

Online lectures for Math 348: Differential geometry of curves and surfaces

Eric Woolgar

Dept of Mathematical and Statistical Sciences
University of Alberta

Lecture 1: What is a curve?

Examples of curves

- ① Line in \mathbb{R}^2 ; e.g., $y = mx + b$.
- ② Graph in \mathbb{R}^2 ; e.g., $y = x^2$.
- ③ Level curve of a function in \mathbb{R}^3 :
$$\{(x, y, z) \mid x^2 + y^2 + z^2 = 1\} \cap \{(x, y, z) \mid z = \frac{1}{2}\}$$
- ④ Curves of intersection;
e.g.; intersect paraboloid $z = x^2 + y^2$
with plane $z = \frac{1}{2}y + 1$.
- ⑤ Level sets are curves of intersection
of graphical surfaces $z = f(x, y)$ with planes $z = k$.
The constant k is the *level*.

Graphs aren't everything

- Circle $x^2 + y^2 = a^2$ is not the graph of a function:
It can be “double-valued”.
- Inelegant solution:
It's the union of graphs of *two* functions:
 $y = \sqrt{a^2 - x^2}$ and $y = -\sqrt{a^2 - x^2}$, $-a \leq x \leq a$.
- Better solution: Parametrize the circle:
 $x(\theta) = a \cos \theta$
 $y(\theta) = a \sin \theta$
 $\theta \in [0, 2\pi)$

Parametrized curves

Definition

A *parametrized curve* is a map $\gamma : I \rightarrow \mathbb{R}^n$, where I is a connected interval of \mathbb{R} .

The textbook takes I to be open, because we need to define differentiation. But sometimes we will need endpoints, and then I should be closed or half-closed (see the last slide, where $\theta \in [0, 2\pi)$). We won't impose that I is always open, but will instead assume that any differentiation applies only in the interior of I , or applies in a one-sided sense at endpoints.

- It's very easy to parametrize a graph $y = f(x)$.
- Just choose x to be the parameter; i.e., write $x(t) = t$.
- Then $y(t) = f(t)$.
- Don't forget to choose domain (e.g., perhaps $t \in (-\infty, \infty)$, perhaps not).

Examples

- The parametrized curve
$$\begin{cases} x(t) = t, \\ y(t) = \sqrt{a^2 - t^2}, \\ t \in [-a, a], \end{cases}$$
 is a semi-circle.
- The parametrized curve
$$\begin{cases} x(t) = \cos t, \\ y(t) = \sin t, \\ t \in [0, 2\pi], \end{cases}$$
 is a circle, traversed once counter-clockwise.
- The parametrized curve
$$\begin{cases} x(t) = \cos t, \\ y(t) = \sin t, \\ t \in [0, 4\pi], \end{cases}$$
 is a circle, traversed twice counter-clockwise.

Notice the parametrization carries extra information not available from the graphical description of a curve.

Example: The astroid

- The parametrized curve $\gamma(t) = (\cos^3 t, \sin^3 t)$, $t \in [0, 2\pi)$, is called an *astroid*.

- Can write it as
$$\begin{cases} x(t) = \cos^3 t \\ y(t) = \sin^3 t \\ t \in [0, 2\pi) \end{cases}$$

- Then $x^{2/3} = \cos^2 t$ and $y^{2/3} = \sin^2 t$, so $x^{2/3} + y^{2/3} = 1$.

- Graphical form: $y = \pm (1 - x^{2/3})^{3/2}$.

- Level set form:

- Let $z = f(x, y) = x^{2/3} + y^{2/3}$.

- Then the astroid is the level set

- $$z = f(x, y) = 1.$$

- Graphical and level set forms have less information than parametrized form, but produce the same image. The image of a curve is called the *trace* of the curve (not related to the trace of a matrix).

Tangent vectors

- Recall tangent line to graph $y = f(x)$ at (x_0, y_0) is $y - y_0 = f'(x_0)(x - x_0)$.
- Tangent vector: Any (non-zero) vector parallel to tangent line.
- Parametrized form of line: Take $s \in \mathbb{R}$ and
 $x(s) = x_0 + s$
 $y(s) = y_0 + f'(x_0)s$
- Differentiate wrt s : $x'(s) = 1$, $y'(s) = f'(x_0)$.
- Tangent vectors to line are the vectors parallel to $(1, f'(x_0))$.

Tangent vectors to parametrized curves

- Parametrized curve $\gamma : I \rightarrow \mathbb{R}^n$ is a *vector-valued* function.
- $\gamma(t) = (\gamma_1(t), \gamma_2(t), \dots, \gamma_n(t)) = (x_1(t), x_2(t), \dots, x_n(t))$.

Definition

$$\begin{aligned}\gamma'(t) &= \dot{\gamma}(t) = \frac{d\gamma}{dt} = \left(\frac{d\gamma_1}{dt}, \frac{d\gamma_2}{dt}, \dots, \frac{d\gamma_n}{dt} \right) \\ &= \lim_{\Delta t \rightarrow 0} \frac{\gamma(t + \Delta t) - \gamma(t)}{\Delta t}\end{aligned}$$

Then $\gamma'(t)$ is a tangent vector to curve γ at t provided $\gamma'(t) \neq (0, \dots, 0)$,

(Generally, we will just write 0 even if we mean the 0-vector $(0, 0, \dots, 0)$.)

Example

- $\gamma(t) = t^3 \mathbf{e}_1 + t^2 \mathbf{e}_2, t \in \mathbb{R}$,
 $\{\mathbf{e}_1, \mathbf{e}_2\}$ = orthonormal basis (ONB).
- $$\begin{cases} \gamma_1(t) = t^3 \\ \gamma_2(t) = t^2 \end{cases} \implies y = x^{2/3}.$$
- Chain rule:
 - $\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}.$
 - $\implies 2t = \frac{dy}{dx} \cdot 3t^2$
 - $\implies \frac{dy}{dx} = \frac{2t}{3t^2}$ undefined at $t = 0$.

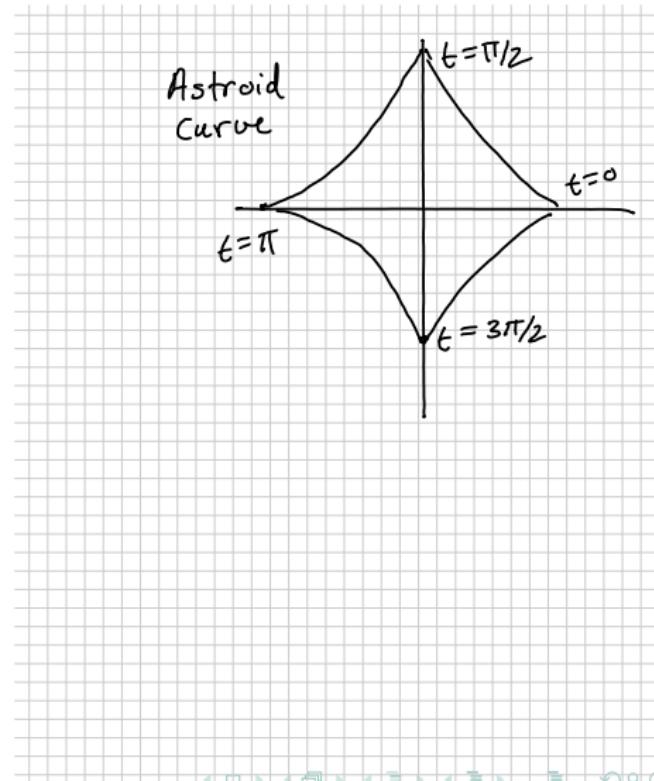
Definition

A parametrized curve $\gamma : I \rightarrow \mathbb{R}^n$ is

- *smooth* at $t_0 \in I$ if all derivatives of all components $\gamma_i(t)$ exist at $t = t_0$, and
- *regular* at $t_0 \in I$ if it is smooth at t_0 and $\frac{d\gamma}{dt}(t_0) \neq (0, \dots, 0)$; otherwise t_0 is a *singular point*.

The astroid again

- $\gamma(t) = (\cos^3 t, \sin^3 t)$, and say $t \in [0, 2\pi]$.
- Differentiate: $\gamma'(t) = (-3 \sin t \cos^2 t, 3 \sin^2 t \cos t)$, $t \in [0, 2\pi]$.
- Simplify:
 $\gamma'(t) = 3 \cos t \sin t (-\cos t, \sin t)$,
 $t \in [0, 2\pi]$.
- Then $\gamma'(t) = 0 \Leftrightarrow \theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$.
- Therefore γ is smooth everywhere, but it is not regular at four points.



Lecture 2: Arc length and tangent vectors

Arclength

- Recall arclength in \mathbb{R}^2 :

$$s = \int ds = \int \sqrt{dx^2 + dy^2} = \int \sqrt{d\gamma_1^2 + d\gamma_2^2} = \int_{t_0}^{t_1} \sqrt{\left(\frac{d\gamma_1}{dt}\right)^2 + \left(\frac{d\gamma_2}{dt}\right)^2} dt$$

- In \mathbb{R}^n : $s = \int_{t_0}^{t_1} \sqrt{\left(\frac{d\gamma_1}{dt}\right)^2 + \cdots + \left(\frac{d\gamma_n}{dt}\right)^2} dt = \int_{t_0}^{t_1} \sqrt{\frac{d\gamma}{dt} \cdot \frac{d\gamma}{dt}} dt = \int_{t_0}^{t_1} \left\| \frac{d\gamma}{dt} \right\| dt$

Definition

The arclength function of a curve $\gamma : [t_0, t_1] \rightarrow \mathbb{R}^n$ is

$$s := \int_{t_0}^t \left\| \frac{d\gamma(t')}{dt'} \right\| dt'$$

for $t \in [t_0, t_1]$.

Fundamental Theorem of Calculus $\implies \frac{ds}{dt} = \left\| \frac{d\gamma(t)}{dt} \right\|$.

This is called the *speed* of the curve.

Example: Log spiral

- The logarithmic spiral is the curve
 $\gamma(t) = e^t (\cos t, \sin t).$
- $\gamma'(t) = e^t (\cos t - \sin t, \sin t + \cos t)$
- $\|\gamma'\| = e^t \sqrt{(\cos t - \sin t)^2 + (\sin t + \cos t)^2} = \sqrt{2}e^t.$
- $s(t) = \int_{t_0}^t \sqrt{2}e^{\tau} d\tau = \sqrt{2}(e^t - e^{t_0}).$
- $t_0 \rightarrow -\infty \implies \gamma(t_0) \rightarrow (0, 0), s(t) \rightarrow \sqrt{2}e^t.$
- $\gamma : (-\infty, t] \rightarrow \mathbb{R}^2$ has finite arclength,
but no initial endpoint.

Unit speed curves

- If $\|\dot{\gamma}(t)\| = 1$, γ is *unit speed* and t is an *arclength parameter* or *unit speed parameter*.
- If $\|\dot{\gamma}(t)\| = k = \text{const} > 0$, γ is *constant speed* and t is an *affine parameter*.
- Fact:
 - Let \mathbf{v} be any unit vector field $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 = 1$.
 - Let $\gamma(t)$ be a unit speed curve.
 - $\frac{d}{dt}(\mathbf{v} \cdot \mathbf{v}) = \frac{d}{dt}(1) = 0$.
 - But then $\frac{d}{dt}(\dot{\gamma} \cdot \dot{\gamma}) = 0$.
 - Chain rule: $\dot{\gamma} \cdot \ddot{\gamma} = 0$.
 - Conclude that $\dot{\gamma} \perp \ddot{\gamma}$ along any unit speed curve whenever acceleration $\ddot{\gamma} \neq 0$.
 - For unit speed curves, write $\mathbf{t} := \dot{\gamma}$ = unit tangent vector. Note that $\|\mathbf{t}\| = \sqrt{\mathbf{t} \cdot \mathbf{t}} = 1$.

Reparametrization

- Say $\gamma : (a, b) \rightarrow \mathbb{R}^n$ is a curve, and
- Say $\tilde{\gamma} : (\tilde{a}, \tilde{b}) \rightarrow \mathbb{R}^n$ is a curve.

Definition

If

- there is a smooth map $\phi : (\tilde{a}, \tilde{b}) \rightarrow (a, b)$
- with smooth inverse $\phi^{-1} : (a, b) \rightarrow (\tilde{a}, \tilde{b})$, such that
- $\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t})) = (\gamma \circ \phi)(\tilde{t}) = \gamma(t)$ for all $\tilde{t} \in (\tilde{a}, \tilde{b})$,

then $\tilde{\gamma} = \gamma \circ \phi$ is a *reparametrization* of γ .

Theorem

Theorem

Any reparametrization of a regular curve is also a regular curve.

Proof.

- Let $t = \phi(\tilde{t})$ and $\tilde{\gamma}(\tilde{t}) = \gamma(t)$.
- Then $\tilde{t} = \phi^{-1}(t)$ so $t = \phi(\tilde{t}) = \phi(\phi^{-1}(t))$.
- Chain rule: $\frac{d\phi}{d\tilde{t}} \frac{d(\phi^{-1})}{dt} = 1$, so $\frac{d\phi}{d\tilde{t}} \neq 0$.
- $\frac{d\tilde{\gamma}}{d\tilde{t}} = \frac{d}{d\tilde{t}}(\gamma(t)) = \frac{d\gamma}{dt} \frac{d\phi}{d\tilde{t}}$.
- Now γ is regular so $\frac{d\gamma}{dt} \neq 0$, and $\frac{d\phi}{d\tilde{t}} \neq 0$.
- Thus $\frac{d\tilde{\gamma}}{d\tilde{t}} \neq 0$.

Works iff reparametrization ϕ is smooth with smooth inverse.

The arclength function of a regular curve is smooth

- Say $\gamma : I \rightarrow \mathbb{R}^2 : t \rightarrow (x(t), y(t))$ is a regular curve.
- Then $x(t)$ and $y(t)$ are smooth functions.
- The square root function $f(w) = \sqrt{w}$ is smooth if $w \neq 0$.
- Since γ is regular, $\dot{x}^2 + \dot{y}^2 \neq 0$.
- Thus $\frac{ds}{dt}(t) = \sqrt{\dot{x}^2 + \dot{y}^2}$ is smooth.
- Therefore $s(t) = \int_{t_0}^t \frac{ds}{dt'}(t') dt'$ is smooth.

Regular curve have unit speed parametrizations

Theorem

A parametrized curve has an arclength parametrization iff it is regular.

Proof.

- Curve $\tilde{\gamma} : \tilde{I} \rightarrow \mathbb{R}^2$ and reparametrization $t = \phi(\tilde{t})$, such that $\gamma(t) = \tilde{\gamma}(\tilde{t})$.

- Chain rule: $\frac{d\tilde{\gamma}}{d\tilde{t}} = \frac{d\gamma}{dt} \frac{dt}{d\tilde{t}} \implies \left\| \frac{d\tilde{\gamma}}{d\tilde{t}} \right\| = \left\| \frac{d\gamma}{dt} \right\| \left| \frac{dt}{d\tilde{t}} \right|$.

\Rightarrow If \tilde{t} is arclength, then $\left\| \frac{d\tilde{\gamma}}{d\tilde{t}} \right\| = 1$, so $\frac{d\gamma}{dt}$ is never zero. Then $\gamma(t)$ is regular.

\Leftarrow

- If $\frac{d\gamma}{dt} \neq 0$, then $\frac{ds}{dt} = \left\| \frac{d\gamma}{dt} \right\| \neq 0$, so s is smooth and strictly increasing.
- Then $\frac{d\gamma}{dt} = \frac{d\tilde{\gamma}}{ds} \frac{ds}{dt} \implies \left\| \frac{d\gamma}{dt} \right\| = \left\| \frac{d\tilde{\gamma}}{ds} \right\| \left| \frac{ds}{dt} \right| = \left\| \frac{d\tilde{\gamma}}{ds} \right\| \frac{ds}{dt}$.
- But $s = \int \left\| \frac{d\gamma}{dt} \right\| dt \implies \frac{ds}{dt} = \left\| \frac{d\gamma}{dt} \right\|$.
- Compare last two lines. Then $\left\| \frac{d\tilde{\gamma}}{ds} \right\| = 1$, so $\tilde{\gamma}(s)$ is unit speed.

Example

Parametrize curve $\gamma(t) = (\cos^3 t, \sin^3 t, \cos 2t) \in \mathbb{R}^3$, $t \in [0, \pi/2]$ by arclength.

Solution:

- $\dot{\gamma}(t) = (-3 \cos^2 t \sin t, 3 \sin^2 t \cos t, -2 \sin 2t)$.

$$\begin{aligned}\|\dot{\gamma}\|^2 &= 9 \cos^4 t \sin^2 t + 9 \sin^4 t \cos^2 t + 4 \sin^2 2t \\ &= 9 \cos^2 t \sin^2 t + 16 \cos^2 t \sin^2 t \\ &= 25 \cos^2 t \sin^2 t.\end{aligned}$$

- Then $\|\dot{\gamma}\| = 5 \cos t \sin t$ for $t \in [0, \pi/2]$.
- $s = \int_0^t \|\dot{\gamma}(\tau)\| d\tau = 5 \int_0^t \cos \tau \sin \tau d\tau = \frac{5}{2} \sin^2 t$.
- Then $\frac{2s}{5} = \sin^2 t$, so $1 - \frac{2s}{5} = \cos^2 t$, and then $\cos 2t = \cos^2 t - \sin^2 t = 1 - \frac{4s}{5}$.
- $\tilde{\gamma}(s) = \left(\left(1 - \frac{2s}{5}\right)^{3/2}, \left(\frac{2s}{5}\right)^{3/2}, 1 - \frac{4s}{5} \right)$.

Regular curve, non-regular parametrization

- Parabola $y = x^2$.
- Regular parametrization $x(t) = t$, $y(t) = t^2$, $t \in \mathbb{R}$.
- Then $\dot{x} = 1$, $\dot{y} = 2t$, and $\dot{x}^2 + \dot{y}^2 = 1 + 4t^2 \neq 0$.
- Non-regular parametrization $x(t) = t^3$, $y(t) = t^6$, $t \in \mathbb{R}$.
- Then $\dot{x} = 3t^2$, $\dot{y} = 6t^5$, and $\dot{x}^2 + \dot{y}^2 = 9t^4 + 36t^{10}$, equals 0 when $t = 0$.
- What went wrong: Reparametrization map $\phi(t) = t^3$ has inverse $\phi^{-1}(t) = t^{1/3}$, which is not differentiable at $t = 0$, so theorem on regular reparametrizations fails.

Closed curves

Example:

- Ellipse $\frac{x^2}{p^2} + \frac{y^2}{q^2} = 1$, $p, q > 0$ are constants.
- Parametrize as $\gamma(t) = (p \cos t, q \sin t)$, $t \in \mathbb{R}$.
- Then $\gamma(t + 2\pi) = \gamma(t)$ for all $t \in \mathbb{R}$.
- γ is 2π -periodic.

Definition

- If $\gamma(t + T) = \gamma(t)$ for all t and for some $T > 0$, then γ is T -periodic.
- If $\gamma(t) = p$ for all t (where $p \in \mathbb{R}^n$ is a point), then γ is a *constant curve*.
- If γ is T -periodic and not constant, then γ is a *closed curve*.

Examples

- Ellipses (including circles) are closed curves.
- The curve $\gamma(t) = (t^2 - 1, t^3 - t)$, $t \in \mathbb{R}$, is not closed.
 - Curve has $\gamma(-1) = \gamma(1) = (0, 0)$.
 - But $\gamma(t + T) = \gamma(t)$ with $T = 2$ is only true when $t = -1$, not true for all t .
 - This curve is not closed and not periodic but it does have a closed loop.

Lecture 3: Curvature of plane curves

Curvature

When is a curve ...curved?

Definition

If $\gamma : I \rightarrow \mathbb{R}^n$ is a unit speed curve, then its curvature is $\kappa := \|\ddot{\gamma}\|$.

Interpretation: Curvature as quadratic coefficient in Taylor's theorem:

$$\gamma(t_0 + \Delta t) = \gamma(t_0) + \dot{\gamma}(t_0)\Delta t + \frac{1}{2}\ddot{\gamma}(t_0)(\Delta t)^2 + \mathcal{O}(\Delta t^3).$$

- Can replace $\dot{\gamma}(t_0)$ by unit tangent $\mathbf{t}(t_0) = \dot{\gamma}(t_0)$.
- $\dot{\gamma}(t_0) \cdot \dot{\gamma}(t_0) = 1 \implies 2\dot{\gamma}(t_0) \cdot \ddot{\gamma}(t_0) = 0$, so $\ddot{\gamma} \perp \dot{\gamma}$ for a unit speed curve (if $\ddot{\gamma} \neq 0$).
- Then $\ddot{\gamma} = \pm \kappa \mathbf{n}$ where \mathbf{n} is unit normal vector (orthogonal to \mathbf{t}).
- Get $\gamma(t_0 + \Delta t) = \gamma(t_0) + \mathbf{t}(t_0)\Delta t \pm \frac{1}{2}\kappa(t_0)\mathbf{n}(t_0)(\Delta t)^2 + \mathcal{O}(\Delta t^3)$
- Two choices for \mathbf{n} : we choose it so that $\{\mathbf{t}, \mathbf{n}\}$ is *right-handed*.

Curvature formulas: general parametrization

- Say t is a general parameter for γ , and s is an arclength parameter.
- Chain rule $\frac{d\gamma}{dt} = \frac{d\gamma}{ds} \frac{ds}{dt} \implies \frac{d\gamma}{ds} = \frac{d\gamma/dt}{ds/dt}$.
- Chain rule again $\frac{d^2\gamma}{ds^2} = \frac{d}{ds} \left(\frac{d\gamma/dt}{ds/dt} \right) = \frac{dt}{ds} \frac{d}{dt} \left(\frac{d\gamma/dt}{ds/dt} \right) = \frac{\ddot{\gamma}(t)\dot{s}(t) - \dot{\gamma}(t)\ddot{s}(t)}{(\dot{s}(t))^3}$.
- Now use $\kappa = \left\| \frac{d^2\gamma}{ds^2} \right\|$.
- Then $\kappa = \frac{\|\ddot{\gamma}\dot{s} - \dot{\gamma}\ddot{s}\|}{|\dot{s}|^3}$.
- Then $\kappa = \frac{\|\ddot{\gamma}\dot{s}^2 - \dot{\gamma}\dot{s}\ddot{s}\|}{|\dot{s}|^4} = \frac{\|\ddot{\gamma}(\dot{\gamma}\cdot\dot{\gamma}) - \dot{\gamma}(\dot{\gamma}\cdot\ddot{\gamma})\|}{(\|\dot{\gamma}\|^2)^2}$, using that $\dot{s}^2 = \left(\frac{ds}{dt}\right)^2 = \|\dot{\gamma}\|^2 = \dot{\gamma} \cdot \dot{\gamma}$ and therefore $\dot{s}\ddot{s} = \dot{\gamma} \cdot \ddot{\gamma}$.
- Finally, the “BAC-CAB rule” $\mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ yields $\kappa = \frac{\|\dot{\gamma} \times (\ddot{\gamma} \times \dot{\gamma})\|}{\|\dot{\gamma}\|^4}$.
- Notice that $\dot{\gamma} \perp \ddot{\gamma} \times \dot{\gamma}$. Thus $\|\dot{\gamma} \times (\ddot{\gamma} \times \dot{\gamma})\| = \|\dot{\gamma}\| \|\ddot{\gamma} \times \dot{\gamma}\|$, so $\kappa = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}$.

Example: Circle

- Circle in \mathbb{R}^2 : $\gamma(t) = (x_0 + a \cos t, y_0 + a \sin t)$, $t \in [0, 2\pi]$.
- $\dot{\gamma} = a(-\sin t, \cos t)$, $\ddot{\gamma} = -a(\cos t, \sin t)$.
- Use $\kappa = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3}$. Think of \mathbb{R}^2 as $z = 0$ plane in \mathbb{R}^3 .

$$\begin{aligned}\bullet \dot{\gamma} \times \ddot{\gamma} &= \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ -a \sin t & a \cos t & 0 \\ -a \cos t & -a \sin t & 0 \end{vmatrix} \\ &= \mathbf{e}_1 \begin{vmatrix} a \cos t & 0 \\ -a \sin t & 0 \end{vmatrix} - \mathbf{e}_2 \begin{vmatrix} -a \sin t & 0 \\ -a \cos t & 0 \end{vmatrix} + \mathbf{e}_3 \begin{vmatrix} -a \sin t & a \cos t \\ -a \cos t & -a \sin t \end{vmatrix} \\ &= \mathbf{e}_3 (a^2 \sin^2 t + a^2 \cos^2 t) = a^2 \mathbf{e}_3.\end{aligned}$$

- Also, $\|\dot{\gamma}\| = \sqrt{a^2 \sin^2 t + a^2 \cos^2 t} = a$.
- Then $\kappa = \frac{a^2 \|\mathbf{e}_3\|}{a^3} = \frac{1}{a}$. Circles have constant curvature = 1/radius.

Osculating circles

Definition

If a curve $\gamma : I \rightarrow \mathbb{R}^2$ has curvature $\kappa(t) \neq 0$ at point $p = \gamma(t)$, we define its *radius of curvature* at p to be $\rho(t) = 1/\kappa(t)$.

The *osculating circle* to γ at p
is the circle that

- passes through p ,
- has the same tangent line as γ at p ,
- has radius $\rho = \frac{1}{\kappa}$, and
- lies on the concave side of γ .

Signed curvature

- Parametrize the curve $\gamma(t)$ in \mathbb{R}^2 .
- The direction of increasing parameter is the *orientation*.
- Define the unit tangent vector $\mathbf{t} = \dot{\gamma} / \|\dot{\gamma}\|$.
- Define the unit normal \mathbf{n} by rotating \mathbf{t} by $\frac{\pi}{2}$ counter-clockwise (also called the *right-handed sense*).
- Then the *signed curvature* κ_S is defined by

$$\ddot{\gamma}(s) = \kappa_S \mathbf{n}$$

where s is an arclength parameter with $ds/dt > 0$ (i.e., same orientation as t).

- Relation to (ordinary) curvature is $\kappa := |\kappa_S|$.

Interpretation: turning angle

Theorem (The turning angle)

There is a unique smooth function ϕ , called the turning angle, along the regular curve γ such that $\phi(s_0) = \phi_0$ and $\mathbf{t} = (\cos \phi(s), \sin \phi(s))$.

- Tangent vector in $\{\mathbf{e}_1, \mathbf{e}_2\}$ basis:
 $\mathbf{t} = \dot{\gamma}(s) = (\cos \phi(s), \sin \phi(s))$
- Calculate: $\dot{\mathbf{t}} = \ddot{\gamma}(s) = \dot{\phi}(s) (-\sin \phi(s), \cos \phi(s))$
- Normal vector in $\{\mathbf{e}_1, \mathbf{e}_2\}$ basis:
$$\begin{aligned}\mathbf{n} &= \left(\cos \left(\phi(s) + \frac{\pi}{2} \right), \sin \left(\phi(s) + \frac{\pi}{2} \right) \right) \\ &= (-\sin \phi(s), \cos \phi(s))\end{aligned}$$
- Conclude that $\ddot{\gamma}(s) = \dot{\phi}(s)\mathbf{n}$.
- Compare to $\ddot{\gamma}(s) = \kappa_S \mathbf{n}$ to get $\boxed{\kappa_S(s) = \dot{\phi}(s)}$.
- The signed curvature is the rate of change of the turning angle wrt arclength.

