the heading of agent (i, J),
and 7(ij) - 8;; = 0.

Main Result
(o]

Figure: Potential function P,-j-".
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HPC Protocol: control among leaders

For j =1, (i.e., ri1 is the leader in cluster /), we add additional force to
control there heading

upp = _vm 'Dil - Z (9i1 - gik)”‘/ilH ﬁ(ll)

ri1 — rik
T radl

+ Z bin(vh — vi1)

heN;

where matrix B = (bj;) is any nonnegative irreducible matrix. The
correspond communication graph Gg among leaders is strongly
connected.
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Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation
stabilization problem provided that the leader communication graph Gg is
strongly connected.
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Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation
stabilization problem provided that the leader communication graph Gg is
strongly connected.

An example graph that is strongly connected:

Br2 \\323

\
@ ®
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Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation
stabilization problem provided that the leader communication graph Gg is
strongly connected.

An example graph that is not strongly connected:

/ ®\ B23
AN
\

@ ®
\

Bax Baa
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Simulations

® Clustering without control protocol
® Video 1

® Clustering without leader control

® Video 2
® Video 3

® Clustering with leader control

® Video 4
® Video 5

col

Main Result
oe
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