Hopf's Umlaufsatz (rotation rate)

- Integrate $\kappa_S(s) = \dot{\phi}(s)$ over curve γ .
- $\int_{s_0}^s \kappa_S(u) du = \int_{s_0}^s \dot{\phi}(u) du = \phi(s) - \phi(s_0)$.
- Take γ closed, with period T .
- $\int_{s_0}^{s_0+T} \kappa_S(u) du = \phi(s_0 + T) - \phi(s_0)$.
- But $\phi(s_0 + T) - \phi(s_0) = 2\pi k$, $k \in \mathbb{Z}$.
- In fact, can argue that $k = \pm 1$ if curve traversed once; k is the *winding number*.

Theorem (Hopf's Umlaufsatz)

The total curvature of a closed curve of period T is $\int_{s_0}^{s_0+T} \kappa_S(u) du = \pm 2\pi$.

Lecture 4: Isometries of \mathbb{R}^n

Isometries of \mathbb{R}^n

Definition (Isometry of \mathbb{R}^n)

$F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is an *isometry* of \mathbb{R}^n if it preserves the distance between any two points:

$$\|F(\mathbf{v}) - F(\mathbf{w})\| = \|\mathbf{v} - \mathbf{w}\|$$

for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.

Definition (Orthogonal matrix)

An $n \times n$ matrix P is *orthogonal* if its columns (rows) form an orthonormal set of column (row) vectors. Equivalently, the transpose of P is the inverse: $P^T = P^{-1}$. We write $P \in O(n) =$ the *group* of orthogonal $n \times n$ matrices.

Theorem (All isometries of \mathbb{R}^n)

Let $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be given by $F(\mathbf{v}) = P\mathbf{v} + \mathbf{a}$. Here \mathbf{v} and \mathbf{a} are column vectors and P is an $n \times n$ orthogonal matrix. Then F is an isometry, and all isometries of \mathbb{R}^n can be written this way.

Proving that $F(\mathbf{v}) = P\mathbf{v} + \mathbf{a}$ is an isometry

Calculate:

$$\begin{aligned}\|F(\mathbf{v}) - F(\mathbf{w})\|^2 &= (F(\mathbf{v}) - F(\mathbf{w})) \cdot (F(\mathbf{v}) - F(\mathbf{w})) \\&= [P\mathbf{v} - P\mathbf{w}]^T [P\mathbf{v} - P\mathbf{w}] \\&= [\mathbf{v} - \mathbf{w}]^T P^T P [\mathbf{v} - \mathbf{w}] \\&= [\mathbf{v} - \mathbf{w}]^T [\mathbf{v} - \mathbf{w}] \\&= (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w}) \\&= \|\mathbf{v} - \mathbf{w}\|^2\end{aligned}$$

- This proves that $F(\mathbf{v}) = P\mathbf{v} + \mathbf{a}$ preserves the distance, so F is an isometry.
- Fact: $F^{-1}(\mathbf{w}) = P^T \mathbf{w} - P^T \mathbf{a}$ is also an isometry.

Proving all isometries can be written as $F(\mathbf{v}) = P\mathbf{v} + \mathbf{a}$

- Orthonormal basis $\{\mathbf{e}_i\}$ and vectors $\mathbf{w}_i := F(\mathbf{e}_i) - F(\mathbf{0})$, $i = 1, \dots, n$.
- The \mathbf{w}_i are unit vectors
 - $\|\mathbf{w}_i\| = \|F(\mathbf{e}_i) - F(\mathbf{0})\| = \|\mathbf{e}_i - \mathbf{0}\| = \|\mathbf{e}_i\| = 1$ since F is an isometry.
 - Then $\|\mathbf{w}_i - \mathbf{w}_j\|^2 = \mathbf{w}_i \cdot \mathbf{w}_i + \mathbf{w}_j \cdot \mathbf{w}_j - 2\mathbf{w}_i \cdot \mathbf{w}_j = 2 - 2\mathbf{w}_i \cdot \mathbf{w}_j$.
- But $\|\mathbf{w}_i - \mathbf{w}_j\|^2 = \|F(\mathbf{e}_i) - F(\mathbf{e}_j)\|^2 = \|\mathbf{e}_i - \mathbf{e}_j\|^2 = (\mathbf{e}_i - \mathbf{e}_j) \cdot (\mathbf{e}_i - \mathbf{e}_j) = \mathbf{e}_i \cdot \mathbf{e}_i + \mathbf{e}_j \cdot \mathbf{e}_j - 2\mathbf{e}_i \cdot \mathbf{e}_j = \begin{cases} 2 & i \neq j \\ 0 & i = j \end{cases}$.
- Compare last two lines to conclude that $\mathbf{w}_i \perp \mathbf{w}_j$ if $i \neq j$.
- Thus $\{\mathbf{w}_i\}$ is an orthonormal basis too, and so $\mathbf{w}_i = P\mathbf{e}_i$ for some $P \in O(n)$.
- Endgame: Using $\mathbf{w}_i := F(\mathbf{e}_i) - F(\mathbf{0})$ then $F(\mathbf{e}_i) = \mathbf{w}_i + F(\mathbf{0}) = P\mathbf{e}_i + \mathbf{a}$, for some $P \in O(n)$ and for $\mathbf{a} = F(\mathbf{0})$.
- Finally, if $F(\mathbf{e}_i) = P\mathbf{e}_i + \mathbf{a}$ for basis $\{\mathbf{e}_i\}$, then $F(\mathbf{v}) = P\mathbf{v} + \mathbf{a}$ for all \mathbf{v} .

Direct isometries

- $P \in O(n) \implies P^{-1} = P^T \implies P^T P = \mathbb{I}_n$.
- Then $\det(P^T P) = (\det P)^2 = \det \mathbb{I} = 1$, so $\det P = \pm 1$.
- If $\det P = 1$ the corresponding isometry F is a *direct isometry*.
 - Preserves orientations of basis sets.
 - Includes rotations about the origin $F(\mathbf{v}) = P\mathbf{v}$, and say $P \in SO(n) =$ *special orthogonal group*.
 - Includes translations $F(\mathbf{v}) = \mathbf{v} + \mathbf{a}$.
 - Every direct isometry in \mathbb{R}^2 is a composition of a rotation about the origin and a translation.
 - Every direct isometry in \mathbb{R}^3 is a composition of a rotation about an axis through the origin and a translation.
- If $\det P = -1$ the corresponding isometry F is an *opposite isometry*.
 - Reverses orientations of bases.
 - Includes reflections in planes in \mathbb{R}^3 .

Fundamental theorem of plane curves

Theorem

Let $k : (\alpha, \beta) \rightarrow \mathbb{R}$ be any smooth function.

- There is a unit speed curve $\gamma : (\alpha, \beta) \rightarrow \mathbb{R}^2$ whose signed curvature is $\kappa_S = k$.
- If $\tilde{\gamma} : (\alpha, \beta) \rightarrow \mathbb{R}^2$ is another unit speed curve with the same domain and if its signed curvature also equals k , then there is a direct isometry $M : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ such that

$$\tilde{\gamma}(s) = M(\gamma(s)) = (M \circ \gamma)(s) \text{ for all } s \in (\alpha, \beta).$$

Proof of part 1

- Fix $s_0 \in (\alpha, \beta)$. Given function k , define $\varphi(s) = \int\limits_{s_0}^s k(u)du$ and notice that $\dot{\varphi} = k(s)$ by Fundamental Theorem of Calculus (FTC).
- Define curve $\gamma(s) = \left(\int\limits_{s_0}^s \cos(\varphi(u))du, \int\limits_{s_0}^s \sin(\varphi(u))du \right)$.
- Compute: $\dot{\gamma}(s) = (\cos(\varphi(s)), \sin(\varphi(s)))$ by FTC.
- Clearly $\|\dot{\gamma}\| = \sqrt{\cos^2 \varphi + \sin^2 \varphi} = 1$ for γ is unit speed.
- Also, clearly φ is the turning angle for our curve γ , so we know that $\kappa_S = \dot{\varphi}(s)$.
- But $\dot{\varphi}(s) = k(s)$, so $\kappa_S(s) = k(s)$ which proves part 1.

Proof of part 2

- Two unit speed curves $\gamma, \tilde{\gamma}(\alpha, \beta) \rightarrow \mathbb{R}^2$:
- $\dot{\gamma} = (\cos \varphi(s), \sin \varphi(s))$, and say $\varphi(s_0) = 0$.
- $\dot{\tilde{\gamma}} = (\cos \tilde{\varphi}(s), \sin \tilde{\varphi}(s))$, and say $\varphi(s_0) = \tilde{\varphi}_0$.
- Then $\tilde{\gamma}(s) = \left(\int_{s_0}^s \cos \tilde{\varphi}(u) du, \int_{s_0}^s \sin \tilde{\varphi}(u) du \right) + \tilde{\gamma}(0)$.
- And $k(s) = \dot{\tilde{\varphi}}(s) = \dot{\varphi}(s)$, so $\tilde{\varphi}(s) = \int_{s_0}^s k(u) du + \tilde{\varphi}(s_0) = \varphi(s) + \tilde{\varphi}_0$.
- Then $\tilde{\gamma}(s) = \left(\int_{s_0}^s \cos(\varphi(u) + \tilde{\varphi}_0) du, \int_{s_0}^s \sin(\varphi(u) + \tilde{\varphi}_0) du \right) + \tilde{\gamma}(0)$.
- Use $\cos(A + B) = \cos A \cos B - \sin A \sin B$,
 $\sin(A + B) = \sin A \cos B + \cos A \sin B$.

Proof of part 2 continued

\implies

$$\begin{aligned}\tilde{\gamma}(s) &= \left(\cos \tilde{\varphi}_0 \int_{s_0}^s \cos \varphi(u) du - \sin \tilde{\varphi}_0 \int_{s_0}^s \sin \varphi(u) du, \right. \\ &\quad \left. \sin \tilde{\varphi}_0 \int_{s_0}^s \cos \varphi(u) du + \cos \tilde{\varphi}_0 \int_{s_0}^s \sin \varphi(u) du \right) + \tilde{\gamma}(0) \\ &= (\gamma_1(s) \cos \tilde{\varphi}_0 - \gamma_2(s) \sin \tilde{\varphi}_0, \gamma_1(s) \sin \tilde{\varphi}_0 + \gamma_2(s) \cos \tilde{\varphi}_0)\end{aligned}$$

using $\gamma(s) = (\gamma_1(s), \gamma_2(s)) = \left(\int_{s_0}^s \cos \varphi(u) du, \int_{s_0}^s \sin \varphi(u) du \right)$.

- Matrix form:

$$\begin{bmatrix} \tilde{\gamma}_1(s) \\ \tilde{\gamma}_2(s) \end{bmatrix} = \begin{bmatrix} \cos \tilde{\varphi}_0 & -\sin \tilde{\varphi}_0 \\ \sin \tilde{\varphi}_0 & \cos \tilde{\varphi}_0 \end{bmatrix} \begin{bmatrix} \gamma_1(s) \\ \gamma_2(s) \end{bmatrix} + \begin{bmatrix} \tilde{\gamma}_1(s_0) \\ \tilde{\gamma}_2(s_0) \end{bmatrix}$$
$$\implies [\tilde{\gamma}(s)] = [P(\tilde{\varphi}_0)] [\gamma(s)] + [\tilde{\gamma}_0].$$

Proof of part 2 continued

- Last slide: $[\tilde{\gamma}(s)] = [P(\tilde{\varphi}_0)] [\gamma(s)] + [\tilde{\gamma}_0]$, and $[P(\tilde{\varphi}_0)] = \begin{bmatrix} \cos \tilde{\varphi}_0 & -\sin \tilde{\varphi}_0 \\ \sin \tilde{\varphi}_0 & \cos \tilde{\varphi}_0 \end{bmatrix}$. This is a rotation matrix.
- Then $\tilde{\gamma}$ is obtained by applying a rotation $P(\tilde{\varphi}_0)$ through angle $\tilde{\varphi}_0$ and a translation $T(|bfa|)$, $\mathbf{a} = \tilde{\gamma}_0$, to γ .
- Since the composition of a rotation and a translation is an isometry of \mathbb{R}^2 , this proves part 2.

Consequence: Every unit speed curve in \mathbb{R}^2 is completely determined by

- choosing one point on the curve,
- choosing the direction of \mathbf{t} at that point, and
- specifying the curvature function $k(s)$.

and any smooth function is the curvature function of some curve.

Example

Theorem

Any regular curve $\gamma : (a, b) \rightarrow \mathbb{R}^2$ with constant curvature $\kappa = c > 0$ is (isometric to) a part of a circle.

Proof:

- $\kappa = c$ so the signed curvature is either $\kappa_S(s) = c$ for all s or $\kappa_S(s) = -c$ for all s .
- The circle $\gamma_{c+}(s) = \frac{1}{c} (\cos(cs), \sin(cs))$ is unit speed; easy to check that it has $\kappa_S = c$.
- The circle $\gamma_{c-}(s) = \frac{1}{c} (\cos(cs), -\sin(cs))$ is unit speed; easy to check that it has $\kappa_S = -c$.
- By the theorem of the previous slides, the curve γ must be isometric to one of these two circles, with domain restricted to (a, b) .

Lecture 5: Space curves

Cross-product: quick review

Recall $\mathbf{A} \times \mathbf{B}$:

- Orthonormal basis (ONB) $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$.
- Let $\mathbf{A} = (A_1, A_2, A_3) = A_1\mathbf{e}_1 + A_2\mathbf{e}_2 + A_3\mathbf{e}_3$.
- Let $\mathbf{B} = (B_1, B_2, B_3) = B_1\mathbf{e}_1 + B_2\mathbf{e}_2 + B_3\mathbf{e}_3$.
- Then the cross-product $\mathbf{A} \times \mathbf{B}$ is the vector

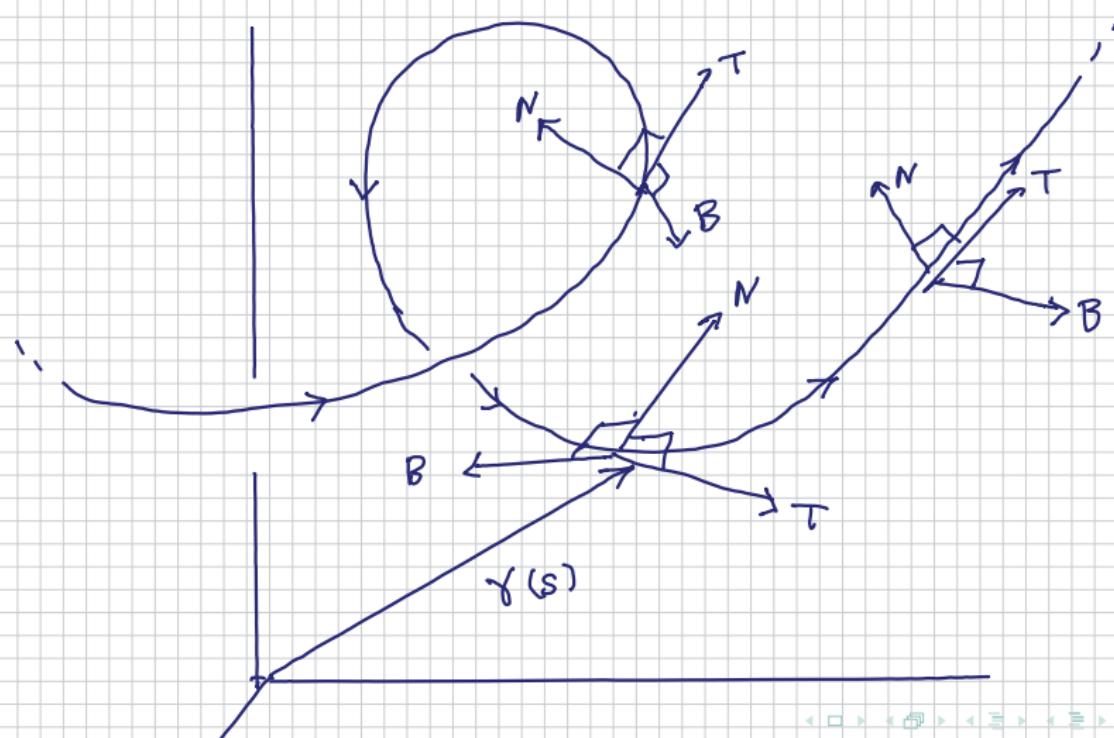
$$\begin{aligned}\mathbf{A} \times \mathbf{B} &= \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix} \\ &= \mathbf{e}_1 \begin{vmatrix} A_2 & A_3 \\ B_2 & B_3 \end{vmatrix} - \mathbf{e}_2 \begin{vmatrix} A_1 & A_3 \\ B_1 & B_3 \end{vmatrix} + \mathbf{e}_3 \begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix} \\ &= (A_2 B_3 - A_3 B_2) \mathbf{e}_1 + (A_3 B_1 - A_1 B_3) \mathbf{e}_2 + (A_1 B_2 - A_2 B_1) \mathbf{e}_3\end{aligned}$$

- Recall: $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$, and so $\mathbf{A} \times \mathbf{A} = \mathbf{0}$.
- $\mathbf{A} \times \mathbf{B} \perp \mathbf{A}$ and $\mathbf{A} \times \mathbf{B} \perp \mathbf{B}$.
- $\|\mathbf{A} \times \mathbf{B}\| = \|\mathbf{A}\| \|\mathbf{B}\| |\sin \theta|$, for θ the angle between \mathbf{A} and \mathbf{B} .

Space curves

- Space curve $\gamma : I \rightarrow \mathbb{R}^3$.
- Assume γ to be unit speed: $\|\dot{\gamma}(s)\| = \sqrt{\dot{\gamma}_1^2 + \dot{\gamma}_2^2 + \dot{\gamma}_3^2} = 1$.
- Then s is an arclength parameter.
- Unit tangent vector $\mathbf{T}(s) = \dot{\gamma}(s)$.
- Curvature $\kappa(s) = \|\ddot{\gamma}(s)\| = \|\dot{\mathbf{T}}\|$.
- Principal unit normal $\mathbf{N}(s) = \frac{1}{\kappa(s)} \dot{\gamma}(s)$.
- $\mathbf{T} \perp \mathbf{N}$ if $\kappa \neq 0$. Proof:
 - $\mathbf{T} \cdot \mathbf{T} = 1 \implies 2\mathbf{T} \cdot \dot{\mathbf{T}} = 0$, so $\mathbf{T} \perp \dot{\mathbf{T}}$ (note that $\dot{\mathbf{T}} = \ddot{\gamma} \neq \mathbf{0}$ iff $\kappa \neq 0$).
 - Since $\dot{\mathbf{T}} = \kappa \mathbf{N}$ then $\mathbf{T} \perp \mathbf{N}$
- Define binormal vector $\mathbf{B} = \mathbf{T} \times \mathbf{N}$.
- $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is an ONB for \mathbb{R}^3 at each point of γ , called the *Frenet frame*.

Frenet frame



Frenet frame

For unit speed curves $\gamma(s)$ we have

- Unit tangent vector $\mathbf{T} = \dot{\gamma}(s)$.
- Principal unit normal vector $\mathbf{N} = \frac{1}{\kappa} \dot{\mathbf{T}} = \frac{1}{\kappa(s)} \ddot{\gamma}(s)$.
- Unit binormal vector $\mathbf{B} = \mathbf{T} \times \mathbf{N}$.

Since Frenet frame $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is an ONB, must have (up to a sign)

- $\mathbf{B} = \mathbf{T} \times \mathbf{N}$
- $\mathbf{T} = \mathbf{N} \times \mathbf{B}$
- $\mathbf{N} = \mathbf{B} \times \mathbf{T}$

With these sign choices, the Frenet frame is a *right-handed* ONB.

Torsion

For a unit speed curve, we have $\dot{\mathbf{T}} = \kappa \mathbf{N}$. What about $\dot{\mathbf{B}}$ and $\dot{\mathbf{N}}$?

- Differentiate $\mathbf{B} = \mathbf{T} \times \mathbf{N}$. Get $\dot{\mathbf{B}} = \dot{\mathbf{T}} \times \mathbf{N} + \mathbf{T} \times \dot{\mathbf{N}}$.
- But $\dot{\mathbf{T}} \times \mathbf{N} = \kappa \mathbf{N} \times \mathbf{N} = \mathbf{0}$.
- Then $\dot{\mathbf{B}} = \mathbf{T} \times \dot{\mathbf{N}}$.
- Then $\dot{\mathbf{B}} \perp \mathbf{T}$.
- But also $\dot{\mathbf{B}} \perp \mathbf{B}$ (since $0 = \frac{d}{ds} (\mathbf{B} \cdot \mathbf{B}) = 2\mathbf{B} \cdot \dot{\mathbf{B}}$).
- Conclude that $\dot{\mathbf{B}}$ is parallel to \mathbf{N} and write

$$\dot{\mathbf{B}}(s) =: -\tau(s) \mathbf{N}(s).$$

- This equation defines the *torsion* $\tau(s)$.

Formula for torsion

Unit speed curves $\gamma(s)$:

- Last slide: $\dot{\mathbf{B}} = \mathbf{T} \times \dot{\mathbf{N}}$ and $\dot{\mathbf{B}} =: -\tau \mathbf{N}$.
- $\Rightarrow -\tau \mathbf{N} = \mathbf{T} \times \dot{\mathbf{N}}$.
- Then $\tau = -\mathbf{N} \cdot (\mathbf{T} \times \dot{\mathbf{N}}) = \mathbf{N} \cdot (\dot{\mathbf{N}} \times \mathbf{T})$.

Curves with arbitrary parametrization $\gamma(t)$:

- In above formula, replace \mathbf{N} by $\mathbf{N}(s) = \frac{1}{\kappa(s)} \dot{\mathbf{T}}(s) = \frac{1}{\kappa(s)} \ddot{\gamma}(s)$.
- Use chain rule to write $\frac{d\gamma}{dt} = \frac{d\gamma}{ds} \frac{ds}{dt} = \frac{d\gamma}{ds} \|\dot{\gamma}(t)\|$, and use formula for κ .
- Tedious calculation (text Prop 2.3.1) gives

$$\tau(t) = \frac{(\dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|^2}.$$

Important point: When defining τ , needed to use $\mathbf{N} = \frac{1}{\kappa} \dot{\mathbf{T}}$.

\Rightarrow When $\kappa = 0$, cannot unambiguously define τ or even the Frenet frame.

Meaning of torsion

- Curve γ with $\kappa \neq 0$ so $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ and τ defined.
- Suppose $\tau(s) = 0$ for all s along γ .
- Then $\dot{\mathbf{B}} = -\tau \mathbf{N} \implies \dot{\mathbf{B}} = 0$, so \mathbf{B} is a constant vector.
- Then $\frac{d}{ds}(\gamma \cdot \mathbf{B}) = \frac{d\gamma}{ds} \cdot \mathbf{B} = \mathbf{T} \cdot \mathbf{B} = 0$ since $\mathbf{T} \perp \mathbf{B}$.
- $\implies \gamma \cdot \mathbf{B} = d = \text{const}$ all along γ .
- But this is the equation of a plane with normal vector \mathbf{B} ! To see this, if $\gamma = (x(s), y(s), z(s))$ and $\mathbf{B} = (a, b, c)$, then $\gamma \cdot \mathbf{B} = d$ becomes $ax + by + cz = d$.

Theorem

If a space curve $\gamma : I \rightarrow \mathbb{R}^3$ has $\tau(s) = 0$ for all $s \in I$, then it lies in a plane. The binormal \mathbf{B} to γ is normal to the plane.

Note: If $\kappa = 0$ for all $s \in I$, γ is a line and lies in a plane; indeed many planes.

The converse

Theorem

If a space curve $\gamma : I \rightarrow \mathbb{R}^3$ with nonzero κ lies in a plane, it has $\tau(s) = 0$ for all $s \in I$.

Proof:

- Say plane has normal (a, b, c) . Then γ obeys $(a, b, c) \cdot \gamma = d$.
- Differentiate. Get $(a, b, c) \cdot \dot{\gamma} = (a, b, c) \cdot \mathbf{T} = 0$, so $(a, b, c) \perp \mathbf{T}$.
- Differentiate again: $(a, b, c) \cdot \dot{\mathbf{T}} = (a, b, c) \cdot (\kappa \mathbf{N}) = 0$. Since $\kappa \neq 0$, then $(a, b, c) \perp \mathbf{N}$.
- Hence (a, b, c) is parallel to \mathbf{B} , and so \mathbf{B} has constant direction. But \mathbf{B} also has constant norm, so it's a constant vector; indeed,
$$\mathbf{B} = \pm(a, b, c) / \sqrt{a^2 + b^2 + c^2}.$$
- Then $\dot{\mathbf{B}} = \mathbf{0}$. But $\dot{\mathbf{B}} = -\tau \mathbf{N}$. Therefore $\tau = 0$.

Note: By continuity, these theorems also hold if $\kappa = 0$ at isolated points along γ .

What is \mathbf{N} ?

For a unit speed curve $\gamma(s)$ with $\kappa \neq 0$:

- $\dot{\mathbf{T}} = \kappa \mathbf{N}$, and
- $\dot{\mathbf{B}} = -\tau \mathbf{N}$.
- Now $\mathbf{N} = \mathbf{B} \times \mathbf{T}$ so

$$\begin{aligned}\dot{\mathbf{N}} &= \dot{\mathbf{B}} \times \mathbf{T} + \mathbf{B} \times \dot{\mathbf{T}} \\ &= -\tau \mathbf{N} \times \mathbf{T} + \kappa \mathbf{B} \times \mathbf{N} = \tau \mathbf{T} \times \mathbf{N} - \kappa \mathbf{N} \times \mathbf{B} \\ &= \tau \mathbf{B} - \kappa \mathbf{T}.\end{aligned}$$

The Frenet-Serret equations are:

Matrix form:

$$\begin{aligned}\dot{\mathbf{T}} &= \kappa \mathbf{N} \\ \dot{\mathbf{N}} &= -\kappa \mathbf{T} + \tau \mathbf{B} \\ \dot{\mathbf{B}} &= -\tau \mathbf{N}\end{aligned}$$

$$\frac{d}{ds} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}$$

Notice the square matrix is skew symmetric (i.e., anti-symmetric).

Circles again

Theorem

If a unit speed space curve $\gamma : I \rightarrow \mathbb{R}^3$ has $\tau = 0$ and $\kappa = \text{const} \neq 0$ for all $t \in I$, then γ is part of a circle of radius $1/\kappa$.

Proof:

- $\tau = 0$ implies that γ lies in a plane Π .
- \mathbf{B} is a constant vector field along γ normal to Π .
- $\dot{\mathbf{N}} = -\kappa \mathbf{T} + \tau \mathbf{B} = -\kappa \mathbf{T}$ so $\mathbf{T} + \frac{1}{\kappa} \dot{\mathbf{N}} = \mathbf{0}$.
- Since $\kappa = \text{const}$, can write last formula as $\frac{d}{ds} \left(\gamma + \frac{1}{\kappa} \mathbf{N} \right) = \mathbf{0}$.
- Integrate: $\gamma + \frac{1}{\kappa} \mathbf{N} = \mathbf{p}$ for $\mathbf{p} = (a, b, c) \in \Pi \subset \mathbb{R}^3$.
- $\Rightarrow \|\gamma(s) - \mathbf{p}\| = \frac{1}{\kappa} = \text{const}$.
- That's the equation of a sphere of radius $1/\kappa$ about centre \mathbf{p} .
- The curve is a great circle: intersection of the sphere with plane Π that contains the sphere's centre \mathbf{p} .

Fundamental theorem for space curves

Theorem

Let $\gamma : I \rightarrow \mathbb{R}^3$ and $\tilde{\gamma} : I \rightarrow \mathbb{R}^3$ be two unit speed curves with the same domain I , same curvature $\kappa(s)$, and same torsion $\tau(s)$ for all $s \in I$.

Then there is a direct isometry $M : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that

$$\tilde{\gamma}(s) = M(\gamma(s)) = (M \circ \gamma)(s) \text{ for all } s \in I.$$

Furthermore, if $k : I \rightarrow \mathbb{R}$ is a smooth positive function and if $t : I \rightarrow \mathbb{R}$ is a smooth function, then there is a unit speed curve $\gamma : I \rightarrow \mathbb{R}^3$ whose curvature is k and whose torsion is t .

Proof.

See text, pp 52–53.

Something to think about: What might the fundamental theorem of curves look like in \mathbb{R}^4 ? in \mathbb{R}^n ? in Minkowski spacetime (for those studying general relativity)?

Lecture 6: Isoperimetric inequality

Jordan curve theorem

Simple closed curves, also called *Jordan curves*, are closed plane curves that do not self-intersect.

Theorem (Jordan curve theorem)

Every simple closed curve separates \mathbb{R}^2 into two disjoint regions, called the interior and exterior regions.

The interior region is bounded (contained within a circle).

The exterior region is unbounded.

Simple statement, surprisingly difficult to prove:
see graduate level algebraic topology texts for proof.

The isoperimetric inequality

Theorem

Let $\gamma : I \rightarrow \mathbb{R}^2$ be a simple closed curve of length $L(\gamma)$, enclosing a region of area $A(\gamma)$. Then

$$A(\gamma) \leq \frac{1}{4\pi} (L(\gamma))^2.$$

Equality holds iff γ is a circle.

This simple theorem has motivated a great many proofs and almost as many profound ideas. The most common proof uses

Theorem (Wirtinger's inequality)

Let $F : [0, \pi] \rightarrow \mathbb{R}$ be a smooth function with $F(0) = F(\pi) = 0$. Then

$$\int_0^\pi \left(\frac{dF}{dt} \right)^2 dt \geq \int_0^\pi (F(t))^2 dt,$$

and equality holds iff $F(t) = C \sin t$, $C = \text{const.}$

Proof of isoperimetric inequality

- Unit speed closed curve γ , arclength L , positioned so that $\gamma(0) = \mathbf{0}$.
- Reparametrize by $t = \frac{\pi s}{L}$. Then $t \in [0, \pi]$, speed is $\|\dot{\gamma}(t)\| = \frac{L}{\pi} = \text{const.}$
- Polar coordinates: $\gamma(t) = (r(t), \theta(t))$. Then

$$L^2 = \pi^2 \|\dot{\gamma}(t)\|^2 = \pi \int_0^\pi \|\dot{\gamma}(t)\|^2 dt = \pi \int_0^\pi (\dot{r}^2 + r^2 \dot{\theta}^2) dt. \quad (1)$$

- From Calculus, area enclosed by a polar curve is

$$A = \frac{1}{2} \int_0^\pi (x\dot{y} - \dot{x}y) dt = \frac{1}{2} \int_0^\pi r^2(t) \dot{\theta}(t) dt. \quad (2)$$

- Combine (1) and (2):

$$\frac{L^2}{4\pi} - A = \frac{1}{4} \int_0^\pi (\dot{r}^2 + r^2 \dot{\theta}^2 - 2r^2 \dot{\theta}) dt = \frac{1}{4} \int_0^\pi [\dot{r}^2 + r^2 (\dot{\theta}^2 - 2\dot{\theta})] dt.$$

Isoperimetric inequality continued

- Complete the square:

$$\begin{aligned}\frac{L^2}{4\pi} - A &= \frac{1}{4} \int_0^\pi \left[\dot{r}^2 - r^2 + r^2 (\dot{\theta} - 1)^2 \right] dt \\ &\geq \frac{1}{4} \int_0^\pi [\dot{r}^2 - r^2] dt \\ &\geq 0\end{aligned}\tag{3}$$

by Wirtinger's inequality, which we recall says that $\int_0^\pi \dot{r}^2 dt \geq \int_0^\pi r^2 dt$ for any smooth function $r(t)$ such that $r(0) = r(\pi) = 0$.

- This proves the inequality.

Case of equality

We still have to show that $\frac{L^2}{4\pi} = A$ iff γ is a circle.

- If γ is a circle, then $L = 2\pi r$ so $\frac{L^2}{4\pi} = \pi r^2$.
- But if γ is a circle, then $A = \pi r^2$. Hence $\frac{L^2}{4\pi} = A$.
- Must prove converse: that if $\frac{L^2}{4\pi} = A$ then γ is a circle.
- Use $\frac{L^2}{4\pi} - A = 0$ in first line of (3):

$$\begin{aligned} 0 = \frac{L^2}{4\pi} - A &= \frac{1}{4} \int_0^\pi \left[\dot{r}^2 - r^2 + r^2 (\dot{\theta} - 1)^2 \right] dt \\ &= \frac{1}{4} \int_0^\pi [\dot{r}^2 - r^2] dt + \frac{1}{4} \int_0^\pi r^2 (\dot{\theta} - 1)^2 dt \end{aligned}$$

Equality case continued

- Last slide: $0 = \frac{1}{4} \int_0^\pi [\dot{r}^2 - r^2] dt + \frac{1}{4} \int_0^\pi r^2 (\dot{\theta} - 1)^2 dt.$
- By Wirtinger, first integral on right is nonnegative. Second integral on right is obviously nonnegative. Thus, each integral must vanish:

$$\int_0^\pi [\dot{r}^2 - r^2] dt = 0 \quad \text{and} \quad \int_0^\pi r^2 (\dot{\theta} - 1)^2 dt = 0.$$

- But $\int_0^\pi r^2 (\dot{\theta} - 1)^2 dt = 0 \implies \dot{\theta} = 1 \implies \theta = t + \theta_0$ for $\theta_0 = \text{const.}$
Simplify: Rotate axes to get $\theta_0 = 0$, then $\theta = t$.
- And $\frac{1}{4} \int_0^\pi [\dot{r}^2 - r^2] dt = 0 \implies r = C \sin t$ by the equality case of Wirtinger.
- So $r = C \sin \theta$, which is polar equation of *circle* that passes through the origin. (Exercise: Obtain the Cartesian form $x^2 + (y - \frac{C}{2})^2 = \frac{C^2}{4}$.)

Addendum: Sketch of proof of Wirtinger's inequality

Set-up:

- Define $G(t) = F(t)/\sin t$, $t \in (0, \pi)$.
- $\lim_{t \rightarrow 0^+} G(t) = \lim_{t \rightarrow 0^+} \frac{F(t)}{\sin t} = \lim_{t \rightarrow 0^+} \frac{F'(t)}{\cos t} = \lim_{t \rightarrow 0^+} F'(t)$. Exists because F is smooth. Likewise, $\lim_{t \rightarrow \pi^-} G(t)$ exists. So define $G(0)$, $G(\pi)$ by continuity (i.e., $G(0) := \lim_{t \rightarrow 0^+} G(t)$).
- Then $G : [0, \pi] \rightarrow \mathbb{R}$ is smooth.
- Then $F(t) = G(t) \sin t$, so $\dot{F}(t) = \dot{G}(t) \sin t + G(t) \cos t$.
- Use this an integration by parts (details: text p 61) to compute

$$\int_0^\pi \left(\dot{F}^2(t) - F^2(t) \right) dt = \int_0^\pi \dot{G}^2(t) \sin^2 t dt \geq 0.$$

- This proves the inequality.

Addendum: Sketch of equality case

- Last slide: $\int_0^\pi (\dot{F}^2(t) - F^2(t)) dt = \int_0^\pi \dot{G}^2(t) \sin^2 t dt \geq 0.$
- From this, if $\int_0^\pi (\dot{F}^2(t) - F^2(t)) dt = 0$, then necessarily $\int_0^\pi \dot{G}^2(t) \sin^2 t dt = 0.$
- Because the integrand is nonnegative, the integral is zero only if $\dot{G}(t) \sin t = 0$ for all $t \in [0, \pi]$.
- Then $\dot{G}(t) = 0$, so $G(t) = C = \text{const.}$
- Since $G(t) = F(t)/\sin t$, we have $F(t) = C \sin t$, as required.

Lecture 7: What is a surface?

Review some basic concepts

Definition

An *open set* in \mathbb{R}^n is a set S that contains a neighbourhood of each of its points. That is, if $p \in S$, then there is an $\epsilon > 0$ such that $q \in S$ whenever $\|p - q\| < \epsilon$.

- The *ball* of radius $a > 0$, $\{p \in \mathbb{R}^2 \mid \|p\| < a\}$, is open.
- The *closed ball* of radius $a > 0$, $\{p \in \mathbb{R}^2 \mid \|p\| \leq a\}$, is *not* open.

Definition

Let $X \subset \mathbb{R}^m$, $Y \subset \mathbb{R}^n$. The function $f : X \rightarrow Y$ is *continuous* at x_0 if, given that $f(x_0) = y_0$, then points near x_0 are mapped to points near y_0 . That is, f is continuous at x_0 if, for any $\epsilon > 0$, we can make $|f(x) - f(x_0)| < \epsilon$ whenever $|x - x_0| < \delta$ for some $\delta > 0$.

Homeomorphism

Definition (Equivalent definition of continuity)

$f : X \rightarrow \mathbb{R}^n$ with $X \subset \mathbb{R}^m$ is continuous if and only if for every open set $V \subset \mathbb{R}^n$ there is an open set $U \subset \mathbb{R}^m$ such that $U \cap X = \{x \in X | f(x) \in V\}$.

Definition

If $f : X \rightarrow Y$ is continuous and bijective (injective and surjective; in other words, one-to-one and onto) and if $f^{-1} : Y \rightarrow X$ is continuous, then f is called a *homeomorphism*, and we say that X and Y are *homeomorphic*.

Definition of a surface

Definition

A subset $S \subset \mathbb{R}^3$ is a *surface* if for every point $p \in S$ there are open sets $U \subset \mathbb{R}^2$ and $W \subset \mathbb{R}^3$ with $p \in W$ such that $S \cap W$ is homeomorphic to U .

- A homeomorphism $X : U \rightarrow S \cap W$ is called a *surface patch* or a *parametrization* of $S \cap W$.
- For $(u, v) \in U \subset \mathbb{R}^2$, $X(u, v)$ is a *parametrized surface*.
- A collection of surface patches whose union covers S is an *atlas* for S .
- Notation: Text uses $\sigma : U \rightarrow S \cap W$ where I used $X : U \rightarrow S \cap W$.

Example: Planes

- Every plane Π in \mathbb{R}^3 is a surface with an atlas consisting of just one patch.
- Let $(u, v) \in \mathbb{R}^2$.
- Let $\mathbf{p} \perp \mathbf{q}$ be vectors tangent to Π .
- Let \mathbf{a} be a fixed point in Π .
- Then $X(u, v) = \mathbf{x} = \mathbf{a} + u\mathbf{p} + v\mathbf{q}$.
- Inverse mapping: $X^{-1}(\mathbf{x}) = (u, v) = ((\mathbf{b} - \mathbf{a}) \cdot \mathbf{p}, (\mathbf{b} - \mathbf{a}) \cdot \mathbf{q})$ since $\mathbf{p} \perp \mathbf{q}$.

Smooth surfaces

Definition

A function $f : U \rightarrow \mathbb{R}^n$ from an open set $U \subset \mathbb{R}^m$ is *smooth* if each component f_i of f is continuous in each argument and has continuous partial derivatives at all orders at every $\mathbf{u} = (u_1, \dots, u_m) \in U$. If f is smooth, we sometimes write $f \in C^\infty(\mathbb{R}^n)$ or simply $f \in C^\infty$.

- A surface patch $X : U \rightarrow \mathbb{R}^3$ may or may not be smooth.
- Example: the single-napped cone $X(u, v) = (u, v, \sqrt{u^2 + v^2})$ has no smooth patches containing origin $(u, v) = (0, 0)$.

Regular patch

Definition

A surface patch $X : U \rightarrow \mathbb{R}^3$, $U \subset \mathbb{R}^2$, is *regular* if it is smooth and the vectors

$$X_u = \frac{\partial X}{\partial u} = \left(\frac{\partial X_1}{\partial u}, \frac{\partial X_2}{\partial u}, \frac{\partial X_3}{\partial u} \right)$$

$$X_v = \frac{\partial X}{\partial v} = \left(\frac{\partial X_1}{\partial v}, \frac{\partial X_2}{\partial v}, \frac{\partial X_3}{\partial v} \right)$$

are *linearly independent*; equivalently, if $X_u \times X_v \neq \mathbf{0}$ for all $(u, v) \in U$.

When this condition holds, the set $\{X_u, X_v\}$ is a *basis set* for the tangent plane to the surface at the point $X(u, v)$.

Allowable patches and atlases

Definition

If $X : U \rightarrow \mathbb{R}^3$ is a regular surface patch and if X is a homeomorphism from U to an open subset of S then $X : U \rightarrow \mathbb{R}^3$ is an *allowable* surface patch.

Definition

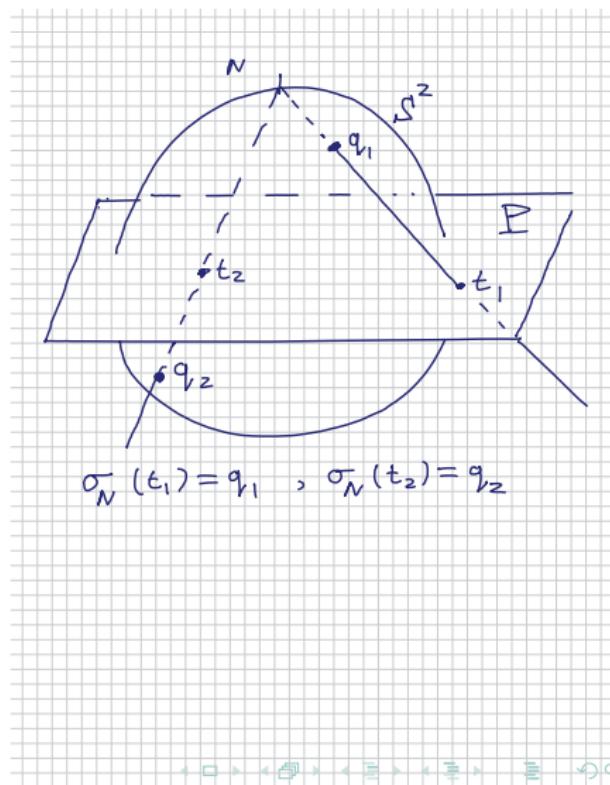
A *smooth surface* is a surface S such that, for each $p \in S$, there is an allowable surface patch $X : U \rightarrow \mathbb{R}^3$ with $p \in X(U)$.

Definition

A collection of allowable surface patches for a surface S such that each $p \in S$ belongs to at least one patch is an *atlas* for S . A *maximal atlas* for a smooth surface S is one that contains every allowable surface patch for S .

Example: Stereographic projection

- Project $\mathbb{S}^2 \rightarrow \mathbb{R}^2$
- $\mathbb{S}^2 = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$.
- $P = \{(x, y, z) | z = 0\}$
- Draw line from north pole N , meets $q \in \mathbb{S}^2$ and $t \in P$.
- This patch, call it σ_N , maps t to q .
- Patch covers every point of \mathbb{S}^2 except N .
- A similar patch σ_S covers every point of \mathbb{S}^2 except the south pole S .



Patches for stereographic projection

- Projection from $N = (0, 0, 1)$ gives the patch

$$\begin{aligned}\sigma_N(u, v) &= (x, y, z) \in \mathbb{S}^2 \subset \mathbb{R}^3 \text{ where } (u, v) \in P \subset \mathbb{R}^2 \\ &= \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1} \right)\end{aligned}$$

- Projection from $S = (0, 0, -1)$ gives the patch

$$\begin{aligned}\sigma_S(\tilde{u}, \tilde{v}) &= (x, y, z) \in \mathbb{S}^2 \subset \mathbb{R}^3 \text{ where } (\tilde{u}, \tilde{v}) \in P \subset \mathbb{R}^2 \\ &= \left(\frac{2\tilde{u}}{\tilde{u}^2 + \tilde{v}^2 + 1}, \frac{2\tilde{v}}{\tilde{u}^2 + \tilde{v}^2 + 1}, \frac{1 - \tilde{u}^2 - \tilde{v}^2}{\tilde{u}^2 + \tilde{v}^2 + 1} \right)\end{aligned}$$

- Together, both patches cover \mathbb{S}^2 . They form an atlas for \mathbb{S}^2 .
- The patches overlap: every point of \mathbb{S}^2 except $N = (0, 0, 1)$ and $S = (0, 0, -1)$ lies in both patches.

Transition maps

Definition

If two coordinate patches $X : U \rightarrow \mathbb{R}^3$ and $\tilde{X} : \tilde{U} \rightarrow \mathbb{R}^3$ overlap on a region $V \subset \mathbb{R}^3$, we can define *transition maps*

$$\Phi := X^{-1} \circ \tilde{X} : \tilde{U} \rightarrow U$$

$$\tilde{X}(\tilde{u}, \tilde{v}) = X(u, v) = X(\Phi(\tilde{u}, \tilde{v})) = (X \circ \Phi)(\tilde{u}, \tilde{v}).$$

Theorem

The transition maps of a smooth surface are smooth maps.

- The proof of this theorem is in Chapter 5 of the text.
- Transition maps are sometimes called *coordinate transformations*.

Jacobian determinants

- Assume $X : U \rightarrow \mathbb{R}^3$ is a regular surface patch, $U \in \mathbb{R}^2$ is open, $\Phi : \tilde{U} \rightarrow U$ is a smooth bijection.
- Then $\tilde{X} = \sigma \circ \Phi$ is smooth. We have $\tilde{X}(\tilde{u}, \tilde{v}) = X(u, v) = X \circ \Phi(\tilde{u}, \tilde{v})$.
- Chain rule: $\tilde{X}_{\tilde{u}} = \frac{\partial \tilde{X}}{\partial \tilde{u}} = \frac{\partial X}{\partial u} \frac{\partial u}{\partial \tilde{u}} + \frac{\partial X}{\partial v} \frac{\partial v}{\partial \tilde{u}} = \frac{\partial u}{\partial \tilde{u}} X_u + \frac{\partial v}{\partial \tilde{u}} X_v$.
- Likewise: $\tilde{X}_{\tilde{v}} = \frac{\partial \tilde{X}}{\partial \tilde{v}} = \frac{\partial X}{\partial u} \frac{\partial u}{\partial \tilde{v}} + \frac{\partial X}{\partial v} \frac{\partial v}{\partial \tilde{v}} = \frac{\partial u}{\partial \tilde{v}} X_u + \frac{\partial v}{\partial \tilde{v}} X_v$.
- Matrix form: $\begin{bmatrix} \tilde{X}_{\tilde{u}} \\ \tilde{X}_{\tilde{v}} \end{bmatrix} = \begin{bmatrix} \frac{\partial u}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{u}} \\ \frac{\partial u}{\partial \tilde{v}} & \frac{\partial v}{\partial \tilde{v}} \end{bmatrix} \begin{bmatrix} X_u \\ X_v \end{bmatrix} = [J(\Phi)] \begin{bmatrix} X_u \\ X_v \end{bmatrix}$ (Note: $\begin{bmatrix} X_u \\ X_v \end{bmatrix}$ and $\begin{bmatrix} \tilde{X}_{\tilde{u}} \\ \tilde{X}_{\tilde{v}} \end{bmatrix}$ are 2×3 matrices, not column vectors.)
- The *Jacobian matrix* is $[J(\Phi)] = \begin{bmatrix} \frac{\partial u}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{u}} \\ \frac{\partial u}{\partial \tilde{v}} & \frac{\partial v}{\partial \tilde{v}} \end{bmatrix}$. Its determinant is the *Jacobian determinant* or simply the *Jacobian* of Φ .

Jacobian determinants continued

- From last slide:

$$\begin{aligned}\tilde{X}_{\tilde{u}} &= \frac{\partial u}{\partial \tilde{u}} X_u + \frac{\partial v}{\partial \tilde{u}} X_v \\ \tilde{X}_{\tilde{v}} &= \frac{\partial u}{\partial \tilde{v}} X_u + \frac{\partial v}{\partial \tilde{v}} X_v\end{aligned}$$

- Then

$$\begin{aligned}\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}} &= \left(\frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}} - \frac{\partial u}{\partial \tilde{v}} \frac{\partial v}{\partial \tilde{u}} \right) X_u \times X_v \\ &= (\det J(\Phi)) X_u \times X_v.\end{aligned}$$

- The formula

$$\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}} = (\det J(\Phi)) X_u \times X_v$$

will be important later.

Properties of Jacobians

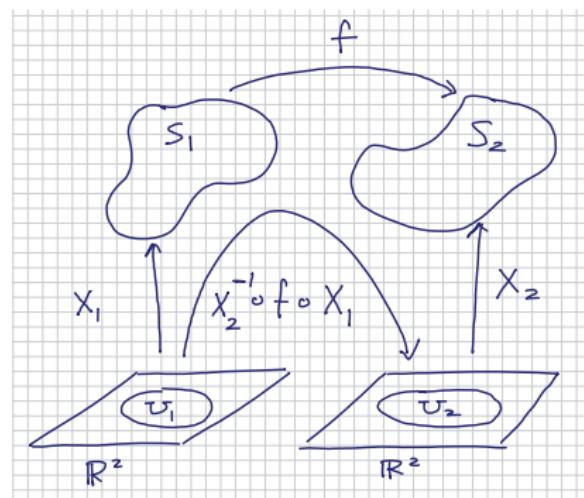
- Three overlapping patches X , $\tilde{X} = X \circ \Phi$, and $\hat{X} = \tilde{X} \circ \tilde{\Phi}$, so that

$$\hat{X} = \tilde{X} \circ \tilde{\Phi} = (X \circ \Phi) \circ \tilde{\Phi} = X \circ (\Phi \circ \tilde{\Phi}).$$

- Then $[J(\Phi \circ \tilde{\Phi})] = [J(\Phi)][J(\tilde{\Phi})]$ (proof: use chain rule).
- Special case: $\tilde{\Phi} = \Phi^{-1}$. Then $[J(\Phi \circ \Phi^{-1})] = [J(\Phi)][J(\Phi^{-1})]$.
- But $\Phi \circ \Phi^{-1} = \text{id} = \text{identity map } \text{id}(u, v) = (u, v)$, so
 $[J(\Phi \circ \Phi^{-1})] = [J(\text{id})] = \mathbb{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies [J(\Phi)][J(\Phi^{-1})] = \mathbb{I}.$
- Conclude that $[J(\Phi)]$ is invertible, so $\det[J(\Phi)] \neq 0$.
- Indeed, $[J(\Phi)]^{-1} = [J(\Phi^{-1})]$.
- If X is regular, then $X_u \times X_v \neq \mathbf{0}$. Since $\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}} = (\det J(\Phi)) X_u \times X_v$ and now $\det[J(\Phi)] \neq 0$, then \tilde{X} is regular too.
- Theorem: Let $U, \tilde{U} \subset \mathbb{R}^2$ be open and let $X : U \rightarrow \mathbb{R}^3$ be a regular surface patch. Let $\Phi : U \rightarrow \tilde{U}$ be a smooth bijection with smooth inverse. Then $\tilde{X} = X \circ \Phi : \tilde{U} \rightarrow \mathbb{R}^3$ is a regular surface patch.

Smooth maps between smooth surfaces

- Smooth surfaces S_1, S_2 .
- Patch $X_1 : U_1 \rightarrow \mathbb{R}^3$ covers S_1
- Patch $X_2 : U_2 \rightarrow \mathbb{R}^3$ covers S_2 .
- Map $f := S_1 \rightarrow S_2$ is *smooth* if the map $X_2^{-1} \circ f \circ X_1$ from U_1 to U_2 is smooth.
- Well-defined: If f is smooth using patches X_1, X_2 , it is smooth using any other smooth patches.



Diffeomorphisms

Definition

If $f : S_1 \rightarrow S_2$ is smooth and bijective and $f^{-1} : S_2 \rightarrow S_1$ is smooth, then f is a *diffeomorphism* and we say that S_1 and S_2 are *diffeomorphic*.

Theorem

If $f : S_1 \rightarrow S_2$ is a diffeomorphism and $X_1 : U \rightarrow S_1$ is an allowable surface patch for S_1 , then $X_2 := f \circ X_1 : U \rightarrow S_2$ is an allowable surface patch for S_2 .

Proof: text p 83.

Definition

If $f : S_1 \rightarrow S_2$ is smooth, say that about each $p \in S_1$ there's an open set $O_p \ni p$ such that $f(O_p)$ is open in S_2 , and say that $f|_{O_p} : O_p \rightarrow f(O_p)$ is a diffeomorphism.

Then we say that f is a *local diffeomorphism*.

Lecture 8: Tangents, normals, orientations

Tangents

- Say $\gamma : I \rightarrow \mathbb{R}^3$ is a smooth space curve, with image in surface S .
- Then tangent vector $\dot{\gamma}(t_0)$ to γ at $p = \gamma(t_0)$ is tangent to S at p .
- The set of all tangents vectors to curves in S through p is the *tangent space* (or *tangent plane*) $T_p S$ to S at p .

Theorem

Let $X : U \rightarrow \mathbb{R}^3$ be a regular surface patch for surface S .

Let $p \in S$. Let $(u, v) \in U$.

Then $T_p S$ is the subspace of \mathbb{R}^3 spanned by the vectors $\{X_u, X_v\}$.

Proof

- Curve $(u(t), v(t)) \in U \subset \mathbb{R}^2$.
- Use X to lift to curve $\gamma(t) = X(u(t), v(t))$ in S .
- Let $p = \gamma(t_0) = X(u_0, v_0)$.
- $\dot{\gamma}(t) = \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial v} \frac{dv}{dt} = X_u \dot{u} + X_v \dot{v}$.
- Hence tangent vector $\dot{\gamma}(t_0)$ at p belongs to $\text{Span}\{X_u(t_0), X_v(t_0)\}$.
- Conversely, any vector $\mathbf{w} \in \text{Span}\{X_u(u_0, v_0), X_v(u_0, v_0)\}$ can be written as $\mathbf{w} = aX_u(u_0, v_0) + bX_v(u_0, v_0)$.
- Define curve $\gamma(t) = X(u_0 + a(t - t_0), v_0 + b(t - t_0))$.
- Then $\gamma(t_0) = X(u_0, v_0)$ and $\dot{\gamma}(t_0) = aX_u(u_0, v_0) + bX_v(u_0, v_0) = \mathbf{w}$.
- Hence any $\mathbf{w} \in \text{Span}\{X_u(u_0, v_0), X_v(u_0, v_0)\}$ is tangent to a curve in S through p , and so is in $T_p S$.

Dimension and basis

- Last theorem: for regular patch $X : U \rightarrow \mathbb{R}^3 : (u, v) \mapsto p$, then $\{X_u, X_v\}$ spans $T_p S$.
- X is a regular patch so $X_u \times X_v \neq \mathbf{0}$.
- Then $\{X_u, X_v\}$ is a linearly independent set.
- A linearly independent spanning set is a basis set.
- $\{X_u, X_v\}$ is a basis for $T_p S$.
- Then $T_p S$ is 2-dimensional.

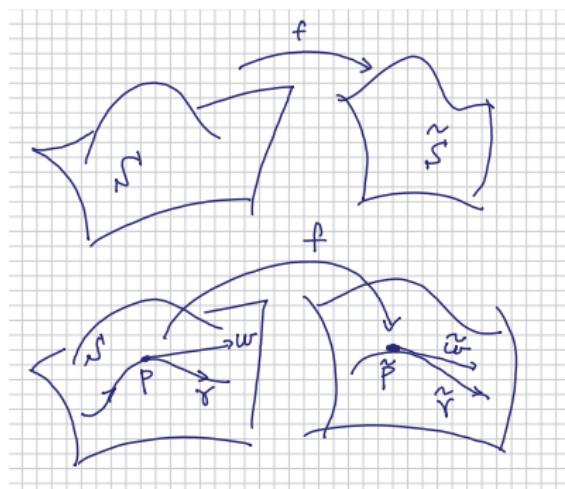
Parameter curves

- Let $u_0, v_0 \in \mathbb{R}$ be constants and $(u_0, v_0) \in U$.
- Let $X : U \rightarrow \mathbb{R}^3$ be a surface patch for surface S .
- The map $u \mapsto X(u, v_0)$ is a curve (i.e., $\gamma(u) = (u, v_0)$).
- The map $v \mapsto X(u_0, v)$ is a curve.

- These maps are called *parameter curves* or *coordinate curves*.
- Their tangents are $X_u(u, v_0)$ and $X_v(u_0, v)$ respectively.

Pushforwards

- $f : S \rightarrow \tilde{S}$ is a smooth map between surfaces (or possibly from S to itself).
- $p \in S$, $\mathbf{w} \in T_p S$, where $\mathbf{w} = \dot{\gamma}(t_0)$ is tangent to some curve γ at $\gamma(t_0) = p$.
- Let $\tilde{\gamma}$ be the curve $f \circ \gamma$ through $\tilde{p} = f(p)$, and let $\tilde{\mathbf{w}} = \dot{\tilde{\gamma}}(t_0)$ be tangent to $\tilde{\gamma}$ at $f(p)$.
- We call $\tilde{\mathbf{w}}$ the *pushforward* of \mathbf{w} .



Derivative of a diffeomorphism

- Recall linear approximation in Calculus: $\Delta y = f'(x_0)\Delta x$.
- Derivatives convert “tangent vectors” $\frac{\Delta x}{\Delta t}$ along curves $x(t)$ to “tangent vectors” $\frac{\Delta y}{\Delta t}$ along curves $y(t)$ where $y = f(x)$.

Definition (Derivative of a diffeomorphism)

- The *derivative* of f at $p \in S$ is the linear map $D_p f : T_p S \rightarrow T_{f(p)} \tilde{S}$ defined such that $D_p f(\mathbf{w}) = \tilde{\mathbf{w}}$ for any $\mathbf{w} \in T_p S$.
- In a patch $X : U \rightarrow \mathbb{R}^3$ with $p = X(u_0, v_0)$, the *components* of $D_p f$ are the partial derivatives of $f \circ X$ along the parameter curves:

$$(D_p f)(X_u) = \frac{d}{du} \Big|_{u=u_0} f(X(u, v_0)) , \quad (D_p f)(X_v) = \frac{d}{dv} \Big|_{v=v_0} f(X(u_0, v)) .$$

- Infinitely many curves through p with tangent \mathbf{w} .
- Definition of derivative does not depend on which such curve we use: text p 87.

Normals and orientability

- Every plane P in \mathbb{R}^3 has
 - infinitely many normals (if \mathbf{N} is normal to P , so is $k\mathbf{N}$ for any $k \neq 0$), but
 - two unit normals $\pm\mathbf{N}$, where \mathbf{N} is normal to P and $\|\mathbf{N}\| = 1$.
- If $X : U \rightarrow \mathbb{R}^3$ is a regular patch for surface S and if $p = X(u_0, v_0) \in S$, then $\{X_u(u_0, v_0), X_v(u_0, v_0)\}$ is a basis for $T_p S$. This gives a *unique* choice of normal:

$$\mathbf{N}_X := \frac{X_u \times X_v}{\|X_u \times X_v\|} \text{ at } p = X(u_0, v_0).$$

This choice is called the *standard unit normal* for the patch X .

Orientations

- If $\tilde{X} : \tilde{U} \rightarrow \mathbb{R}^3$ is another regular patch then $\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}} = (\det J(\Phi)) X_u \times X_v$,
 J =Jacobian, $\Phi : \tilde{U} \rightarrow U$ is the transition map.
- Then $\tilde{\mathbf{N}}_{\tilde{X}} = \frac{\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}}}{\|\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}}\|} = \frac{\det J}{|\det J|} \frac{X_u \times X_v}{\|X_u \times X_v\|} = \frac{\det J}{|\det J|} \mathbf{N}_X = \begin{cases} \mathbf{N}_X, & \det J > 0, \\ -\mathbf{N}_X, & \det J < 0. \end{cases}$

Definition

A surface S is *orientable* if there exists an atlas \mathcal{A} for S such that, if Φ is the transition map between any two surface patches in \mathcal{A} , then $\det(J(\Phi)) > 0$ wherever Φ is defined.

Final points

Theorem

If S is an orientable surface with an atlas \mathcal{A} as in the definition, then there is a smooth choice of unit normal at every point of S .

Proof: Take the standard unit normal in each patch in \mathcal{A} . By the above calculation, $\tilde{\mathbf{N}}_{\tilde{X}} = \mathbf{N}_X$ whenever patches overlap.

Definition (Orientation)

Such a choice of smooth unit normal at every point of S is called an *orientation* for S , and then S is said to be *oriented*.

To state the obvious, any oriented surface is orientable.

Examples (see handwritten PDF notes):

- The Möbius band (not orientable).
- The 2-dimensional torus (orientable).

In these examples:

1. standard 2-torus in \mathbb{R}^3 and
2. the Möbius band,

I denote coordinate patches using the text book's notation

$$\sigma: U \rightarrow \mathbb{R}^3, \quad U \subset \mathbb{R}^2$$

instead of the notation

$$X: U \rightarrow \mathbb{R}^3$$

that I usually use in my PDF slides.

CR 4 plus: Closed surfaces

The standard torus:

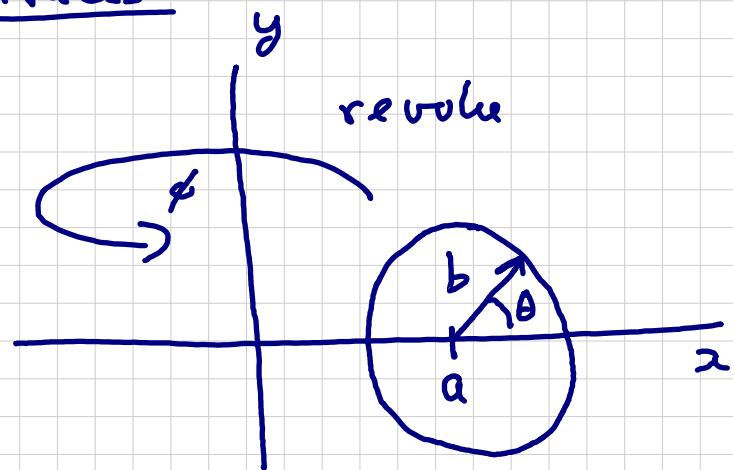
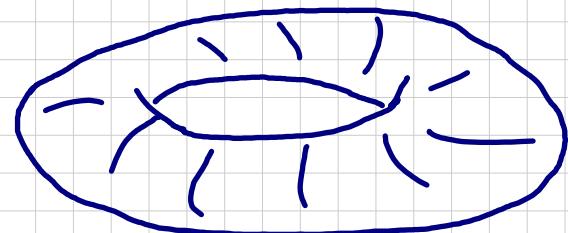
$$x(\theta, \phi) = (a + b \cos \theta) \cos \phi$$

$$y(\theta, \phi) = (a + b \cos \theta) \sin \phi$$

$$z(\theta, \phi) = b \sin \theta$$

$$a \geq b > 0.$$

Here θ, ϕ are the parameters that we usually call u, v .



Often text books write that

$$0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq 2\pi, \text{ or } (\theta, \phi) \in [0, 2\pi] \times [0, 2\pi].$$

This is correct, but this is a closed domain.

Our definition of surfaces requires surface patches to be defined with open domains.

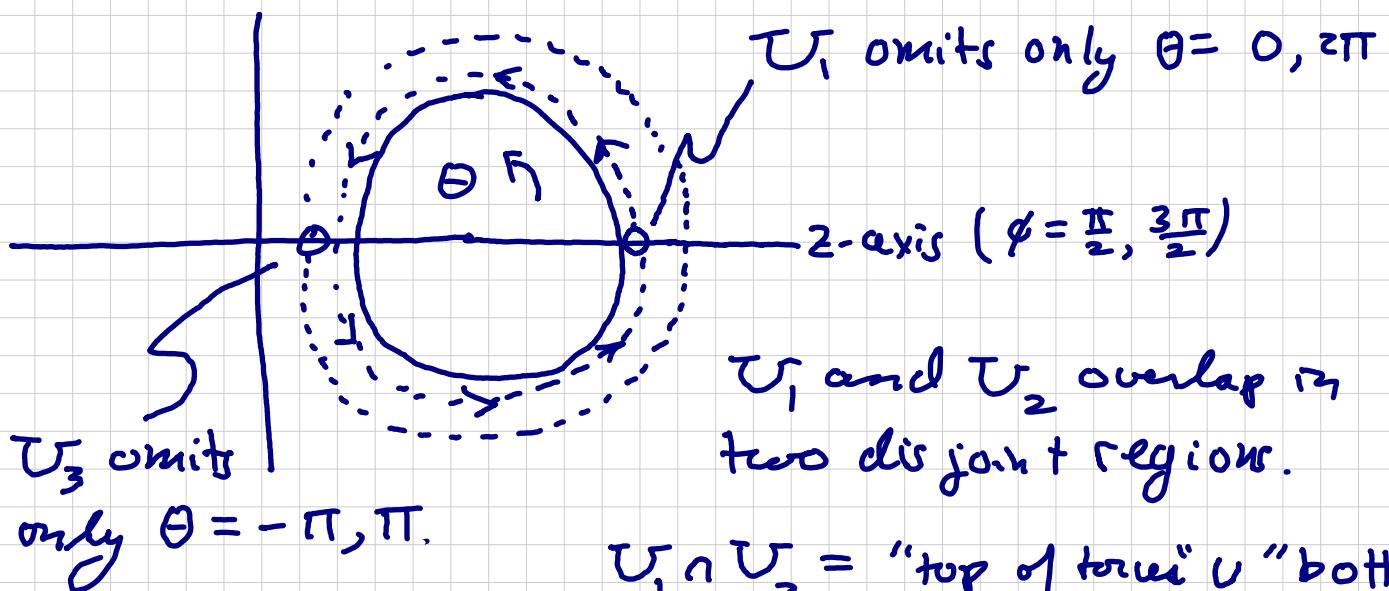
1. $U_1 = \{(\theta, \phi) \mid 0 < \theta < 2\pi, 0 < \phi < 2\pi\}$
2. $U_2 = \{(\theta, \phi) \mid 0 < \theta < 2\pi, -\pi < \phi < \pi\}$
3. $U_3 = \{(\theta, \phi) \mid -\pi < \theta < \pi, 0 < \phi < 2\pi\}$
4. $U_4 = \{(\theta, \phi) \mid -\pi < \theta < \pi, -\pi < \phi < 2\pi\}$

} 4 open domains that, together, cover the standard torus.

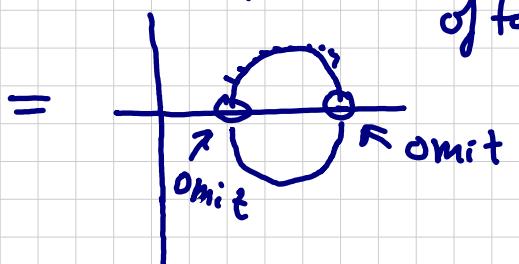
On each domain, use the same formula for the homeomorphism:

$$\sigma(\theta, \phi) = ((a + b \cos \theta) \cos \phi, (a + b \cos \theta) \sin \phi, b \sin \theta)$$

Compare two such domains, say U_1 and U_3 .



$$U_1 \cap U_2 = \text{"top of torus"} \cup \text{"bottom of torus"}$$



$$\begin{aligned} \text{That is, } U_1 \cap U_2 &= \{(\theta, \phi) \mid 0 < \theta < \pi, 0 < \phi < 2\pi\} \\ &\cup \{(\theta, \phi) \mid \underbrace{\pi < \theta < 2\pi, 0 < \phi < 2\pi}\} \end{aligned}$$

could also write $-\pi < \theta < \pi$ here.

On these two regions, we have

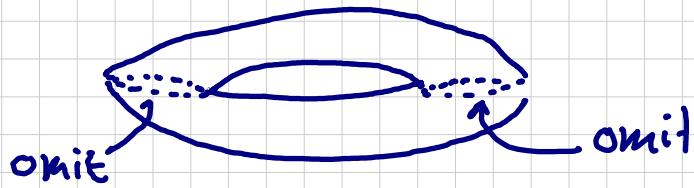
$$(\theta_3, \phi_3) = (\theta_1, \phi_1) \text{ on the "top region" and}$$

$$(\theta_3, \phi_3) = (\theta_1 - 2\pi, \phi_1) \text{ on the bottom, where}$$

$(\theta_1, \phi_1) \in U_1$, $(\theta_3, \phi_3) \in U_3$. If $\Phi(\theta_3, \phi_3) = (\theta_1, \phi_1)$ then $\mathcal{J}(\Phi) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ on both the top and the bottom regions.

Similarly,

$$U_1 \cap U_2 = \{(\theta, \phi) \mid 0 < \theta < 2\pi, 0 < \phi < \pi\}$$
$$\cup \{(\theta, \phi) \mid 0 < \theta < 2\pi, \pi < \phi < 2\pi\}$$



On every overlap region $U_i \cap U_j$, we get transition functions Φ_{ij} with

$$J(\Phi_{ij}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and so $\det J(\Phi_{ij}) = 1$.

\Rightarrow The standard torus is orientable.

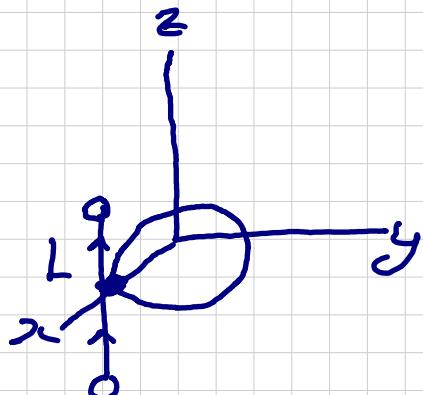
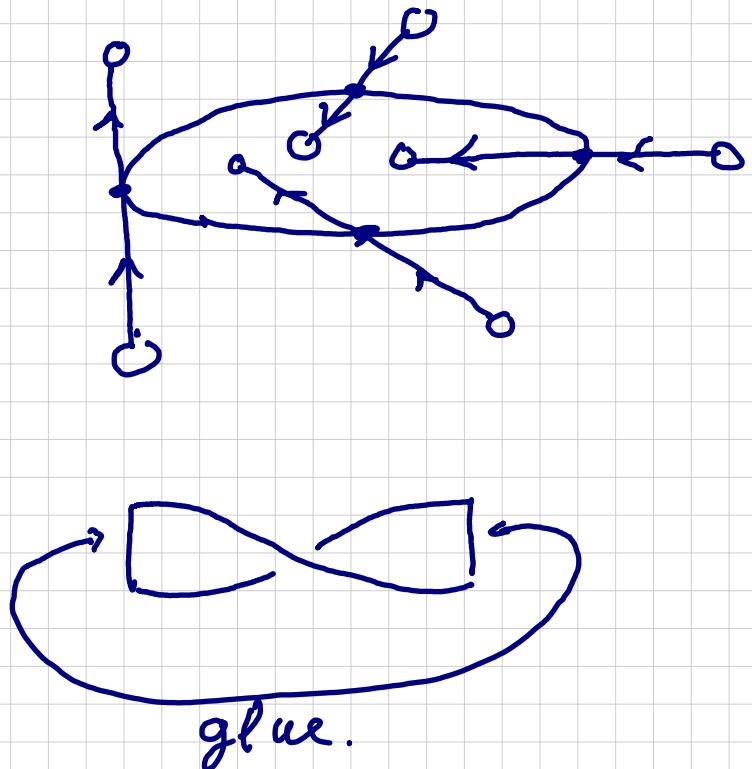
Example: Möbius band

Unit circle in $z=0$ plane

$$x^2 + y^2 = 1$$

At $(1, 0, 0)$, attach the vertical line segment L
 $\{(1, 0, t) \mid t \in (-\frac{1}{2}, \frac{1}{2})\}$
to the circle.

Now move the segment around the circle, always attached to the circle at its midpoint, so that L rotates by angle π (in the plane containing the point of attachment and the z -axis) as the point of attachment traverses the circle once.



Coordinate patches for the Möbius band

$$\sigma_i: U_i \rightarrow \mathbb{R}^3, \quad i=1,2$$

Both patches use the same formula

$$\sigma_i(t, \theta) = \sigma_2(t, \theta) =: \sigma(t, \theta)$$

$$= \left(\left(1 - t \sin \frac{\theta}{2}\right) \cos \theta, \left(1 - t \sin \frac{\theta}{2}\right) \sin \theta, t \cos \frac{\theta}{2} \right)$$

but different domains

$$U_1 = \{(t, \theta) \in \mathbb{R}^2 \mid -\frac{1}{2} < t < \frac{1}{2}, 0 < \theta < 2\pi\}$$

$$U_2 = \{(t, \theta) \in \mathbb{R}^2 \mid -\frac{1}{2} < t < \frac{1}{2}, -\pi < \theta < \pi\}$$

$$\Rightarrow \frac{\partial \sigma}{\partial t} = \left(-\sin \frac{\theta}{2} \cos \theta, -\sin \frac{\theta}{2} \sin \theta, \cos \frac{\theta}{2} \right) \quad \left. \begin{array}{l} \text{Median} \\ \text{Circle } t=0 \\ (x^2+y^2=1, z=0) \end{array} \right\}$$

$$\frac{\partial \sigma}{\partial \theta} \Big|_{t=0} = (-\sin \theta, \cos \theta, 0)$$

$$\left. \frac{\partial \sigma}{\partial t} \right|_{t=0} \times \left. \frac{\partial \sigma}{\partial \theta} \right|_{t=0} = \begin{vmatrix} e_1 & e_2 & e_3 \\ -\sin \frac{\theta}{2} \cos \theta & -\sin \frac{\theta}{2} \sin \theta & \cos \frac{\theta}{2} \\ -\sin \theta & \cos \theta & 0 \end{vmatrix}$$

$$= \left(-\sin \theta \cos \frac{\theta}{2}, -\sin \theta \sin \frac{\theta}{2}, -\sin \frac{\theta}{2} \right)$$

This is a unit vector. Then

$$N = \left. \frac{\partial \sigma}{\partial t} \right|_{t=0} \times \left. \frac{\partial \sigma}{\partial \theta} \right|_{t=0} \quad \begin{array}{l} \text{(divided by its magnitude,} \\ \text{which is 1)} \end{array}$$

is normal to the Möbius band along its median circle.

Using patch σ_2 , we have
 $N = (-1, 0, 0)$ at $\theta = 0$

Using patch σ_1 , we have
 $N \rightarrow (1, 0, 0)$ as $\theta \rightarrow 2\pi^-$

\Rightarrow The Möbius band
is not orientable.

N.B. Why were two patches necessary?

Answer: First, each point must belong to some patch. Now try the following alternatives:

(i) $U = \{(t, \theta) \mid -\frac{1}{2} < t < \frac{1}{2}, 0 \leq \theta \leq 2\pi\}$

This is not open in \mathbb{R}^2 .

(ii) $U = \{(t, \theta) \mid -\frac{1}{2} < t < \frac{1}{2}, -\varepsilon < \theta < 2\pi + \varepsilon, \varepsilon > 0\}$

This is open in \mathbb{R}^2 , but then the standard unit normal of this "patch" is double-valued at $(1, 0, 0)$.

(iii) $U = \{(t, \theta) \mid -\frac{1}{2} < t < \frac{1}{2}, 0 \leq \theta < 2\pi\}$

Not open in \mathbb{R}^2 .

(iv) Use only patch $\sigma_1: U_1 \rightarrow \mathbb{R}^3$.

Doesn't cover $(1, 0, 0)$.

Lecture 9: The first fundamental form 1FF

The first fundamental form (1FF) of a surface

Definition (First fundamental form)

The 1FF of a surface S at p is the restriction of the inner product in \mathbb{R}^3 (i.e., the dot product) to vectors in $T_p S$:

$$\langle \mathbf{u}, \mathbf{v} \rangle_{p,S} = \mathbf{u} \cdot \mathbf{v}, \quad \mathbf{u}, \mathbf{v} \in T_p S \subset \mathbb{R}^3.$$

- Usually just write $\langle \mathbf{u}, \mathbf{v} \rangle$ (omit subscripts p, S when no confusion can occur).
- Older books sometimes use a roman I , as in $I(\mathbf{u}, \mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle$. We will use \mathcal{F}_I .
- In Riemannian geometry, the 1FF is called the *induced metric* on S .
- Can consider the 1FF to be the map that associates to each $p \in S$ an inner product $\langle \cdot, \cdot \rangle_p$ on $T_p S$ at $p \in S$.

The 1FF on a single surface patch

- The 1FF $\langle \cdot, \cdot \rangle_{p,S}$ is a *symmetric bilinear form*.
- Surface patch $X : U \rightarrow \mathbb{R}^3$ containing p .
- Basis $\{X_u, X_v\}$ for $T_p S$, so $\mathbf{v} \in T_p S \implies \mathbf{v} = \alpha X_u + \beta X_v$.

$$\langle \mathbf{v}, \mathbf{v} \rangle_X = \alpha^2 \langle X_u, X_u \rangle + 2\alpha\beta \langle X_u, X_v \rangle + \beta^2 \langle X_v, X_v \rangle.$$

- Notation: When expressed in the above basis, we write $\langle \cdot, \cdot \rangle_{p,X}$.
- Write

$$E = \langle X_u, X_u \rangle = \|X_u\|^2,$$

$$F = \langle X_u, X_v \rangle = X_u \cdot X_v, \implies \langle \mathbf{v}, \mathbf{v} \rangle = E\alpha^2 + 2F\alpha\beta + G\beta^2$$

$$G = \langle X_v, X_v \rangle = \|X_v\|^2,$$

- Define the linear maps du and dv (scalar projection) by
 - $du(\mathbf{v}) = \alpha$
 - $dv(\mathbf{v}) = \beta$
 - Then $\langle \mathbf{v}, \mathbf{v} \rangle_X = E du(\mathbf{v}) du(\mathbf{v}) + 2F du(\mathbf{v}) dv(\mathbf{v}) + G dv(\mathbf{v}) dv(\mathbf{v})$.

Explicit form for the 1FF on a patch

- Patch $X : U \rightarrow \mathbb{R}^3$, $U \subset \mathbb{R}^2$.
- From last slide, can write the 1FF as

$$\langle \mathbf{v}, \mathbf{v} \rangle_X = E du(\mathbf{v}) du(\mathbf{v}) + 2F du(\mathbf{v}) dv(\mathbf{v}) + G dv(\mathbf{v}) dv(\mathbf{v}).$$

- Often write $\langle \mathbf{v}, \mathbf{v} \rangle = (E du du + 2F du dv + G dv dv) (\mathbf{v}, \mathbf{v})$ or simply

$$ds^2 = Edu^2 + 2Fdudv + Gdv^2.$$

This notation is sometimes called the *line element form* of the 1FF.

- Matrix for $\langle \cdot, \cdot \rangle_{p,X}$ in $\{X_u, X_v\}$ basis:

$$[\mathcal{F}_I] = \begin{bmatrix} E & F \\ F & G \end{bmatrix}$$

Arclength and line element form

- The 1FF can be used to find the arclength of a space curve γ lying on surface S .
- Say $\gamma : [a, b] \rightarrow \mathbb{R}^3$ lies within one patch $X : U \rightarrow \mathbb{R}^3$ of S , so $\gamma(t) = X(u(t), v(t))$.
- Then $\dot{\gamma} = \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial v} \frac{dv}{dt} = \dot{u} X_u + \dot{v} X_v$.
- $\langle \dot{\gamma}, \dot{\gamma} \rangle = E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2$ where E, F, G are evaluated at $\gamma(t)$.
- Arclength

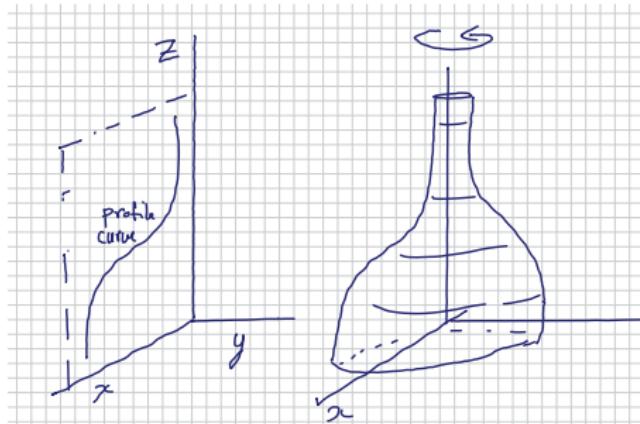
$$\begin{aligned}s &= \int ds = \int_a^b \frac{ds}{dt} dt = \int_a^b \|\dot{\gamma}(t)\| dt = \int_a^b \langle \dot{\gamma}, \dot{\gamma} \rangle^{1/2} dt \\ &= \int_a^b \sqrt{E(\gamma(t))\dot{u}^2 + 2F(\gamma(t))\dot{u}\dot{v} + G(\gamma(t))\dot{v}^2} dt.\end{aligned}$$

Why are the projections called du , dv ?

- Two overlapping patches $X : U \rightarrow \mathbb{R}^3$ and $\tilde{X} : \tilde{U} \rightarrow \mathbb{R}^3$ for S .
- $\mathbf{v} = \alpha X_u + \beta X_v = \tilde{\alpha} \tilde{X}_{\tilde{u}} + \tilde{\beta} \tilde{X}_{\tilde{v}}$ with $X(u, v) = \tilde{X}(\tilde{u}, \tilde{v})$.
- $\tilde{X}_{\tilde{u}} = \frac{\partial \tilde{X}}{\partial \tilde{u}} = \frac{\partial X}{\partial u} \frac{\partial u}{\partial \tilde{u}} + \frac{\partial X}{\partial v} \frac{\partial v}{\partial \tilde{u}} = X_u \frac{\partial u}{\partial \tilde{u}} + X_v \frac{\partial v}{\partial \tilde{u}}$.
- $\tilde{X}_{\tilde{v}} = \frac{\partial \tilde{X}}{\partial \tilde{v}} = \frac{\partial X}{\partial u} \frac{\partial u}{\partial \tilde{v}} + \frac{\partial X}{\partial v} \frac{\partial v}{\partial \tilde{v}} = X_u \frac{\partial u}{\partial \tilde{v}} + X_v \frac{\partial v}{\partial \tilde{v}}$.
- So $\mathbf{v} = \alpha X_u + \beta X_v = \tilde{\alpha} \tilde{X}_{\tilde{u}} + \tilde{\beta} \tilde{X}_{\tilde{v}} = \left(\tilde{\alpha} \frac{\partial u}{\partial \tilde{u}} + \tilde{\beta} \frac{\partial u}{\partial \tilde{v}} \right) X_u + \left(\tilde{\alpha} \frac{\partial v}{\partial \tilde{u}} + \tilde{\beta} \frac{\partial v}{\partial \tilde{v}} \right) X_v$.
- X_u -component: $\alpha = du(\mathbf{v}) = \tilde{\alpha} \frac{\partial u}{\partial \tilde{u}} + \tilde{\beta} \frac{\partial u}{\partial \tilde{v}} = \frac{\partial u}{\partial \tilde{u}} d\tilde{u}(\mathbf{v}) + \frac{\partial u}{\partial \tilde{v}} d\tilde{v}(\mathbf{v})$.
- X_v -component: $\beta = dv(\mathbf{v}) = \tilde{\alpha} \frac{\partial v}{\partial \tilde{u}} + \tilde{\beta} \frac{\partial v}{\partial \tilde{v}} = \frac{\partial v}{\partial \tilde{u}} d\tilde{u}(\mathbf{v}) + \frac{\partial v}{\partial \tilde{v}} d\tilde{v}(\mathbf{v})$.
- This gives an easy mnemonic for the transformation rules $(u, v) \mapsto (\tilde{u}, \tilde{v}) = \Phi^{-1}(u, v)$; compare to chain rule for differentials, which gives:

$$du = \frac{\partial u}{\partial \tilde{u}} d\tilde{u} + \frac{\partial u}{\partial \tilde{v}} d\tilde{v} \text{ and } dv = \frac{\partial v}{\partial \tilde{u}} d\tilde{u} + \frac{\partial v}{\partial \tilde{v}} d\tilde{v}.$$

Example: Surfaces of revolution



- $\gamma(u) = (f(u), 0, g(u))$, $f(u) \geq 0$, is called the *profile curve*.
- Unit speed if $\dot{f}^2(u) + \dot{g}^2(u) = 1$.
- Surface $X(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$.

1FF of a surface of revolution

- Surface $X(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$.
- Basis for $T_p S$:

$$X_u = \left(\dot{f}(u) \cos v, \dot{f}(u) \sin v, \dot{g}(u) \right) , \quad X_v = (-f(u) \sin v, f(u) \cos v, 0).$$

- $E = \|X_u\|^2 = \dot{f}^2(u) + \dot{g}^2(u) = 1$ if profile curve is unit speed.
- $F = X_u \cdot X_v = -f\dot{f} \cos v \sin v + f\dot{f} \sin v \cos v = 0$.
- $G = \|X_v\|^2 = f^2(u)$.
- 1FF is $ds^2 = du^2 + f^2(u)dv^2$ or in matrix form $[\mathcal{F}_I] = \begin{bmatrix} 1 & 0 \\ 0 & f^2(u) \end{bmatrix}$.

Example: a sphere

- Profile curve: semi-circle $x = \sqrt{a^2 - z^2}$, $a > 0$.
- Unit speed parametrization: $\gamma(u) = (a \sin \frac{u}{a}, 0, a \cos \frac{u}{a})$, $u \in [0, a\pi]$.
- Surface of revolution $X(u, v) = a(\sin \frac{u}{a} \cos v, \sin \frac{u}{a} \sin v, \cos \frac{u}{a})$, $u \in [0, a\pi]$, $v \in [0, 2\pi)$, is a sphere of radius a .
- Then $f(u) = a \sin \frac{u}{a}$, $g(u) = a \cos \frac{u}{a}$.
- 1FF is $ds^2 = du^2 + f^2(u)dv^2 = du^2 + a^2 \sin^2 \frac{u}{a} dv^2$.
- Looks more familiar if we let $\phi = \frac{u}{a} \in [0, \pi]$, $\theta = v \in [0, 2\pi)$:

$$ds^2 = a^2 (d\phi^2 + \sin^2 \phi d\theta^2).$$

Pullbacks

- Say $p \in S_1$ and $\mathbf{v}, \mathbf{w} \in T_p S$.
- Let $\tilde{\mathbf{v}} = D_p f(\mathbf{v})$, $\tilde{\mathbf{w}} = D_p f(\mathbf{w})$ be push-forwards.
- Let $\langle \cdot, \cdot \rangle_{q, S_2}$ be the 1FF on S_2 , $q = f(p)$.

Definition (pullback metric)

We define an inner product $f^* \langle \cdot, \cdot \rangle_{p, S_1}$, called the *pullback* of $\langle \cdot, \cdot \rangle_{q, S_2}$ by f , by

$$f^* \langle \mathbf{v}, \mathbf{w} \rangle_{p, S_1} = \langle \tilde{\mathbf{v}}, \tilde{\mathbf{w}} \rangle_{f(p), S_2} = \langle D_p f \mathbf{v}, D_p f \mathbf{w} \rangle_{f(p), S_2}.$$

Notation: When comparing 1FFs on two surfaces, say S_1 and S_2 , we will sometimes use parentheses rather than angle brackets to distinguish them; e.g., $\langle \cdot, \cdot \rangle_{S_1}$ and $(\cdot, \cdot)_{S_2}$.

Local isometry and pullbacks

Definition (Local isometry)

Let $f : S_1 \rightarrow S_2$ be a smooth map between surfaces. If for every curve $\gamma : I \rightarrow \mathbb{R}^3$ in S_1 , its image $\tilde{\gamma} = f \circ \gamma : I \rightarrow \mathbb{R}^3$ in S_2 has the same arclength, then f is a *local isometry*, and we say that S_1 and S_2 are *locally isometric*.

- Let $\langle \cdot, \cdot \rangle_{p, S_1}$ be the 1FF on S_1 .
- Let $\langle \cdot, \cdot \rangle_{q, S_2}$ be the 1FF on S_2 , $q = f(p)$, for some smooth map $f : S_1 \rightarrow S_2$.

Theorem

Say that $f^*(\cdot, \cdot)_{p, S_1} = \langle \cdot, \cdot \rangle_{p, S_1}$ for all $p \in S_1$. If $\gamma : I \rightarrow \mathbb{R}^3$ is a curve in S_1 with arclength s and $\tilde{\gamma} = f \circ \gamma : I \rightarrow \mathbb{R}^3$ is its image curve in S_2 with arclength \tilde{s} , then $s = \tilde{s}$ and so f is a local isometry.

Proof

- Arclength of $\gamma : [t_0, t_1] \rightarrow \mathbb{R}^3$ in S_1 :

$$s = \int_{t_0}^{t_1} \langle \dot{\gamma}, \dot{\gamma} \rangle_{\gamma(t), S_1}^{1/2} dt.$$

- Arclength of $\tilde{\gamma} = f \circ \gamma : [t_0, t_1] \rightarrow \mathbb{R}^3$ in S_2 :

$$\tilde{s} = \int_{t_0}^{t_1} (Df(\dot{\gamma}), Df(\dot{\gamma}))_{\tilde{\gamma}(t), S_2}^{1/2} dt = \int_{t_0}^{t_1} \sqrt{f^* (\dot{\gamma}, \dot{\gamma})_{\gamma(t), S_1}} dt.$$

- But if $f^* (\cdot, \cdot)_{p, S_1} = \langle \cdot, \cdot \rangle_{p, S_1}$ for all $p \in S_1$, these two expressions are clearly equal.

The converse is also true, but harder to prove so we'll skip the proof:

Theorem

If $s = \tilde{s}$ for all curves γ in S_1 and their images $\tilde{\gamma} = f \circ \gamma$ in S_2 , then $\langle \dot{\gamma}, \dot{\gamma} \rangle_p = f^* (\dot{\gamma}, \dot{\gamma})_p$ for all $p \in S_1$.

Moreover...

Theorem

$\langle \mathbf{v}, \mathbf{v} \rangle = f^*(\mathbf{v}, \mathbf{v})$ for all $\mathbf{v} \in T_p S$ iff $\langle \mathbf{v}, \mathbf{w} \rangle = f^*(\mathbf{v}, \mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in T_p S$.

Proof.

If $\langle \mathbf{v}, \mathbf{v} \rangle = f^*(\mathbf{v}, \mathbf{v})$ for all $\mathbf{v} \in T_p S$, then compute

$$\begin{aligned}\langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle &= f^*(\mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w}) \\ \implies \langle \mathbf{v}, \mathbf{v} \rangle + 2\langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle &= f^*(\mathbf{v}, \mathbf{v}) + 2f^*(\mathbf{v}, \mathbf{w}) + f^*(\mathbf{w}, \mathbf{w}) \\ \implies 2\langle \mathbf{v}, \mathbf{w} \rangle &= 2f^*(\mathbf{v}, \mathbf{w})\end{aligned}$$

and we are done. This is an example of the *polarization identity*. □

Theorem

A smooth map $f : S_1 \rightarrow S_2$ is a local isometry if and only if the symmetric bilinear forms $\langle \cdot, \cdot \rangle_p$ and $f^*(\cdot, \cdot)_p$ on $T_p S_1$ are equal for all $p \in S_1$.

Local isometries and the 1FF

If our smooth map f is a diffeomorphism (i.e., if it has a smooth inverse), then

Corollary

A local diffeomorphism $f : S_1 \rightarrow S_2$ is a local isometry if and only if, for any surface patch X for S_1 , the patches X and $\tilde{X} = f \circ X$ of S_2 have the same 1FF:

$$\langle \cdot, \cdot \rangle_X = f^*(\cdot, \cdot)_{\tilde{X}, p}.$$

In other words, if f is a local diffeomorphism from S_1 to S_2 , the geometry encoded in the 1FF is the same about $p \in S_1$ as it is $f(p) \in S_2$.

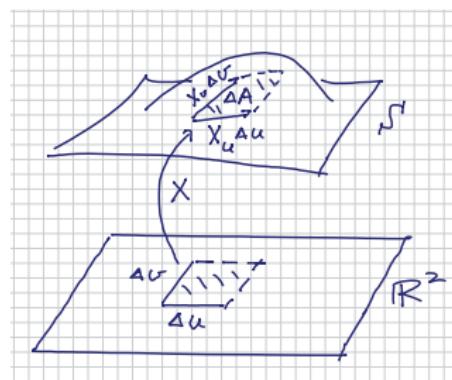
Proof: See text p 128.

Lecture 10: Equiareal maps

Area of a surface

- Surface S , parameters $(u, v) \in U$.
- Surface patch $X : U \rightarrow \mathbb{R}^3$.
- Basis $\{X_u, X_v\}$ for $T_p S$.
- Small parallelogram of area $\Delta u \Delta v$ in U .
- Image has sides $X_u \Delta u$, $X_v \Delta v$ in S and area $\Delta A = \|X_u \times X_v\| \Delta u \Delta v$.
- Let R be a region in U and $\mathcal{R} = X(R)$ be its image in S . The area of \mathcal{R} is

$$A_X(\mathcal{R}) = \int_R dA = \int_U \|X_u \times X_v\| dudv.$$



Area “well-defined”

Theorem

$A_X(\mathcal{R})$ does not depend on the choice of regular coordinate patch $X : U \rightarrow \mathbb{R}^3$

In consequence, we can simply write $A(\mathcal{R})$, without a subscript

Proof.

If $\tilde{X} : \tilde{U} \rightarrow \mathbb{R}^3$ is another regular coordinate patch covering \mathcal{R} and $\phi : \tilde{U} \rightarrow U$ is smooth, we already know that

$$\begin{aligned} \tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}} &= (\det J(\Phi)) X_u \times X_v \\ \implies \|\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}}\| &= |(\det J(\Phi))| \|X_u \times X_v\| \\ \implies A_{\tilde{X}} &= \int_{\tilde{U}} \|\tilde{X}_{\tilde{u}} \times \tilde{X}_{\tilde{v}}\| d\tilde{u} d\tilde{v} = \int_{\tilde{U}} \|X_u \times X_v\| |(\det J(\Phi))| d\tilde{u} d\tilde{v} \\ &= \int_U \|X_u \times X_v\| dudv \text{ by the change of variables formula} \\ &= A_X. \end{aligned}$$

Local form of area element

Theorem

In a patch X the area element $dA = dA_X = \|X_u \times X_v\| dudv$ can be written as $dA = \sqrt{\det(\mathcal{F}_I)} dudv$, where \mathcal{F}_I is the matrix for the 1FF.

Proof.

$$\begin{aligned}\|X_u \times X_v\|^2 &= (X_u \times X_v) \cdot (X_u \times X_v) \\ &= (X_u \cdot X_u)(X_v \cdot X_v) - (X_u \cdot X_v)^2 \text{ by a standard identity} \\ &= EG - F^2 = \det(\mathcal{F}_I).\end{aligned}$$

Area of surface region R covered by a single patch $X : U \rightarrow \mathbb{R}^3$:

$$A(R) = \int_R dA = \int_U \sqrt{\det(\mathcal{F}_I)} dudv.$$

Equiareal maps

Definition

A local diffeomorphism $f : S_1 \rightarrow S_2$ is *equiareal* if it takes each region $\mathcal{R}_1 \subset S_1$ to a region $\mathcal{R}_2 = f(\mathcal{R}_1) \subseteq S_2$ of the same area.

Theorem

$f : S_1 \rightarrow S_2$ is equiareal iff for any surface patch $X : U \rightarrow \mathbb{R}^3$ on S_1 , the 1FFs

- $E_1 du^2 + 2F_1 dudv + G_1 dv^2$ if the patch X on S_1 and
- $E_2 du^2 + 2F_2 dudv + G_2 dv^2$ if the patch $f \circ X$ on S_2

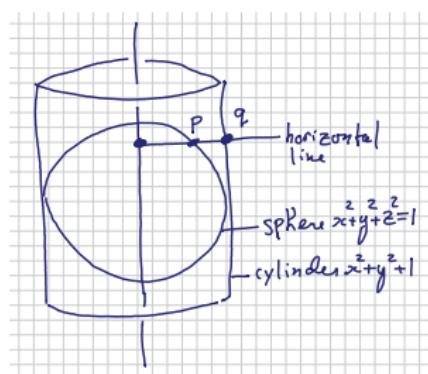
satisfy $E_1 G_1 - F_1^2 = E_2 G_2 - F_2^2$.

Proof.

$E_1 G_1 - F_1^2 = \det(\mathcal{F}_{I_{S_1}})$ and $E_2 G_2 - F_2^2 = \det(\mathcal{F}_{I_{S_2}})$ and by the previous theorem, the area elements equal iff these determinants are equal. □

Archimedes's equiareal map

- Unit sphere $x^2 + y^2 + z^2 = 1$ (denoted S_1^2) and unit vertical cylinder $x^2 + y^2 = 1$.
- Let p and q lie on horizontal radial line, with p on the sphere and q on the cylinder.
- This defines a map f taking $p \in S_1^2$, except the poles, to some q on the cylinder.
- If $p = (x, y, z)$ then
$$q = f(p) = \left(\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}}, z \right).$$
- Archimedes's theorem: f is an equiareal diffeomorphism.



Proof of Archimedes's theorem

- Need an atlas for S^2_1 minus the poles.
- Take $X(\theta, \varphi) := (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$, defined on two open sets:
 $U_1 = \left\{ -\frac{\pi}{2} < \theta < \frac{\pi}{2}, 0 < \varphi < 2\pi \right\}$ and $U_2 = \left\{ -\frac{\pi}{2} < \theta < \frac{\pi}{2}, -\pi < \varphi < \pi \right\}$.
- Two patches, same *formula* for $X : U_1 \rightarrow \mathbb{R}^3$ and $X : U_2 \rightarrow \mathbb{R}^3$.
- Basis for tangent space: $X_\theta = (-\sin \theta \cos \varphi, -\sin \theta \sin \varphi, \cos \theta)$,
 $X_\varphi = (-\cos \theta \sin \varphi, \cos \theta \cos \varphi, 0)$.
- Then $E_1 = \|X_\theta\|^2 = 1$, $F_1 = X_\theta \cdot X_\varphi = 0$, $G_1 = \|X_\varphi\|^2 = \cos^2 \theta$.
- Then the determinant of the 1FF is $\begin{vmatrix} 1 & 0 \\ 0 & \cos^2 \theta \end{vmatrix} = \cos^2 \theta$.

Proof of Archimedes's theorem continued

- Since $f(x, y, z) = \left(\frac{x}{\sqrt{x^2+y^2}}, \frac{y}{\sqrt{x^2+y^2}}, z \right)$ and $X(\theta, \phi) = (x, y, z) = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$, then

$$(f \circ X)(\theta, \phi) = \left(\frac{\cos \theta \cos \varphi}{\cos \theta}, \frac{\cos \theta \sin \varphi}{\cos \theta}, \sin \theta \right) = (\cos \varphi, \sin \varphi, \sin \theta)$$

- $(f \circ X)_\theta = (0, 0, \cos \theta)$ and $(f \circ X)_\varphi = (-\sin \varphi, \cos \varphi, 0)$.
- Then $E_2 = \|(f \circ X)_\theta\|^2 = \cos^2 \theta$, $F_2 = (f \circ X)_\theta \cdot (f \circ X)_\varphi = 0$, $G_2 = \|(f \circ X)_\varphi\|^2 = 1$.
- Then the determinant of the 1FF is $\begin{vmatrix} \cos^2 \theta & 0 \\ 0 & 1 \end{vmatrix} = \cos^2 \theta$.
- This determinant equals the one on the last slide. This completes the proof.

Corollary: spherical triangles

- Consider a 2-dimensional unit sphere \mathbb{S}^2 defined by $x^2 + y^2 + z^2 = 1$.
- A *great circle* is the curve of intersection of this sphere with a plane that contains $(0, 0, 0)$.
- A spherical triangle is a triangle on \mathbb{S}^2 whose sides are segments of great circles that meet at 3 vertices.

Theorem

If a spherical triangle on the unit sphere \mathbb{S} has interior angles α , β , and γ , then the area of the spherical triangle is $\alpha + \beta + \gamma - \pi$.

Proof.

See text pp 145–147. Uses Archimedes's theorem.

Lecture 11: The second fundamental form 2FF

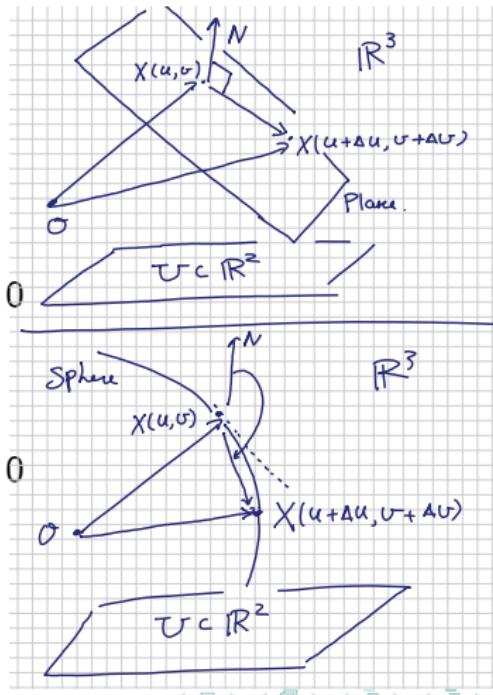
Curvature of surfaces

- Plane:

$$\mathbf{N} \cdot (X(u + \Delta u, v + \Delta v) - X(u, v)) = 0$$

- Sphere:

$$\mathbf{N} \cdot (X(u + \Delta u, v + \Delta v) - X(u, v)) \neq 0$$



- Taylor's theorem:

$$X(u + \Delta u, v + \Delta v) = X(u, v) + X_u(u, v)\Delta u + X_v(u, v)\Delta v + \frac{1}{2} [X_{uu}(\Delta u)^2 + 2X_{uv}\Delta u\Delta v + X_{vv}(\Delta v)^2] + \dots$$

so

$$\mathbf{N} \cdot (X(u + \Delta u, v + \Delta v) - X(u, v)) = \frac{1}{2} [\mathbf{N} \cdot X_{uu}(\Delta u)^2 + 2\mathbf{N} \cdot X_{uv}\Delta u\Delta v + \mathbf{N} \cdot X_{vv}(\Delta v)^2] + \dots$$

- We define: $L := \mathbf{N} \cdot X_{uu}$, $M = \mathbf{N} \cdot X_{uv}$, $N := \mathbf{N} \cdot X_{vv}$. The above equation is

$$\mathbf{N} \cdot (X(u + \Delta u, v + \Delta v) - X(u, v)) = \frac{1}{2} [L(\Delta u)^2 + 2M\Delta u\Delta v + N(\Delta v)^2] + \dots$$

- Compare to unit speed curve $\gamma(t)$ in \mathbb{R}^2 :

$$\begin{aligned} \gamma(t + \Delta t) &= \gamma(t) + \dot{\gamma}(t)\Delta t + \frac{1}{2}\ddot{\gamma}(t)(\Delta t)^2 + \dots \\ \implies \mathbf{N} \cdot (\gamma(t + \Delta t) - \gamma(t)) &= \frac{1}{2}\kappa_S(\Delta t)^2 + \dots \end{aligned}$$

- So $L(\Delta u)^2 + 2M\Delta u\Delta v + N(\Delta v)^2$ is a “surface version” of $\kappa_S(\Delta t)^2$.

The Second Fundamental Form (2FF)

Definition (Second Fundamental Form of a surface patch)

The 2FF of a surface patch $X : U \rightarrow \mathbb{R}^3$ is the map $\langle\langle \cdot, \cdot \rangle\rangle_X : T_p S \times T_p S \rightarrow \mathbb{R}$ defined in line element form to be

$$Ldu^2 + Mdudv + Mdvdu + Ndv^2,$$

so that

$$\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_X = Ldu(\mathbf{v})du(\mathbf{w}) + Mdu(\mathbf{v})dv(\mathbf{w}) + Mdv(\mathbf{v})du(\mathbf{w}) + Ndv(\mathbf{v})dv(\mathbf{w}).$$

We also write the (symmetric) matrix form as $[\mathcal{F}_{II}]$ where

$$\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_X = [\mathbf{v}]^T [\mathcal{F}_{II}] [\mathbf{w}] = [\mathbf{v}]^T \begin{bmatrix} L & M \\ M & N \end{bmatrix} [\mathbf{w}].$$

The 2FF is also called the *extrinsic curvature*.

Transformation law

- Patches $X : U \rightarrow \mathbb{R}^3$ and $\tilde{X} : \tilde{U} \rightarrow \mathbb{R}^3$ with $X(u, v) = \tilde{X}(\tilde{u}, \tilde{v})$.
- Chain rule $\tilde{X}_{\tilde{u}} = X_u \frac{\partial u}{\partial \tilde{u}} + X_v \frac{\partial v}{\partial \tilde{u}}$.
- Then $\tilde{X}_{\tilde{u}\tilde{u}} = X_{uu} \left(\frac{\partial u}{\partial \tilde{u}} \right)^2 + X_{uv} \frac{\partial v}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{u}} + X_u \frac{\partial^2 u}{\partial \tilde{u}^2} + X_{vu} \frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{u}} + X_{vv} \left(\frac{\partial v}{\partial \tilde{u}} \right)^2 + X_v \frac{\partial^2 v}{\partial \tilde{u}^2}$.
- Then (using $\tilde{\mathbf{N}} = \pm \mathbf{N} = \frac{\det(J)}{|\det J|} \mathbf{N}$) we get

$$\begin{aligned}\tilde{L} &= \tilde{\mathbf{N}} \cdot \tilde{X}_{\tilde{u}\tilde{u}} = \pm \mathbf{N} \cdot \left[X_{uu} \left(\frac{\partial u}{\partial \tilde{u}} \right)^2 + X_{uv} \frac{\partial v}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{u}} + X_u \frac{\partial^2 u}{\partial \tilde{u}^2} + X_{vu} \frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{u}} + X_{vv} \left(\frac{\partial v}{\partial \tilde{u}} \right)^2 + X_v \frac{\partial^2 v}{\partial \tilde{u}^2} \right] \\ &= \pm \left[L \left(\frac{\partial u}{\partial \tilde{u}} \right)^2 + M \frac{\partial v}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{u}} + 0 + M \frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{u}} + N \left(\frac{\partial v}{\partial \tilde{u}} \right)^2 + 0 \right]\end{aligned}$$

In the last line, we used that $\mathbf{N} \perp T_p S = \text{Span}\{X_u, X_v\}$.

- This is one component of the matrix equation

$$\begin{bmatrix} \tilde{L} & \tilde{M} \\ \tilde{M} & \tilde{N} \end{bmatrix} = \pm \begin{bmatrix} \frac{\partial u}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{u}} \\ \frac{\partial u}{\partial \tilde{v}} & \frac{\partial v}{\partial \tilde{v}} \end{bmatrix} \begin{bmatrix} L & M \\ M & N \end{bmatrix} \begin{bmatrix} \frac{\partial u}{\partial \tilde{u}} & \frac{\partial u}{\partial \tilde{v}} \\ \frac{\partial v}{\partial \tilde{u}} & \frac{\partial v}{\partial \tilde{v}} \end{bmatrix} = \pm [J]^T [\mathcal{F}_{II}] [J].$$

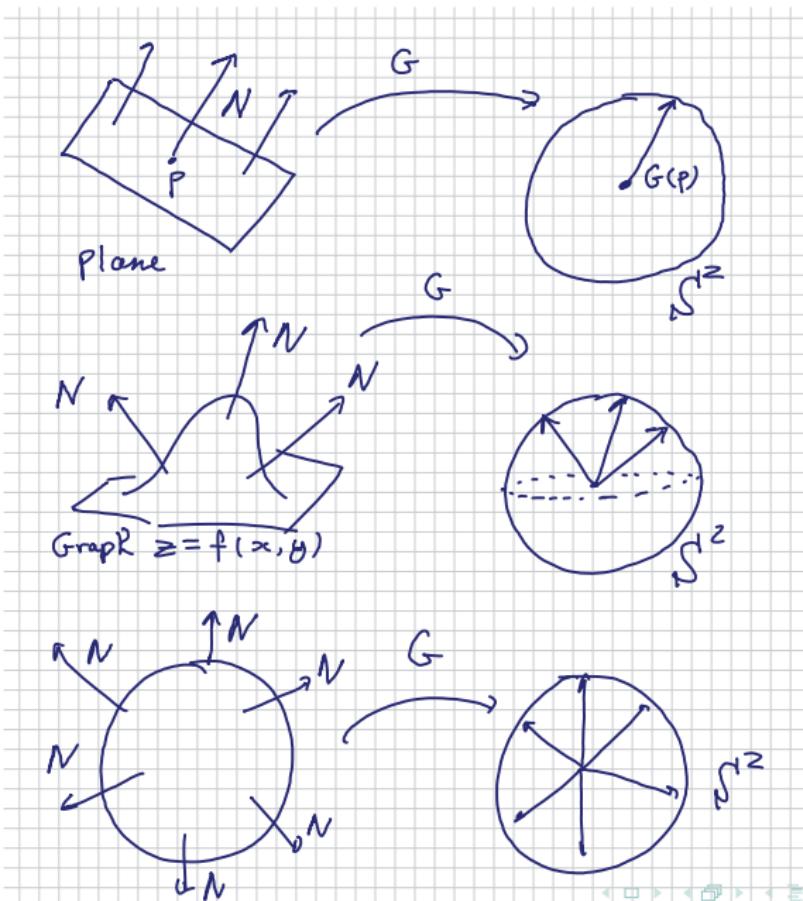
- Transformation law for 2FF: $\begin{bmatrix} \tilde{\mathcal{F}}_{II} \end{bmatrix} = \frac{\det(J)}{|\det J|} [J]^T [\mathcal{F}_{II}] [J]$.

Gauss and Weingarten maps

Definition

The Gauss map G of an oriented surface S maps each $p \in S$ to the unit normal \mathbf{N} at p .

- The set of all unit vectors based at the origin in \mathbb{R}^3 is a unit sphere $\mathbb{S}^2 = S^2_1$. Therefore we may regard the Gauss map as a smooth map $G : S \rightarrow \mathbb{S}^2$.
- The image of the Gauss map of a plane is a single point in \mathbb{S}^2 .
- The image of the Gauss map of a graph is contained in the upper hemisphere.
- The image of the Gauss map of a sphere is contains every point of \mathbb{S}^2 .
- Exercise: What does the gauss map of a torus look like? (Answer: it covers \mathbb{S}^2 twice.)



The Derivative of G

- Diffeomorphism $G : S \rightarrow \mathbb{S}^2$.
- Derivative at $p \in S$ is $D_p G : T_p S \rightarrow T_{G(p)} \mathbb{S}^2$.
- Measures the change in \mathbf{N} as $p = X(u, v) \in S$ changes.
- $\Delta \mathbf{N} = (D_p G)(\Delta X)$.
- Since $\|\mathbf{N}\| = 1$, then $D_p G(\Delta X) \perp G(p) = \mathbf{N}_p$. So $D_p G(\Delta X) \in T_p S$.
- Therefore, $D_p G : T_p S \rightarrow T_p S$.

The Weingarten map

Definition (Weingarten map)

We define the Weingarten map $W_{p,S} : T_p S \rightarrow T_p S$ of the surface S at $p \in S$ to be the linear map $W_{p,S} = -D_p G$.

We note that $W_{p,S}$ is an *operator* or *endomorphism* since it maps $T_p S$ to itself. Therefore $W_{p,S}$ can have eigenvalues/eigenvectors.

Definition (2FF of a surface)

The *second fundamental form of a surface S* at $p \in S$ is the bilinear form $\langle\langle \cdot, \cdot \rangle\rangle_{p,S} : T_p S \times T_p S \rightarrow \mathbb{R}$ such that

$$\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_{p,S} = \langle W_{p,S}(\mathbf{v}), \mathbf{w} \rangle, \quad \mathbf{v}, \mathbf{w} \in T_p S.$$

How to compute the 2FF of a surface

Theorem

- ① $\langle\langle \cdot, \cdot \rangle\rangle_{p,S}$ is bilinear.
- ② $\langle\langle \cdot, \cdot \rangle\rangle_{p,S}$ is symmetric: $\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_{p,S} = \langle\langle \mathbf{w}, \mathbf{v} \rangle\rangle_{p,S}$.
- ③ On a surface patch $X: U \rightarrow \mathbb{R}^3$, $\langle\langle \cdot, \cdot \rangle\rangle_{p,S} = \langle\langle \cdot, \cdot \rangle\rangle_{p,X}$.

- The first line above means that for $a, b \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v}, \mathbf{w} \in T_p S$, then
 - $\langle\langle a\mathbf{u} + b\mathbf{v}, \mathbf{w} \rangle\rangle_{p,S} = a\langle\langle \mathbf{u}, \mathbf{w} \rangle\rangle_{p,S} + b\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_{p,S}$ and
 - $\langle\langle \mathbf{w}, a\mathbf{u} + b\mathbf{v} \rangle\rangle_{p,S} = a\langle\langle \mathbf{w}, \mathbf{u} \rangle\rangle_{p,S} + b\langle\langle \mathbf{w}, \mathbf{v} \rangle\rangle_{p,S}$.
- This follows from the linearity of $D_p G$.
- If the third line is true, then the second line follows from the symmetry of
$$\begin{bmatrix} L & M \\ M & N \end{bmatrix}.$$
- So we must prove the third statement.

But first, interpret statement 2 of theorem

- By the definition of the 2FF of a surface we have $\langle\langle \mathbf{u}, \mathbf{v} \rangle\rangle_{p,S} = \langle W(\mathbf{u}), \mathbf{v} \rangle_{p,S}$.
- We can also write $\langle\langle \mathbf{v}, \mathbf{u} \rangle\rangle_{p,S} = \langle W(\mathbf{v}), \mathbf{u} \rangle_{p,S}$.
- Since the 1FF is symmetric, the last line gives $\langle\langle \mathbf{v}, \mathbf{u} \rangle\rangle_{p,S} = \langle \mathbf{u}, W(\mathbf{v}) \rangle_{p,S}$.
- Therefore, the left-hand sides of the first and third lines equal if and only if their right-hand sides equal:

$$\langle\langle \mathbf{u}, \mathbf{v} \rangle\rangle_{p,S} = \langle\langle \mathbf{v}, \mathbf{u} \rangle\rangle_{p,S} \Leftrightarrow \langle W(\mathbf{u}), \mathbf{v} \rangle_{p,S} = \langle \mathbf{u}, W(\mathbf{v}) \rangle_{p,S}$$

- The left-hand equation expresses the *symmetry* of the 2FF. The right-hand side expresses the *self-adjointness of W with respect to the inner product* that is the 1FF.
- The eigenvalues of a self-adjoint operator are always real numbers.

Proving part 3

Step 1: Rewrite the surface patch $2FF L du^2 + 2Mdudv + Nd v^2$.

- Patch $X : U \rightarrow \mathbb{R}^3$ with standard normal $\mathbf{N} = \frac{X_u \times X_v}{\|X_u \times X_v\|}$.
- Then $\mathbf{N} \cdot X_u = 0$ and $\mathbf{N} \cdot X_v = 0$.
- Differentiate: $\mathbf{N}_u \cdot X_u + \mathbf{N} \cdot X_{uu} = 0 = \mathbf{N}_v \cdot X_u + \mathbf{N} \cdot X_{uv}$.
- And $\mathbf{N}_u \cdot X_v + \mathbf{N} \cdot X_{vu} = 0 = \mathbf{N}_v \cdot X_v + \mathbf{N} \cdot X_{vv}$.
- Using $L = \mathbf{N} \cdot X_{uu}$, $M = \mathbf{N} \cdot X_{uv}$, and $N = \mathbf{N} \cdot X_{vv}$, we now get

$$L = -\mathbf{N}_u \cdot X_u,$$

$$M = -\mathbf{N}_u \cdot X_v = -\mathbf{N}_v \cdot X_u,$$

$$N = -\mathbf{N}_v \cdot X_v.$$

- Because $\mathbf{N}_u, \mathbf{N}_v, X_u, X_v \in T_p S$, can replace dot product by $\langle \cdot, \cdot \rangle$ in these expressions.

Step 2: Rewrite the surface 2FF $\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_{p,S} = \langle W_{p,S}(\mathbf{v}), \mathbf{w} \rangle$, $W_{p,S} = -D_p G$, $\mathbf{v}, \mathbf{w} \in T_p S$.

- Choose a patch X containing $p = X(u_0, v_0)$. Then:

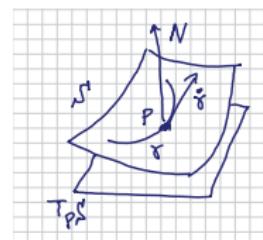
$$\begin{aligned} W_{p,S}(X_u) &= -D_p G(X_u) = -\frac{d}{du} \Big|_{u=u_0} G(X(u, v_0)) \\ &= -\frac{d}{du} \Big|_{u=u_0} \mathbf{N}(u, v_0) = -\mathbf{N}_u(u_0, v_0) \\ \implies \langle W_{p,S}(X_u), X_u \rangle &= -\langle \mathbf{N}_u, X_u \rangle = L \\ \implies L &= \langle W_{p,S}(X_u), X_u \rangle. \end{aligned}$$

- Similar calculations give $M = \langle W_{p,S}(X_v), X_u \rangle = \langle W_{p,S}(X_u), X_v \rangle$ and $N = \langle W_{p,S}(X_v), X_v \rangle$.
- We conclude that when $\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_{p,S}$ is restricted to a patch X and its components are computed, they equal the components of the surface patch 2FF $\langle\langle \mathbf{v}, \mathbf{w} \rangle\rangle_{p,X}$.

Lecture 12: Normal and geodesic curvatures

Curves on surfaces

- γ a unit speed curve.
- $\dot{\gamma} \cdot \dot{\gamma} = 1$.
- $\dot{\gamma} \cdot \ddot{\gamma} = 0$.
- Then $\ddot{\gamma} \in \text{Span} \{ \mathbf{N}, \mathbf{N} \times \dot{\gamma} \}$
- Note: $\mathbf{N} \times \dot{\gamma}$ is a unit vector.
- $\ddot{\gamma} = \kappa_N \mathbf{N} + \kappa_g \mathbf{N} \times \dot{\gamma}$ where κ_N and κ_g are coefficients in this linear combination.



The components κ_N and κ_g of $\ddot{\gamma}$

- γ is a unit speed curve in surface S .
- $\ddot{\gamma} = \kappa_N \mathbf{N} + \kappa_g \mathbf{N} \times \dot{\gamma}$.
- Then $\kappa_N = \ddot{\gamma} \cdot \mathbf{N}$ is called the *normal curvature* of γ . It is due to the bending of the surface S .
- $\kappa_g = \ddot{\gamma} \cdot (\mathbf{N} \times \dot{\gamma})$ is called the *geodesic curvature* of γ , due to bending (i.e., acceleration) of curve within S .
- Since \mathbf{N} and $\mathbf{N} \times \dot{\gamma}$ are unit vectors and are perpendicular to each other, then

$$\|\ddot{\gamma}\|^2 = (\kappa_N \mathbf{N} + \kappa_g \mathbf{N} \times \dot{\gamma}) \cdot (\kappa_N \mathbf{N} + \kappa_g \mathbf{N} \times \dot{\gamma}) = \kappa_N^2 + \kappa_g^2.$$

- But γ is a space curve, so if has curvature κ given by $\|\ddot{\gamma}\| = \kappa$. Then we have the relation between curvature, geodesic curvature, and normal curvature:

$$\kappa^2 = \kappa_N^2 + \kappa_g^2.$$

The Frenet frame again

- Recall *principal normal* \mathbf{n} to unit speed curve γ .

$$\mathbf{n} = \frac{1}{\kappa} \ddot{\gamma}.$$

- Principal normal might not lie in $T_p S$, where γ lies in S .
- Let \mathbf{N} be normal to surface S .
- Define ψ to be angle between \mathbf{n} and \mathbf{N} , so $\mathbf{n} \cdot \mathbf{N} = \cos \psi$.
- Then

$$\begin{aligned}\kappa \mathbf{n} &= \ddot{\gamma} = \kappa_N \mathbf{N} + \kappa_g \mathbf{N} \times \dot{\gamma} \\ \implies \kappa \mathbf{n} \cdot \mathbf{N} &= \kappa_N \mathbf{N} \cdot \mathbf{N} + \kappa_g (\mathbf{N} \times \dot{\gamma}) \cdot \mathbf{N} \\ \implies \kappa \cos \psi &= \kappa_N.\end{aligned}$$

- Then $\kappa_N = \kappa \cos \psi$ and $\kappa_g = \kappa \sin \psi$ (since $\kappa^2 = \kappa_N^2 + \kappa_g^2$).

κ_N is a property of the surface, not the curve

- Normal to S at p is $\mathbf{N} = G(p)$ (Gauss map).
- Curve $\gamma(t)$ in S passes through $p = \gamma(0)$.
- $\dot{\mathbf{N}} = \frac{d}{dt}|_{t=0} G = (D_p G)(\dot{\gamma}) = -W(\dot{\gamma})$.
- Now we can compute
$$\kappa_N = \mathbf{N} \cdot \ddot{\gamma} = \frac{d}{dt}(\mathbf{N} \cdot \dot{\gamma}) - \dot{\mathbf{N}} \cdot \dot{\gamma} = -\dot{\mathbf{N}} \cdot \dot{\gamma} = W(\dot{\gamma}) \cdot \dot{\gamma} = \langle W(\dot{\gamma}), \dot{\gamma} \rangle.$$
- Finally, recall the definition of the 2FF: $\langle \langle \mathbf{v}, \mathbf{w} \rangle \rangle = \langle W(\mathbf{v}), \mathbf{w} \rangle$.
- Then $\kappa_N = \langle \langle \dot{\gamma}, \dot{\gamma} \rangle \rangle$.
- Surface patch form: If $\gamma(t) = X(u(t), v(t))$ where $(u(t), v(t))$ is a curve in $U \subset \mathbb{R}^2$ then

$$\kappa_N = [\dot{\gamma}]^T \begin{bmatrix} L & M \\ M & N \end{bmatrix} [\dot{\gamma}] = L\dot{u}^2 + 2M\dot{u}\dot{v} + N\dot{v}^2.$$

Theorem (Meusnier's theorem)

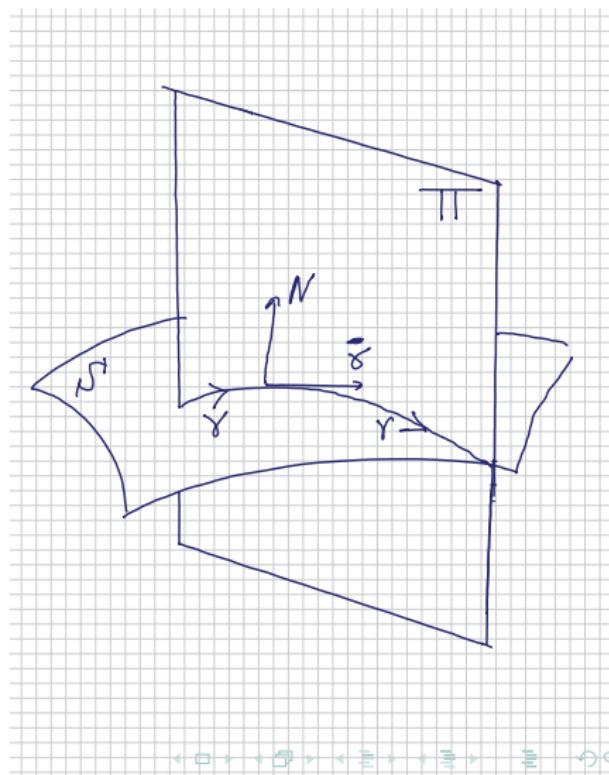
Any two curves that lie in a surface S and have a common tangent at some $p \in S$ have the same normal curvature at p .

Normal sections of a surface

Definition

A curve $\gamma : I \rightarrow \mathbb{R}^3$ in a surface S is a *normal section* if it is the curve of intersection of S with a plane Π perpendicular to $T_{\gamma(t)}S$ for every $t \in I$.

- γ is in both S and Π .
- $\frac{d^k \gamma}{dt^k} \in \Pi$ for all $k = 1, 2, \dots$.
- Then $\dot{\gamma}, \ddot{\gamma} \in \Pi$.
- Unit speed: $\dot{\gamma} \perp \ddot{\gamma}$.
- Then $\ddot{\gamma}$ is parallel to \mathbf{N} .



Normal sections continued

- Let $\gamma(t)$ be a unit speed normal section of S with $\kappa \neq 0$.
- Let \mathbf{n} be the principal normal to the curve: $\mathbf{n} = \frac{1}{\kappa} \ddot{\gamma}$.
- Recall $\kappa_N = \kappa \cos \psi$, $\kappa_g = \kappa \sin \psi$, where $\psi = \angle \mathbf{N} \mathbf{n}$.
- Since $\ddot{\gamma}$ is parallel to \mathbf{N} , then the principal normal \mathbf{n} to the curve is parallel to \mathbf{N} (the normal to S), so $\psi = 0$.
- Therefore, $\kappa_g = 0$ and $\kappa_N = \pm \kappa$ for a normal section with nonzero curvature. We may write its curvature as $\kappa = |\kappa_N| = |\langle \langle \dot{\gamma}, \ddot{\gamma} \rangle \rangle|$.
- By Meusnier, all curves in S tangent to a normal section at $p \in S$ have the same κ_N at p .

Lecture 13: Parallel transport

Covariant derivative

What can “parallel” mean on an arbitrary surface?

- Vector field \mathbf{v} in \mathbb{R}^3 .
- Curve γ on a surface S in \mathbb{R}^3 .
- $\dot{\mathbf{v}}$ is the derivative of \mathbf{v} along γ .
- \mathbf{N} is a unit normal field for S .
- $\dot{\mathbf{v}} - (\dot{\mathbf{v}} \cdot \mathbf{N}) \mathbf{N}$ is the component of $\dot{\mathbf{v}}$ tangent to S .

Definition (Covariant derivative along a curve)

Given the above, we write $\nabla_{\dot{\gamma}} \mathbf{v} := \dot{\mathbf{v}} - (\dot{\mathbf{v}} \cdot \mathbf{N}) \mathbf{N}$ and call it the *covariant derivative* (sometimes called the *directional covariant derivative*, sometimes written $\nabla_{\dot{\gamma}} \mathbf{v}$) of \mathbf{v} in the direction of $\dot{\gamma}$. It is the projection of $\dot{\mathbf{v}}$ into $T_{\gamma(t)} S$.

Parallel transport

Definition

If $\nabla_\gamma \mathbf{v} = 0$ along γ , we say that \mathbf{v} is *parallel* (in physics: *parallel-transported* or *covariantly constant*) along γ .

Theorem

\mathbf{v} is parallel along γ if and only if $\dot{\mathbf{v}} \perp T_{\gamma(t)} S$ for all t in the domain of γ .

Proof.

$\nabla_\gamma \mathbf{v} := \dot{\mathbf{v}} - (\dot{\mathbf{v}} \cdot \mathbf{N}) \mathbf{N} = 0$ if and only if $\dot{\mathbf{v}} = (\dot{\mathbf{v}} \cdot \mathbf{N}) \mathbf{N}$.

Then $\dot{\mathbf{v}} \parallel \mathbf{N}$. But $\dot{\mathbf{v}} \parallel \mathbf{N}$ if and only if $\dot{\mathbf{v}} \perp T_{\gamma(t)} S$.

Conversely, if $\dot{\mathbf{v}} \perp T_{\gamma(t)} S$ for all t then $\dot{\mathbf{v}} \parallel \mathbf{N}$, and then necessarily $\dot{\mathbf{v}} = (\dot{\mathbf{v}} \cdot \mathbf{N}) \mathbf{N}$, so $\nabla_\gamma \mathbf{v} := \dot{\mathbf{v}} - (\dot{\mathbf{v}} \cdot \mathbf{N}) \mathbf{N} = 0$. □

Remark: If a vector field *in a plane* $\Pi \subset \mathbb{R}^3$ is parallel along a curve in Π , it is parallel in the usual sense of a translation isometry in the plane.

Christoffel symbols

Definition (Christoffel symbols)

Let $X : U \rightarrow \mathbb{R}^3$ be a coordinate patch and let $\mathcal{F}_I = \begin{bmatrix} E & F \\ F & G \end{bmatrix}$ be the 1FF of this patch. Note that $\det \mathcal{F}_I = EG - F^2$. The *Christoffel symbols* of the 1FF of this patch are

$$\Gamma_{11}^1 = \frac{GE_u - 2FF_u + FE_v}{2(EG - F^2)}$$

$$\Gamma_{12}^1 = \Gamma_{21}^1 = \frac{GE_v - FG_u}{2(EG - F^2)}$$

$$\Gamma_{22}^1 = \frac{2GF_v - GG_u - FG_v}{2(EG - F^2)}$$

$$\Gamma_{11}^2 = \frac{2EF_u - EE_v - FE_u}{2(EG - F^2)}$$

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{EG_u - FE_v}{2(EG - F^2)}$$

$$\Gamma_{22}^2 = \frac{EG_v - 2FF_v + FG_u}{2(EG - F^2)}$$

Note: Christoffel symbols depend only on the 1FF, not the 2FF, on a surface patch.

When can tangent vector fields be parallel?

- Surface patch $X : U \rightarrow \mathbb{R}^3$. Then $\{X_u, X_v\}$ is a basis for $T_p S$.
- If \mathbf{N} is normal to S at p then $\{X_u, X_v, \mathbf{N}\}$ is a basis for \mathbb{R}^3 .
- Express X_{uu} , X_{uv} , X_{vv} in this basis:

$$X_{uu} = a_1 X_u + a_2 X_v + a_3 \mathbf{N}$$

$$X_{uv} = X_{vu} = b_1 X_u + b_2 X_v + b_3 \mathbf{N}$$

$$X_{vv} = c_1 X_u + c_2 X_v + c_3 \mathbf{N}.$$

for coefficients a_1, \dots, c_3 which we will now find.

- To start, take dot products with \mathbf{N} :

$$\mathbf{N} \cdot X_{uu} = a_3, \text{ but } L := \mathbf{N} \cdot X_{uu}, \text{ so } a_3 = L.$$

$$\mathbf{N} \cdot X_{uv} = b_3, \text{ but } M := \mathbf{N} \cdot X_{uv}, \text{ so } b_3 = M.$$

$$\mathbf{N} \cdot X_{vv} = c_3, \text{ but } N := \mathbf{N} \cdot X_{vv}, \text{ so } c_3 = N.$$

...continued

- So now we have

$$X_{uu} = a_1 X_u + a_2 X_v + L\mathbf{N}$$

$$X_{uv} = X_{vu} = b_1 X_u + b_2 X_v + M\mathbf{N}$$

$$X_{vv} = c_1 X_u + c_2 X_v + N\mathbf{N}.$$

- Now take dot products with X_u :

$$X_u \cdot X_{uu} = a_1 X_u \cdot X_u + a_2 X_u \cdot X_v = a_1 E + a_2 F$$

$$X_u \cdot X_{uv} = b_1 X_u \cdot X_u + b_2 X_u \cdot X_v = b_1 E + b_2 F$$

$$X_u \cdot X_{vv} = c_1 X_u \cdot X_u + c_2 X_u \cdot X_v = c_1 E + c_2 F.$$

- Taking dot products with X_v yields

$$X_v \cdot X_{uu} = a_1 X_v \cdot X_u + a_2 X_v \cdot X_v = a_1 F + a_2 G$$

$$X_v \cdot X_{uv} = b_1 X_v \cdot X_u + b_2 X_v \cdot X_v = b_1 F + b_2 G$$

$$X_v \cdot X_{vv} = c_1 X_v \cdot X_u + c_2 X_v \cdot X_v = c_1 F + c_2 G.$$

- Need to simplify the left-hand sides.

...continued

- Consider the equation $X_u \cdot X_{uu} = a_1 E + a_2 F$.
 - Now $X_u \cdot X_{uu} = \frac{1}{2} \frac{\partial}{\partial u} (\|X_u\|^2) = \frac{1}{2} E_u$.
 - The above equation becomes $\frac{1}{2} E_u = a_1 E + a_2 F$.
- Consider the equation $X_v \cdot X_{uu} = a_1 F + a_2 G$.
 - $X_v \cdot X_{uu} = \frac{\partial}{\partial u} (X_v \cdot X_u) - \frac{1}{2} \frac{\partial}{\partial v} (X_u \cdot X_u) = F_u - \frac{1}{2} E_v$.
 - The above equation becomes $F_u - \frac{1}{2} E_v = a_1 F + a_2 G$.
- Solve for $a_1 = \frac{E_u G + E_v F - 2FF_u}{2(EG - F^2)}$, $a_2 = \frac{2EF_u - EE_v - FE_u}{2(EG - F^2)}$.
- But these are two of the Christoffel symbols: $a_1 = \Gamma_{11}^1$, $a_2 = \Gamma_{11}^2$.
- Continuing, we obtain that all the a_1, \dots, c_3 are Christoffel symbols, and:

$$X_{uu} = a_1 X_u + a_2 X_v + L\mathbf{N} = \Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v + L\mathbf{N},$$

$$X_{uv} = X_{vu} = b_1 X_u + b_2 X_v + M\mathbf{N} = \Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v + M\mathbf{N},$$

$$X_{vv} = c_1 X_u + c_2 X_v + N\mathbf{N} = \Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v + N\mathbf{N}.$$

Gauss equations (first version)

Definition

The equations we just obtained are sometimes called the *Gauss equations*:

$$X_{uu} = \Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v + L \mathbf{N},$$

$$X_{uv} = \Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v + M \mathbf{N},$$

$$X_{vv} = \Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v + N \mathbf{N}.$$

They provide a link between the 1FF (through the Christoffel symbols), the 2FF (last terms on right), and transport of vector fields (the basis vectors appearing on the left-hand sides).

We will use these to obtain related equations, also named for Gauss (and Codazzi and Mainardi) a few lectures from now.

Return to issue of parallel tangent fields

- Curve $\gamma(t) = X(u(t), v(t))$ in S , field $\mathbf{v}(t)$ along γ , tangent to S .

$$\mathbf{v}(t) = \alpha(t)X_u + \beta(t)X_v \in T_{\gamma(t)}S$$

$$\begin{aligned}\nabla_{\gamma}\mathbf{v} &= \dot{\alpha}X_u + \dot{\beta}X_v + \alpha\dot{X}_u^{\perp} + \beta\dot{X}_v^{\perp} \text{ where } \dot{X}_u^{\perp} := \dot{X}_u - (\dot{X}_u \cdot \mathbf{N}) \mathbf{N} \\ &= \dot{\alpha}X_u + \dot{\beta}X_v + \alpha(X_{uu}\dot{u} + X_{uv}\dot{v})^{\perp} + \beta(X_{vu}\dot{u} + X_{vv}\dot{v})^{\perp} \\ &= \dot{\alpha}X_u + \dot{\beta}X_v + \alpha\dot{u}(\Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v) \\ &\quad + (\alpha\dot{v} + \beta\dot{u})(\Gamma_{12}^1 X_u + \Gamma_{11}^2 X_v) + \beta\dot{v}(\Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v),\end{aligned}$$

using the Gauss equations in the last line.

- If \mathbf{v} is parallel along γ , then $\dot{\mathbf{v}} \parallel \mathbf{N}$, so coefficients of X_u and X_v above must both vanish.

$$\begin{aligned}0 &= \dot{\alpha} + \alpha\dot{u}\Gamma_{11}^1 + (\alpha\dot{v} + \beta\dot{u})\Gamma_{12}^1 + \beta\dot{v}\Gamma_{22}^1 \\ 0 &= \dot{\beta} + \alpha\dot{u}\Gamma_{11}^2 + (\alpha\dot{v} + \beta\dot{u})\Gamma_{11}^2 + \beta\dot{v}\Gamma_{22}^2.\end{aligned}$$

- These are the *equations of parallel transport*.

Equations of parallel transport

- We have proved that if a vector field $\mathbf{v} = \alpha(t)X_u + \beta(t)X_v$ tangent to S is parallel along a curve γ , then necessarily

$$0 = \dot{\alpha} + \alpha \dot{u} \Gamma_{11}^1 + (\alpha \dot{v} + \beta \dot{u}) \Gamma_{12}^1 + \beta \dot{v} \Gamma_{22}^1$$

$$0 = \dot{\beta} + \alpha \dot{u} \Gamma_{11}^2 + (\alpha \dot{v} + \beta \dot{u}) \Gamma_{12}^2 + \beta \dot{v} \Gamma_{22}^2.$$

- Conversely, this system of equations has form

$$\dot{\alpha}(t) = f(\alpha, \beta, t)$$

$$\dot{\beta}(t) = g(\alpha, \beta, t).$$

for smooth functions f, g . From ODE theory, there is always a unique solution $(\alpha(t), \beta(t))$ (from which we can then construct \mathbf{v}) on some open interval containing t_0 , given initial values $\alpha_0 = \alpha(t_0)$, $\beta_0 = \beta(t_0)$. This proves:

Theorem

Let γ be a curve on S . Let $\mathbf{v}_0 \in T_p S$, where $p = \gamma(t_0)$. Then there is exactly one vector field in $T_{\gamma(t)} S$ that is parallel along γ and equal to \mathbf{v}_0 at p .

The parallel transport map

- Let $p, q \in S$ be two points along curve γ in S , where $\gamma(t_0) = p$ and $\gamma(t_1) = q$.
- Define a map $\Pi_{\gamma}^{p,q} : T_p S \rightarrow T_q S$ as follows:
 - Given $\mathbf{v}_0 \in T_p S$, say $\mathbf{v}(t)$ is the unique parallel vector field along $\gamma : [t_0, t_1] \rightarrow \mathbb{R}^3$ with $\mathbf{v}(t_0) = \mathbf{v}_0$.
 - Then $\Pi_{\gamma}^{p,q} \mathbf{v}_0 := \mathbf{v}_1$ where $\mathbf{v}_1 := \mathbf{v}(t_1)$.

Theorem

- $\Pi_{\gamma}^{p,q}$ is linear.
- $\Pi_{\gamma}^{p,q}$ is an isometry:

$$\langle \mathbf{v}_0, \mathbf{w}_0 \rangle_p = \langle \mathbf{v}_1, \mathbf{w}_1 \rangle_q \text{ for } \mathbf{v}_1 = \Pi_{\gamma}^{p,q} \mathbf{v}_0, \mathbf{w}_1 = \Pi_{\gamma}^{p,q} \mathbf{w}_0.$$

Proof: text pp 175–176.

Example: Sphere (minus the poles)

- θ = latitude, φ = azimuth (longitude).
- First patch $U_1 = \left\{ -\frac{\pi}{2} < \theta < \frac{\pi}{2}, 0 < \varphi < 2\pi \right\}$.
- Second patch $U_2 = \left\{ -\frac{\pi}{2} < \theta < \frac{\pi}{2}, -\pi < \varphi < \pi \right\}$.
- $X(\theta, \varphi) = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta)$ for both patches.
- $\mathcal{F}_I = d\theta^2 + \cos^2 \theta d\varphi^2 = \begin{bmatrix} 1 & 0 \\ 0 & \cos^2 \theta \end{bmatrix}$.
- $\Gamma_{11}^1 = \Gamma_{11}^2 = \Gamma_{22}^2 = \Gamma_{12}^1 = \Gamma_{21}^1 = 0$, $\Gamma_{12}^2 = \Gamma_{21}^2 = -\tan \theta$, $\Gamma_{22}^1 = -\sin \theta \cos \theta$.
- Along any constant-latitude circle $\theta = \theta_0$, $\varphi = t$, a parallel vector field \mathbf{v} obeys

$$\begin{aligned}\mathbf{v} &= \alpha X_\theta + \beta X_\varphi \\ \dot{\alpha} &= -\beta \sin \theta_0 \cos \theta_0 \\ \dot{\beta} &= \alpha \tan \theta_0\end{aligned}$$

- Equator: $\theta_0 = 0$, so $\alpha(\varphi) = \alpha_0$, $\beta(\varphi) = \beta_0$, $\mathbf{v}(\varphi) = \alpha_0 X_\theta + \beta_0 X_\varphi$.

Sphere example continued

- Last page: $\mathbf{v} = \alpha X_\theta + \beta X_\varphi$, where $\dot{\alpha} = -\beta \sin \theta_0 \cos \theta_0$ and $\dot{\beta} = \alpha \tan \theta_0$.
- If $\theta_0 \neq 0$, differentiate middle equation again and use bottom equation:

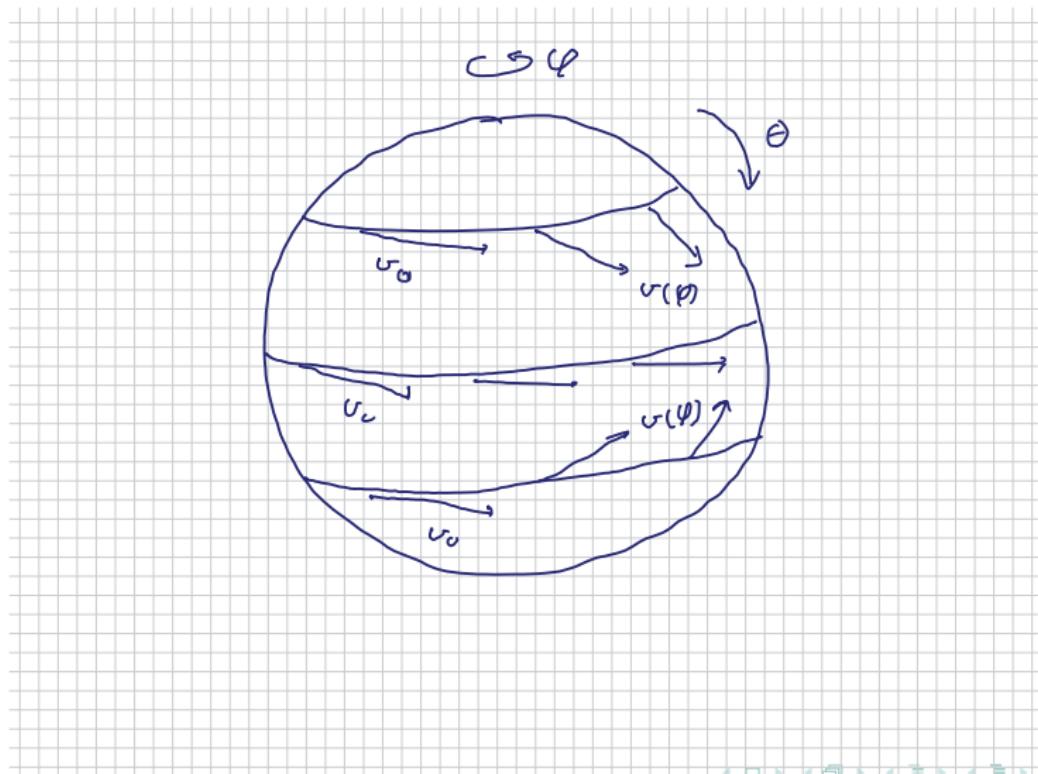
$$\implies \ddot{\alpha} = -\alpha \sin^2 \theta_0$$

$$\implies \ddot{\alpha} + (\sin^2 \theta_0) \alpha = 0$$

$$\implies \alpha(\varphi) = A \cos(\varphi \sin \theta_0) + B \sin(\varphi \sin \theta_0).$$

- Then $\beta(\varphi) = A \frac{\sin(\varphi \sin \theta_0)}{\cos \theta_0} - B \frac{\cos(\varphi \sin \theta_0)}{\cos \theta_0}$.
- Special case: $\mathbf{v}(0) = X_\varphi$ so $\alpha(0) = 0$ and $\beta(0) = 1$. Then $A = 0$, $B = \cos \theta_0$, so $\alpha(\varphi) = -(\cos \theta_0) \sin(\varphi \sin \theta_0)$ and $\beta(\varphi) = \cos(\varphi \sin \theta_0)$.
$$\implies \mathbf{v}(\varphi) = -(\cos \theta_0) \sin(\varphi \sin \theta_0) X_\theta + \cos(\varphi \sin \theta_0) X_\varphi.$$
- Parallel vector field initially tangent to γ cannot remain so. (What happens after one complete cycle around γ ?)

Parallel vector field on sphere



Lecture 14: Gaussian and mean curvatures

Self-adjointness of W

Definition (Adjoint)

Say A and B are operators on a vector space V and $\langle \cdot, \cdot \rangle$ is an inner product for V . If $\langle \mathbf{v}, A(\mathbf{w}) \rangle = \langle B(\mathbf{v}), \mathbf{w} \rangle$ for all $\mathbf{v}, \mathbf{w} \in V$ then we say that B is the *adjoint* of A with respect to the inner product $\langle \cdot, \cdot \rangle$.

- Recall: The 2FF can be written as a symmetric matrix, so the Weingarten map is *self-adjoint* wrt the inner product defined by the 1FF:

$$\langle W(\mathbf{v}), \mathbf{w} \rangle = \langle \langle \mathbf{v}, \mathbf{w} \rangle \rangle = \langle \langle \mathbf{w}, \mathbf{v} \rangle \rangle = \langle W(\mathbf{w}), \mathbf{v} \rangle = \langle \mathbf{v}, W(\mathbf{w}) \rangle.$$

- $W = W_{p,S} : T_p S \rightarrow T_p S$ is a linear operator.
- Self-adjoint linear operators have *real* eigenvalues, so

$$W(\mathbf{t}_1) = \kappa_1 \mathbf{t}_1,$$

$$W(\mathbf{t}_2) = \kappa_2 \mathbf{t}_2,$$

with $\kappa_1, \kappa_2 \in \mathbb{R}$ and $\|\mathbf{t}_1\| \neq 0, \|\mathbf{t}_2\| \neq 0$.

Eigenvectors of self-adjoint operators produce orthonormal bases

- Last slide: $W(\mathbf{t}_1) = \kappa_1 \mathbf{t}_1$, $W(\mathbf{t}_2) = \kappa_2 \mathbf{t}_2$, $\kappa_1, \kappa_2 \in \mathbb{R}$.
- If $\kappa_1 \neq \kappa_2$ then

$$\begin{aligned}\langle W(\mathbf{t}_1), \mathbf{t}_2 \rangle &= \langle \mathbf{t}_1, W(\mathbf{t}_2) \rangle \text{ since } W \text{ is self-adjoint} \\ \implies \kappa_1 \langle \mathbf{t}_1, \mathbf{t}_2 \rangle &= \kappa_2 \langle \mathbf{t}_1, \mathbf{t}_2 \rangle \\ \implies (\kappa_2 - \kappa_1) \langle \mathbf{t}_1, \mathbf{t}_2 \rangle &= 0.\end{aligned}$$

and since $\kappa_2 \neq \kappa_1$ then we must have $\mathbf{t}_1 \perp \mathbf{t}_2$.

- Eigenvectors belonging to *distinct* eigenvalues are orthogonal; normalize them to obtain an orthonormal basis (ONB) $\{\mathbf{t}_1, \mathbf{t}_2\}$ for \mathbb{R}^2 .
- If $\kappa_1 = \kappa_2$, the eigenspace is 2-dimensional, and from it we can choose eigenvectors that form an ONB $\{\mathbf{t}_1, \mathbf{t}_2\}$.
- We will always label eigenvectors so that $\{\mathbf{t}_1, \mathbf{t}_2\}$ is right-handed.

Principal curvatures

Definition (Principal curvatures)

The eigenvalues κ_1 and κ_2 of W are the *principal curvatures* of surface S . The corresponding eigenvectors are the *principal vectors* or *principal directions*.

- We can always find an orthonormal basis for $T_p S$ whose elements are principal vectors.
- Points at which $\kappa_1 = \kappa_2$ are called *umbilics*. At umbilics, the eigenspace is 2-dimensional, so it's all of $T_p S$, and then:

$$W_{p,S}(\mathbf{t}) = \kappa \mathbf{t}$$

for all $\mathbf{t} \in T_p S$, where we write $\kappa = \kappa_1 = \kappa_2$.

- Therefore at umbilics $W = \kappa \text{id}$ (id is the identity map $\text{id}(\mathbf{t}) = \mathbf{t}$).

Mean and Gauss curvatures

In an eigenvector basis, the matrix \mathcal{W} for the Weingarten map is

$$\mathcal{W} = \begin{bmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{bmatrix}$$

Definition (Mean curvature)

The mean curvature H of a surface is one-half the trace of \mathcal{W} :

$$H := \frac{1}{2} \operatorname{tr}(\mathcal{W}) = \frac{1}{2} (\kappa_1 + \kappa_2).$$

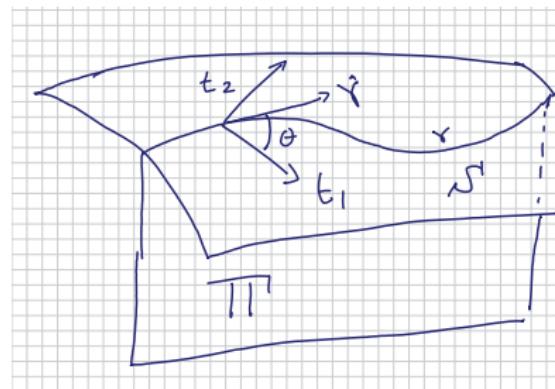
Definition (Gauss curvature)

The Gauss curvature $K = K_G$ is the determinant of \mathcal{W} :

$$K = K_G = \det(\mathcal{W}) = \kappa_1 \kappa_2.$$

Interpretation

- Say $\{\mathbf{t}_1, \mathbf{t}_2\}$ is an ONB for T_p at $p \in S$, consisting of eigenvectors of W .
- Say Π is a plane through p and containing the normal \mathbf{N} to S at p .
- Then the (unit speed) curve of intersection γ of Π and S is a normal section.
- Say $\dot{\gamma}$ makes angle θ with \mathbf{t}_1 , so $\dot{\gamma} = \cos \theta \mathbf{t}_1 + \sin \theta \mathbf{t}_2$.



Interpretation continued

- Since γ is a normal section, $\kappa = \kappa_N = \langle \langle \dot{\gamma}, \dot{\gamma} \rangle \rangle_{p,S}$.
- From last slide, $\dot{\gamma} = \cos \theta \mathbf{t}_1 + \sin \theta \mathbf{t}_2$.
- Then $\kappa_N = \cos^2 \theta \langle \langle \mathbf{t}_1, \mathbf{t}_1 \rangle \rangle + 2 \cos \theta \sin \theta \langle \langle \mathbf{t}_1, \mathbf{t}_2 \rangle \rangle + \sin^2 \theta \langle \langle \mathbf{t}_2, \mathbf{t}_2 \rangle \rangle$.
- Moreover, $\langle \langle \mathbf{t}_i, \mathbf{t}_j \rangle \rangle = \langle W(\mathbf{t}_i), \mathbf{t}_j \rangle = \kappa_i \langle \mathbf{t}_i, \mathbf{t}_j \rangle = \begin{cases} \kappa_i, & i = j, \\ 0, & i \neq j. \end{cases}$
- Combine last two lines:

$$\kappa_N = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta.$$

- Any curve tangent to γ at p will have same κ_N .

Theorem

Theorem

κ_1 and κ_2 are the extreme values of the normal curvature κ_N among all curves at p . The max and min values occur for normal sections in orthogonal planes.

Proof:

- Meusnier's theorem: two curves through p have same κ_N if they have same tangent at p , so it suffices to extremize over unit speed normal section curves.
- From last slide, for these curves $\kappa_N = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta$.
- If $\kappa_1 = \kappa_2$, then $\kappa_N = \kappa_1 (\cos^2 \theta + \sin^2 \theta) = \kappa_1 = \kappa_2$ and κ_N is constant with respect to θ , hence constant over all curves through p .
- If $\kappa_1 \neq \kappa_2$, then extremize:
 - $0 = \frac{d}{d\theta} \kappa_N = 2(\kappa_2 - \kappa_1) \sin \theta \cos \theta = (\kappa_2 - \kappa_1) \sin(2\theta)$, so $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ at extrema.
 - If $\theta = 0, \pi, 2\pi$, then $\kappa_N = \kappa_1$. If $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$, then $\kappa_N = \kappa_2$.

The matrix of $W_{p,X}$

- Coordinate patch $X : U \rightarrow \mathbb{R}^3$ for $S \ni p, (u, v) \in U$.
- Basis $\{X_u, X_v\}$.
- Matrix for 1FF: $\mathcal{F}_I = \begin{bmatrix} E & F \\ F & G \end{bmatrix}$.
- Matrix for 2FF: $\mathcal{F}_{II} = \begin{bmatrix} L & M \\ M & N \end{bmatrix}$.
- Write matrix for W as $\mathcal{W} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ for unknowns a, b, c, d .
- Use $\langle W(X_u), X_u \rangle = \langle \langle X_u, X_u \rangle \rangle$. In matrix form, this is

$$\left(\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)^T \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} L & M \\ M & N \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = L$$
$$\Rightarrow aE + bF = L.$$

Matrix for $W_{p,X}$ continued

- Last slide: We used $\langle W(X_u), X_u \rangle = \langle \langle X_u, X_u \rangle \rangle$ to get $aE + bF = L$.
- Next use $\langle W(X_u), X_v \rangle = \langle \langle X_u, X_v \rangle \rangle$:

$$\begin{aligned} & \left(\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)^T \begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} L & M \\ M & N \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ \implies & \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} F \\ G \end{bmatrix} = M \\ \implies & aF + bG = M. \end{aligned}$$

- Likewise $\langle W(X_v), X_u \rangle = \langle \langle X_v, X_u \rangle \rangle$ yields $cE + dF = M$.
- $\langle W(X_v), X_v \rangle = \langle \langle X_v, X_v \rangle \rangle$ yields $cF + dG = N$.

Matrix for $W_{p,X} \dots$ endgame

- For the unknown elements a, b, c, d of \mathcal{W} we have $aE + bF = L$, $aF + bG = M$, $cE + dF = M$, $cF + dG = N$. Can write these four as the matrix equation

$$\begin{bmatrix} E & F \\ F & G \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} L & M \\ M & N \end{bmatrix}.$$

- This is $\mathcal{F}_I \mathcal{W} = \mathcal{F}_{II}$.
- Then for the matrix of $W_{p,X}$ we get

$$\begin{aligned} \mathcal{W} &= \mathcal{F}_I^{-1} \mathcal{F}_{II} = \frac{1}{(EG - F^2)} \begin{bmatrix} G & -F \\ -F & E \end{bmatrix} \begin{bmatrix} L & M \\ M & N \end{bmatrix} \\ &= \frac{1}{(EG - F^2)} \begin{bmatrix} GL - FM & GM - FN \\ EM - FL & EN - FM \end{bmatrix}. \end{aligned}$$

- Mean curvature: $H = \frac{1}{2} \operatorname{tr} \mathcal{W} = \frac{GL + EN - 2FM}{2(EG - F^2)}$.
- Gauss curvature: $K_G = \det \mathcal{W} = \frac{\det \mathcal{F}_{II}}{\det \mathcal{F}_I} = \frac{LN - M^2}{EG - F^2}$.
- Can also extract formulas for κ_1, κ_2 in terms of E, \dots, N .

Example: Surface of revolution

- Unit speed profile curve in xz -plane: $x = f(u)$, $y = 0$, $z = g(u)$, $\dot{f}^2(u) + \dot{g}^2(u) = 1$.
- $X(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$, $f(u) \geq 0$, $\dot{g}(u) \neq 0$.
- $X_u = (\dot{f}(u) \cos v, \dot{f}(u) \sin v, \dot{g}(u))$.
- $X_v = (-f(u) \sin v, f(u) \cos v, 0)$.
- $\mathcal{F}_I = \begin{bmatrix} \|X_u\|^2 & X_u \cdot X_v \\ X_u \cdot X_v & \|X_v\|^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & f^2(u) \end{bmatrix}$.

Surface of revolution continued

- $X_u \times X_v = \left(-f(u)\dot{g}(u) \cos v, -f(u)\dot{g}(u) \sin v, f(u)\dot{f}(u) \right).$
- $\|X_u \times X_v\| = \sqrt{f^2(u)\dot{g}^2(u) + f^2(u)\dot{f}^2(u)} = f(u).$
- $\mathbf{N} = \frac{X_u \times X_v}{\|X_u \times X_v\|} = \left(-\dot{g}(u) \cos v, -\dot{g}(u) \sin v, \dot{f}(u) \right).$
- $X_{uu} = \left(\ddot{f}(u) \cos v, \ddot{f}(u) \sin v, \ddot{g}(u) \right).$
- $X_{uv} = X_{vu} = \left(-\dot{f}(u) \sin v, \dot{f}(u) \cos v, 0 \right).$
- $X_{vv} = (-f(u) \cos v, -f(u) \sin v, 0).$
- $\mathcal{F}_{II} = \begin{bmatrix} \mathbf{N} \cdot X_{uu} & \mathbf{N} \cdot X_{uv} \\ \mathbf{N} \cdot X_{vu} & \mathbf{N} \cdot X_{vv} \end{bmatrix} = \begin{bmatrix} \dot{f}\ddot{g} - \ddot{f}\dot{g} & 0 \\ 0 & f\dot{g} \end{bmatrix}.$

Surface of revolution continued

- $\mathcal{W} = \mathcal{F}_I^{-1} \mathcal{F}_{II} = \begin{bmatrix} 1 & 0 \\ 0 & 1/f^2 \end{bmatrix} \begin{bmatrix} \dot{f}\ddot{g} - \ddot{f}\dot{g} & 0 \\ 0 & f\dot{g} \end{bmatrix} = \begin{bmatrix} \dot{f}\ddot{g} - \ddot{f}\dot{g} & 0 \\ 0 & \dot{g}/f \end{bmatrix}.$
- $H = \frac{1}{2} \operatorname{tr} \mathcal{W} = \frac{1}{2} \left[\dot{f}\ddot{g} - \ddot{f}\dot{g} + \frac{\dot{g}}{f} \right].$
- $K_G = \det \mathcal{W} = \frac{\dot{g}}{f} \left[\dot{f}\ddot{g} - \ddot{f}\dot{g} \right].$
- Special case: Sphere of radius $a > 0$:
 - Unit speed profile curve $\gamma(u) = (a \cos \frac{u}{a}, 0, a \sin \frac{u}{a})$.
 - surface $X(u, v) = (a \cos \frac{u}{a} \cos v, a \cos \frac{u}{a} \sin v, a \sin \frac{u}{a})$.
 - $f(u) = a \cos \frac{u}{a} \implies \dot{f}(u) = -\sin \frac{u}{a} \implies \ddot{f}(u) = -\frac{1}{a} \cos \frac{u}{a}$.
 - $g(u) = a \sin \frac{u}{a} \implies \dot{g}(u) = \cos \frac{u}{a} \implies \ddot{g}(u) = -\frac{1}{a} \sin \frac{u}{a}$.
 - Then $\dot{f}\ddot{g} - \ddot{f}\dot{g} = \frac{1}{a} \sin^2 \frac{u}{a} + \frac{1}{a} \cos^2 \frac{u}{a} = \frac{1}{a}$ and $\frac{\dot{g}}{f} = \frac{1}{a}$.
 - Then $H = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{a} \right) = \frac{1}{a}$.
 - And $K_G = \frac{1}{a^2}$.
 - *Important:* Notice the dimensions. H (and κ_1, κ_2) have dimension [distance] $^{-1}$. K has dimension [distance] $^{-2}$.

Standard tori

Definition (Standard torus in \mathbb{R}^3)

A standard torus in \mathbb{R}^3 is any torus in the family of surfaces of revolution obtained by revolving the profile curves

$$\gamma(u) = \left(a + b \cos \frac{u}{b}, 0, b \sin \frac{u}{b} \right), \quad a \geq b, \quad u \in [0, 2\pi),$$

about the z -axis (the vertical axis).

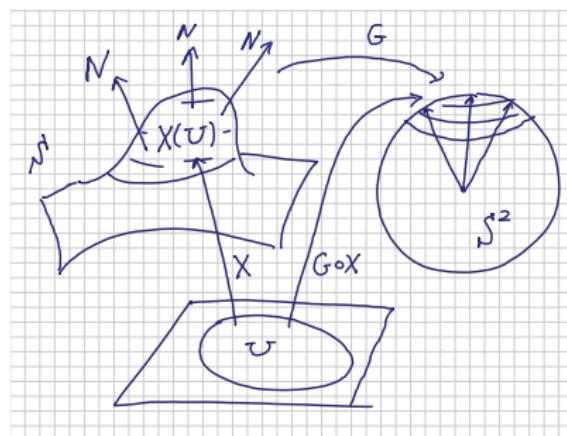
Exercise: For a standard torus \mathcal{T} :

- Find $\kappa_1, \kappa_2, H, K_G$.
- Compute the *Willmore energy* $W(a/b) = \int_{\mathcal{T}} H^2 dA$.
- The Willmore energy of a standard torus is $W(z)$ is a function of the single variable $z = a/b$. Find z such that $W(z)$ is a minimum. Standard tori with a/b given by this value are called Willmore tori.
- For more information, google “Willmore conjecture”.

Lecture 15: Principal curvatures

Surface area and Gauss curvature

- Gauss map: $S : S \rightarrow \mathbb{S}^2 : p \mapsto \mathbf{N}_p$.
- Disk: $U = \{u^2 + v^2 \leq \delta^2\} \subset \mathbb{R}^2$.
- Image of disk: $R = X(U) \subset S$.
- Area of R :
$$A(R) = \int_U \|X_u \times X_v\| dudv$$
, where
 $\{X_u, X_v\}$ is a basis for $T_p S$.
- $G \circ X : U \rightarrow \mathbb{S}^2$.
- $(G \circ X)(u, v) = \mathbf{N}_p$.
- Area of $G(R)$ is
$$\int_U \|(G \circ X)_u \times (G \circ X)_v\| dudv$$
.



Compare areas

- Compare $A(R)$ and $A(G(R))$.

$$\frac{A_{G \circ X}(G(R))}{A_X(R)} = \frac{\int_U \| (G \circ X)_u \times (G \circ X)_v \| \, dudv}{\int_U \| X_u \times X_v \| \, dudv}$$

- To begin, recall (Ch 7)

$$W(X_u)(u_0, v_0) = - \frac{d}{du} \Big|_{u=u_0} G(X(u, v_0)) = -\mathbf{N}_u(u_0, v_0)$$

$$W(X_v)(u_0, v_0) = - \frac{d}{dv} \Big|_{v=v_0} G(X(u_0, v)) = -\mathbf{N}_v(u_0, v_0)$$

$$\implies \mathbf{N}_u \times \mathbf{N}_v = W(X_u) \times W(X_v) = (aX_u + cX_v) \times (bX_u + dX_v)$$

using $\mathcal{W} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$ in $\{X_u, X_v\}$ basis. Then

$$(G \circ X)_u \times (G \circ X)_v = (ad - bc)X_u \times X_v = (\det \mathcal{W})X_u \times X_v = K_G X_u \times X_v.$$

Compare areas...continued

- Then

$$\begin{aligned}\frac{A_{G \circ X}(G(R))}{A_X(R)} &= \frac{\int_U \| (G \circ X)_u \times (G \circ X)_v \| \, dudv}{\int_U \| X_u \times X_v \| \, dudv} \\ &= \frac{\int_U |K_G| \| X_u \times X_v \| \, dudv}{\int_U \| X_u \times X_v \| \, dudv} \\ &= \frac{\int_U |K_G| \, dA_X}{\int_U \, dA_X}.\end{aligned}$$

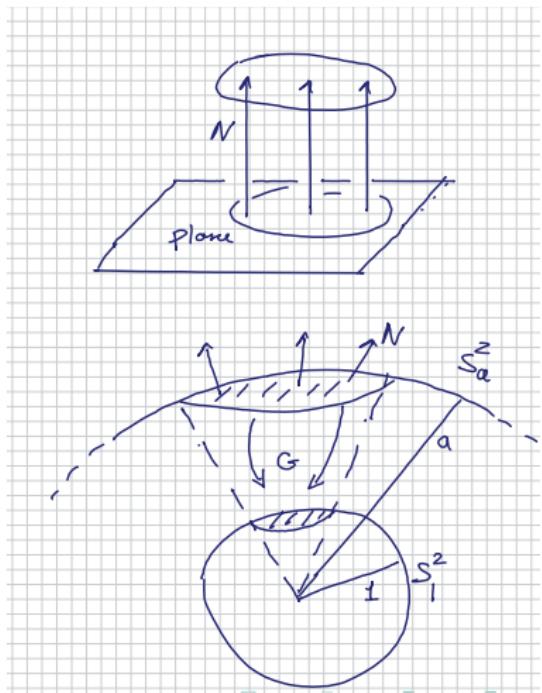
- Take radius δ of disk U to be arbitrarily small. Then $K_G \rightarrow K_G(u_0, v_0) = K_0 = \text{const}$ and so

$$\frac{A_{G \circ X}(G(R))}{A_X(R)} = \frac{\int_U |K_G| \, dA_X}{\int_U \, dA_X} \rightarrow |K_0|.$$

Simple Gauss curvature calculations

- Plane: Normals are parallel in \mathbb{R}^3 so $K_G = 0$.
- Sphere \mathbb{S}_a^2 of radius $a > 0$. Then $\mathbf{N} = \mathbf{G} = \frac{\mathbf{r}}{\|\mathbf{r}\|} = \frac{\mathbf{r}}{a}$. Then $G(\mathbb{S}_a^2) = \mathbb{S}_1^2$, so

$$\frac{A(G(\mathbb{S}_a^2))}{A(\mathbb{S}_a^2)} = \frac{A(\mathbb{S}_1^2)}{A(\mathbb{S}_a^2)} = \frac{4\pi}{4\pi a^2} = \frac{1}{a^2}$$
$$\implies |K_G| = 1/a^2.$$



Umbilics

Theorem

If every point of surface S is an umbilic, then S is an open subset of a plane or a sphere.

Proof:

- Umbilics are points p with $\kappa_1 = \kappa_2 =: \kappa$. Then $W(\mathbf{t}) = \kappa \mathbf{t}$ for every $\mathbf{t} \in T_p$.
- At an umbilic then $W(X_u) = \kappa X_u$, $W(X_v) = \kappa X_v$.
- But $W(X_u) = -\frac{d}{du} \Big|_{u=u_0} G(X(u, v_0)) = -\mathbf{N}_u$. Likewise, $W(X_v) = -\mathbf{N}_v$.
- Conclude that $\kappa X_u = -\mathbf{N}_u$, $\kappa X_v = -\mathbf{N}_v$ at umbilic.
- If every point of S is umbilic, these equations hold everywhere. Hence we can differentiate them.
- Then $(\kappa X_u)_v = -\mathbf{N}_{uv}$ and $(\kappa X_v)_u = -\mathbf{N}_{vu}$.
- These equations have same right-hand side, so the left-hand sides equal. Expanding and simplifying, then

$$\kappa_v X_u = \kappa_u X_v$$

Proof continued

- Since $\{X_u, X_v\}$ is a linearly independent set, $\kappa_v X_u = \kappa_u X_v$ can hold only if $\kappa_u = 0 = \kappa_v$ everywhere.
- Thus κ is constant.
- Say $\kappa = 0$.
 - We had $\kappa X_u = -\mathbf{N}_u$, $\kappa X_v = -\mathbf{N}_v$, so $\mathbf{N}_u = 0 = \mathbf{N}_v$.
 - Then \mathbf{N} is constant, and S must be (an open subset of) a plane.
- Say κ is a nonzero constant.
 - We still have $\kappa X_u = -\mathbf{N}_u$ and $\kappa X_v = -\mathbf{N}_v$.
 - Then $\kappa X = -\mathbf{N} + \mathbf{a}$, for a constant vector \mathbf{a} .
 - Then $-\frac{1}{\kappa}\mathbf{N} = X - \frac{1}{\kappa}\mathbf{a}$. Because $\|\mathbf{N}\| = 1$ then

$$\frac{1}{\kappa^2} = \left\| X - \frac{1}{\kappa}\mathbf{a} \right\|^2.$$

- This says that $\frac{1}{\kappa^2} = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$, where $\frac{\mathbf{a}}{\kappa} = (x_0, y_0, z_0)$. It's the equation of a sphere.

The 2FF of a graph

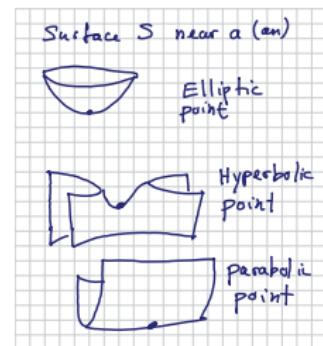
- $z = f(x, y)$ defines a graphical surface $S \subset \mathbb{R}^3$.
- Parametrize: $x = u, y = v, z = f(u, v)$.
- One patch covers a graph: $X : U \rightarrow \mathbb{R}^3 : (u, v) \mapsto (u, v, f(u, v))$.
- Basis vectors for $T_p S$: $X_u = (1, 0, f_u), X_v = (0, 1, f_v)$.
- 1FF: $\mathcal{F}_I = \begin{bmatrix} \|X_u\|^2 & X_u \cdot X_v \\ X_u \cdot X_v & \|X_v\|^2 \end{bmatrix} = \begin{bmatrix} 1 + f_u^2 & f_u f_v \\ f_u f_v & 1 + f_v^2 \end{bmatrix}$.
- $X_u \times X_v = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 1 & 0 & f_u \\ 0 & 1 & f_v \end{vmatrix} = (-f_u, -f_v, 1)$.
- $\mathbf{N} = \frac{X_u \times X_v}{\|X_u \times X_v\|} = \frac{(-f_u, -f_v, 1)}{\sqrt{1 + f_u^2 + f_v^2}}$.

The 2FF of a graph continued

- $X_{uu} = (0, 0, f_{uu}), X_{uv} = X_{vu} = (0, 0, f_{uv}), X_{vv} = (0, 0, f_{vv}).$
- From last slide: $\mathbf{N} = \frac{(-f_u, -f_v, 1)}{\sqrt{1+f_u^2+f_v^2}} = \frac{(-f_u, -f_v, 1)}{\sqrt{1+|\nabla f|^2}}.$
- 2FF: $\mathcal{F}_{II} = \begin{bmatrix} \mathbf{N} \cdot X_{uu} & \mathbf{N} \cdot X_{uv} \\ \mathbf{N} \cdot X_{vu} & \mathbf{N} \cdot X_{vv} \end{bmatrix} = \frac{1}{\sqrt{1+|\nabla f|^2}} \begin{bmatrix} f_{uu} & f_{uv} \\ f_{vu} & f_{vv} \end{bmatrix}.$
- Special case of $z = f(x, y) = au^2 + bv^2$:
 - $\mathcal{F}_{II} = \frac{2}{\sqrt{1+4a^2u^2+4b^2v^2}} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}.$
 - At a critical point $\nabla f = (2au, 2bv) = (0, 0)$ then $\mathcal{F}_{II} = 2 \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and $\mathcal{F}_I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, so $\mathcal{W} = \mathcal{F}_I^{-1} \mathcal{F}_{II} = 2 \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ at the critical point $(0, 0)$ of $f(x, y) = au^2 + bv^2$.
 - So $z = f(u, v) = \frac{1}{2}(\hat{\kappa}_1 u^2 + \hat{\kappa}_2 v^2)$, for $\hat{\kappa}_1, \hat{\kappa}_2$ the principal curvatures at $(0, 0)$, and $H(0, 0) = a + b = \hat{\kappa}_1 + \hat{\kappa}_2$ and $K_G(0, 0) = 4ab = 4\hat{\kappa}_1\hat{\kappa}_2$.

$$z = f(u, v) = \frac{1}{2} (\hat{\kappa}_1 u^2 + \hat{\kappa}_2 v^2)$$

- ➊ *Elliptic point:* $K_G > 0$, and either κ_1, κ_2 both positive, or both negative. S resembles elliptic parabola.
- ➋ *Hyperbolic point:* $K_G < 0$, and κ_1, κ_2 have opposite signs. S resembles hyperboloid.
- ➌ *Parabolic point:* $K_G = 0$ but only one of κ_1, κ_2 is zero. S resembles parabolic cylinder.
- ➍ *Planar point:* $K_G = 0$, $\kappa_1 = \kappa_2 = 0$. S doesn't necessarily resemble a plane (see text p 194).



Compact $K_G \leq 0$ surfaces do not embed in \mathbb{R}^3

The following *obstruction* prevents flat tori and compact hyperbolic surfaces from globally isometrically embedding in \mathbb{R}^3 .

Theorem

If $S \in \mathbb{R}^3$ is a compact surface it has a point where $K_G > 0$.

Proof:

- Define $F : \mathbb{R}^3 \rightarrow \mathbb{R} : \mathbf{v} \mapsto F(\mathbf{v}) = \|\mathbf{v}\|^2$.
- Let $S = \text{compact surface}$, $O = \text{origin of } \mathbb{R}^3$.
- Let $f(P) = F(\vec{OP})$ for \vec{OP} the vector from O to $P \in S$.
- Maximum principle: Every continuous function with compact domain has a maximum.
- Then f has a maximum. Call the maximum a^2 , where P is the furthest point on S from O and $a = \|\vec{OP}\|$

Proof continued

- Let γ be a unit speed curve on S passing through P , with $\gamma(0) = P$.
- Then $f(\gamma(t))$ has a maximum $f(\gamma(0)) = f(P) = a^2$ at $t = 0$.
- Therefore $\frac{d}{dt} \Big|_{t=0} f(\gamma(t)) = 0$.
- Second derivative test: $\frac{d^2}{dt^2} \Big|_{t=0} f(\gamma(t)) \leq 0$.
- From $\frac{d}{dt} \Big|_{t=0} f(\gamma(t)) = 0$ and $f(\gamma(t)) = \|\gamma(t)\|^2$, we have

$$0 = 2\gamma(0) \cdot \dot{\gamma}(0) \tag{1}$$

(so $\gamma(0) = \vec{OP} \perp T_P S$; therefore $\gamma(0) = \vec{OP} \parallel \mathbf{N}$).

- From $\frac{d^2}{dt^2} \Big|_{t=0} f(\gamma(t)) \leq 0$ and $f(\gamma(t)) = \|\gamma(t)\|^2$, we have

$$0 \geq 2\gamma(0) \cdot \ddot{\gamma}(0) + 2\dot{\gamma}(0) \cdot \dot{\gamma}(0) = 2(\gamma(0) \cdot \ddot{\gamma}(0) + 1). \tag{2}$$

Proof continued

- From (1) on last slide, $\gamma(0) \perp \dot{\gamma}(0)$. Thus $\vec{OP} = \gamma(0) \perp T_P S$, so $\mathbf{N} = \frac{\vec{OP}}{\|\vec{OP}\|} = \frac{1}{a} \vec{OP}$ is normal to S at P .
- Recall: For any unit speed curve in S : $\ddot{\gamma} = \kappa_N \mathbf{N} + \kappa_g \mathbf{N} \times \dot{\gamma}$.
- Then $\kappa_N(0) = \mathbf{N} \cdot \ddot{\gamma}(0) = \frac{1}{a} \vec{OP} \cdot \ddot{\gamma}(0) = \frac{1}{a} \gamma(0) \cdot \ddot{\gamma}(0) \leq -\frac{1}{a}$ by (2) of last slide.
- Then $\kappa_N(0) \leq -1/a$.
- This must hold for all unit speed curves in S through P , so the maximum of κ_N over all such curves at P is $\leq -1/a$.
- Since the maximum and minimum of κ_N through a fixed point are principal curvatures, we have $\kappa_1 \leq -1/a$ and $\kappa_2 \leq -1/a$.
- Therefore $K_G = \kappa_1 \kappa_2 \geq 1/a^2 > 0$ at $P \in S$. QED.

Lecture 16: Geodesics on surfaces

Geodesics and minimal curves

Definition

A *geodesic* in S is a curve γ such that $\ddot{\gamma}$ is perpendicular to the tangent plane $T_{\gamma(t)}S$ (including possibly $\ddot{\gamma} = \mathbf{0}$) for each t .

If γ is a geodesic in S and \mathbf{N} is normal to S , then $\ddot{\gamma} \parallel \mathbf{N}$ (including possibly $\ddot{\gamma} = \mathbf{0}$).

Properties:

- Geodesics have constant speed.

Proof: $\frac{d}{dt}(\dot{\gamma} \cdot \dot{\gamma}) = 2\dot{\gamma} \cdot \ddot{\gamma} = 0$ since $\ddot{\gamma} \perp T_{\gamma(t)}S$, so $\dot{\gamma} \cdot \dot{\gamma} = \text{const.}$

- A unit speed curve γ is geodesic if and only if it has zero geodesic curvature $\kappa_g = 0$.

Proof: Recall $\kappa_g := \ddot{\gamma} \cdot (\mathbf{N} \times \dot{\gamma})$. First, if γ is geodesic then either $\ddot{\gamma} = \mathbf{0}$ or $\ddot{\gamma} \parallel \mathbf{N}$; either way we see that $\kappa_g = 0$. Conversely, if $\kappa_g = 0$ then either $\ddot{\gamma} = \mathbf{0}$ or $\ddot{\gamma} \perp \mathbf{N} \times \dot{\gamma}$, and then $\ddot{\gamma} \in \text{Span}\{\mathbf{N}, \dot{\gamma}\}$. Since $\dot{\gamma} \cdot \ddot{\gamma} = 0$, then $\ddot{\gamma} \parallel \mathbf{N}$. But then γ is geodesic.

Properties continued

- Recall a vector \mathbf{v} is *parallel* along γ iff $\dot{\mathbf{v}} \perp T_{\gamma(t)}S$. Letting $\mathbf{v} = \dot{\gamma}$ then:

Geodesics in S parallel-transport their own tangent vectors.

$$\nabla_{\gamma}\dot{\gamma} = \ddot{\gamma} - (\ddot{\gamma} \cdot \mathbf{N}) \mathbf{N} = \mathbf{0}$$

- If a (segment of a) straight line in \mathbb{R}^3 lies on a surface S , it's a geodesic of S .
Proof: Can parametrize line as $\gamma(t) = \mathbf{a}t + \mathbf{b}$ (unit speed: $\|\mathbf{a}\| = 1$). Then $\ddot{\gamma}(t) = \mathbf{0}$.
- Any normal section of S , parametrized by arclength, is a geodesic. (Recall that normal sections are curves of intersection of S with a plane that contains the normal to S . As a special case, great circles are geodesics.)

The geodesic equations: set-up

- Patch $X : U \rightarrow \mathbb{R}^3 : (u, v) \mapsto X(u, v)$.
- Let $(u(t), v(t))$ be a curve in U .
- Then $\gamma(t) = X(u(t), v(t))$ is a curve in S , unit speed (reparametrize if necessary).
- Tangent: $\dot{\gamma}(t) = \frac{\partial X}{\partial u} \frac{du}{dt} + \frac{\partial X}{\partial v} \frac{dv}{dt} = X_u \dot{u}(t) + X_v \dot{v}(t)$.
- γ is geodesic, so $\ddot{\gamma} \parallel \mathbf{N}$ for \mathbf{N} normal to S .
- Then $\ddot{\gamma} \cdot X_u = 0$, $\ddot{\gamma} \cdot X_v = 0$.
- Equivalently, $\ddot{\gamma} - (\ddot{\gamma} \cdot \mathbf{N})\mathbf{N} = \mathbf{0}$.
- In other words, $\nabla_{\gamma} \dot{\gamma} = \mathbf{0}$.

If $\ddot{\gamma} \parallel \mathbf{N}$ then $\ddot{\gamma} \cdot X_u = 0, \ddot{\gamma} \cdot X_v = 0$.

- Consider the equation $\ddot{\gamma} \cdot X_u = 0$:

$$\begin{aligned} 0 &= \ddot{\gamma} \cdot X_u = \frac{d}{dt} (\dot{\gamma} \cdot X_u) - \dot{\gamma} \cdot \dot{X}_u \text{ where } \dot{\gamma}(t) = X_u \dot{u}(t) + X_v \dot{v}(t) \\ &= \frac{d}{dt} (E \dot{u} + F \dot{v}) - (X_u \dot{u} + X_v \dot{v}) \cdot (X_{uu} \dot{u} + X_{uv} \dot{v}) \\ &= \frac{d}{dt} (E \dot{u} + F \dot{v}) - (X_u \cdot X_{uu}) \dot{u}^2 - (X_u \cdot X_{uv} + X_v \cdot X_{uu}) \dot{u} \dot{v} - X_v \cdot X_{uv} \dot{v}^2, \end{aligned}$$

where we used that $\dot{\gamma} \cdot X_u = \|X_u\|^2 \dot{u} + X_u \cdot X_v \dot{v} = E \dot{u} + F \dot{v}$.

- Now $X_u \cdot X_{uu} = \frac{1}{2} \frac{\partial}{\partial u} (X_u \cdot X_u) = \frac{1}{2} E_u$. Similarly, $X_u \cdot X_{uv} + X_v \cdot X_{uu} = \frac{\partial}{\partial u} (X_u \cdot X_v) = F_u$, and $X_v \cdot X_{uv} = \frac{1}{2} \frac{\partial}{\partial u} (X_v \cdot X_v) = \frac{1}{2} G_u$. Use these to simplify the above equation.
- Get $0 = \frac{d}{dt} (E \dot{u} + F \dot{v}) - \frac{1}{2} [E_u \dot{u}^2 + 2F_u \dot{u} \dot{v} + G_u \dot{v}^2]$.
- Likewise, our other equation, $\ddot{\gamma} \cdot X_v = 0$, yields $0 = \frac{d}{dt} (F \dot{u} + G \dot{v}) - \frac{1}{2} [E_v \dot{u}^2 + 2F_v \dot{u} \dot{v} + G_v \dot{v}^2]$.

The geodesic equations

The *geodesic equations* are any of the following three equivalent sets of equations along a curve $\gamma(t)$ on S :

- Vector form: $\nabla_{\gamma}\dot{\gamma} = \mathbf{0}$.
- Component form:

$$0 = \frac{d}{dt} (E\dot{u} + F\dot{v}) - \frac{1}{2} [E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2]$$
$$0 = \frac{d}{dt} (F\dot{u} + G\dot{v}) - \frac{1}{2} [E_v\dot{u}^2 + 2F_v\dot{u}\dot{v} + G_v\dot{v}^2]$$

- Component form written using Christoffel symbols:

$$0 = \ddot{u} + \Gamma_{11}^1 \dot{u}^2 + 2\Gamma_{12}^1 \dot{u}\dot{v} + \Gamma_{22}^1 \dot{v}^2$$

$$0 = \ddot{v} + \Gamma_{11}^2 \dot{u}^2 + 2\Gamma_{12}^2 \dot{u}\dot{v} + \Gamma_{22}^2 \dot{v}^2$$

- We've proved equivalence of the first two forms above. Equivalence of these with the third form is Proposition 7.4.5 of the text.

Existence and uniqueness of geodesics

Theorem

For each $p \in S$ and each $\mathbf{v} \in T_p S$ there is a unique maximal geodesic γ defined on an open interval $I \ni t_0$ such that $\gamma(t_0) = p$, $\dot{\gamma}(t_0) = \mathbf{v}$.

Proof:

- The equations

$$\begin{aligned}0 &= \ddot{u} + \Gamma_{11}^1 \dot{u}^2 + 2\Gamma_{12}^1 \dot{u}\dot{v} + \Gamma_{22}^1 \dot{v}^2 \\0 &= \ddot{v} + \Gamma_{11}^2 \dot{u}^2 + 2\Gamma_{12}^2 \dot{u}\dot{v} + \Gamma_{22}^2 \dot{v}^2\end{aligned}$$

have the form

$$\begin{aligned}\ddot{u} &= f(u, v, \dot{u}, \dot{v}), \\ \ddot{v} &= g(u, v, \dot{u}, \dot{v}),\end{aligned}$$

for smooth functions $f, g : \Omega \rightarrow \mathbb{R}$, $\Omega \subset \mathbb{R}^4$.

- ODE theory: There is a unique solution of this system on an open interval I containing t_0 , obeying initial conditions $u(t_0) = a$, $v(t_0) = b$, $\dot{u}(t_0) = c$, $\dot{v}(t_0) = d$.

Proof continued

- Write $\gamma(t) = X(u(t), v(t))$.
- Then $\dot{\gamma}(t) = X_u \dot{u} + X_v \dot{v}$.
- Initial data $\gamma(t_0) = p = X(u(t_0), v(t_0)) = X(a, b)$ give $u(t_0) = a, v(t_0) = b$.
- Initial data $\dot{\gamma}(t_0) = \mathbf{v} = cX_u + dX_v$ give $\dot{u}(t_0) = c, \dot{v}(t_0) = d$.
- Now all the conditions of the ODE existence and uniqueness theorem are satisfied. QED.

Example: Unit cylinder

- Patch $X(u, v) = (\cos u, \sin u, v)$.
- $X_u = (-\sin u, \cos u, 0)$, $X_v = (0, 0, 1)$.
- Then $E = \|X_u\|^2 = 1$, $F = X_u \cdot X_v = 0$, $G = \|X_v\|^2 = 1$
- Geodesic equations:

$$\frac{d}{dt} (E\dot{u} + F\dot{v}) - \frac{1}{2} [E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2] = \ddot{u} = 0,$$
$$\frac{d}{dt} (F\dot{u} + G\dot{v}) - \frac{1}{2} [E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2] = \ddot{v} = 0.$$

- Solutions: $u(t) = At + B$, $v(t) = Ct + D$, for $A, B, C, D \in \mathbb{R}$.
- $\gamma(t) = X(u(t), v(t)) = (\cos(At + B), \sin(At + B), Ct + D)$.

$$\gamma(t) = (\cos(At + B), \sin(At + B), Ct + D)$$

- For $A = 0$, get

$$\gamma(t) = (\cos B, \sin B, Ct + D).$$

These are vertical lines.

- For $A \neq 0$ and $C \neq 0$, get

$$\gamma(t) = (\cos \tau, \sin \tau, k\tau + D') \text{ where } \tau := At + B, k = \frac{C}{A}, D' = D - \frac{BC}{A}.$$

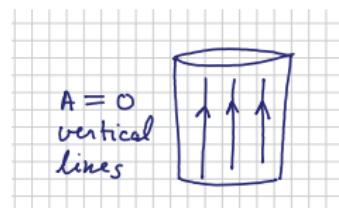
This is a circular helix.

- $A \neq 0$ but $C = 0$, get

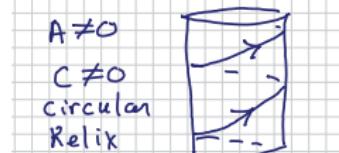
$$\gamma(t) = (\cos \tau, \sin \tau, D), \text{ where}$$

$$\tau = At + B$$

These are circles.



$A = 0$
vertical
lines



$A \neq 0$
 $C \neq 0$
circular
helix

$A \neq 0$
 $C = 0$
circles

Lecture 17: Minimizing the arclength

The geodesic equations: from last lecture

The *geodesic equations* are any of the following three equivalent sets of equations along a curve $\gamma(t)$ on S :

- Vector form: $\nabla_{\gamma} \dot{\gamma} = \mathbf{0}$.
- Component form:

$$0 = \frac{d}{dt} (E\dot{u} + F\dot{v}) - \frac{1}{2} [E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2]$$

$$0 = \frac{d}{dt} (F\dot{u} + G\dot{v}) - \frac{1}{2} [E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2]$$

- Component form written using Christoffel symbols:

$$0 = \ddot{u} + \Gamma_{11}^1 \dot{u}^2 + 2\Gamma_{12}^1 \dot{u}\dot{v} + \Gamma_{22}^1 \dot{v}^2$$

$$0 = \ddot{v} + \Gamma_{11}^2 \dot{u}^2 + 2\Gamma_{12}^2 \dot{u}\dot{v} + \Gamma_{22}^2 \dot{v}^2$$

First integral

- Define $g := E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2$.
- Differentiate and use geodesic equations. Get $\dot{g} = 0$.
- Then $g = \text{const}$ along any geodesic.
- Therefore $\|\dot{\gamma}(t)\|$ is constant along any geodesic γ .
- For later convenience, multiply geodesic equations by $1/\sqrt{g}$, which can now be moved inside the t -derivative.

$$0 = \frac{d}{dt} \left(\frac{E\dot{u} + F\dot{v}}{\sqrt{g}} \right) - \frac{1}{2\sqrt{g}} [E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2]$$

$$0 = \frac{d}{dt} \left(\frac{F\dot{u} + G\dot{v}}{\sqrt{g}} \right) - \frac{1}{2\sqrt{g}} [E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2]$$

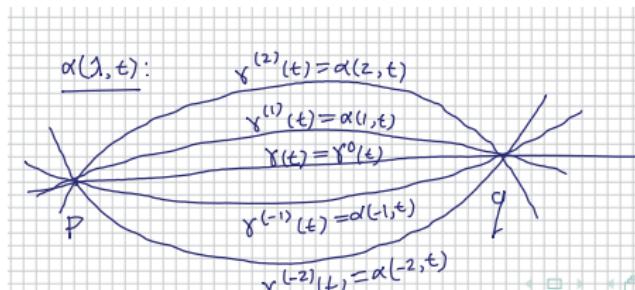
Minimizing curves

Definition

Say $\delta > 0$, $\epsilon > 0$. Consider a function $\alpha : (-\delta, \delta) \times (-\epsilon, \epsilon) \rightarrow \mathbb{R}^3$ with image contained in a single patch $X : U \rightarrow \mathbb{R}^3$ of surface S .

- For each $\lambda \in (-\delta, \delta)$ then $\gamma^\lambda(t) = \alpha(\lambda, t)$ is a curve.
- Say there is an a and a b with $-\epsilon < a < b < \epsilon$ and points $p, q \in S$ such that $\alpha(\lambda, a) = p$, $\alpha(\lambda, b) = q$ for all $\lambda \in (-\delta, \delta)$.
- Say that $\gamma^0(t) =: \gamma(t)$ is a geodesic from $p = \gamma(a)$ to $q = \gamma(b)$.

Then α is a *one parameter variation* of the geodesic $\gamma(t)$.



Arclength

- The arclength of the curve $\gamma^\lambda(t) = \alpha(\lambda, t)$, $t \in [a, b]$, is

$$L(\lambda) = \int_a^b \|\dot{\gamma}^\lambda(t)\| dt = \int_a^b \left\| \frac{\partial \alpha}{\partial t}(\lambda, t) \right\| dt.$$

- Minimize this function. The condition for the curve $\gamma(t) = \gamma^0(t)$ to be a critical point of L is

$$\begin{aligned} 0 &= \frac{dL}{d\lambda} \Big|_{\lambda=0} = \int_a^b \frac{\partial}{\partial \lambda} \Big|_{\lambda=0} \left(\left\| \frac{\partial \alpha}{\partial t}(\lambda, t) \right\| \right) dt \\ &= \int_a^b \frac{1}{2\sqrt{g}} \frac{\partial g}{\partial \lambda} \Big|_{\lambda=0} dt \end{aligned} \tag{1}$$

where

$$g(\lambda, t) := \left\| \frac{\partial \alpha}{\partial t}(\lambda, t) \right\|^2 = \|\dot{\gamma}^\lambda(t)\|^2 = E(\dot{u}^\lambda)^2 + 2F(\dot{u}^\lambda)(\dot{v}^\lambda) + G(\dot{v}^\lambda)^2.$$

Differentiating g

- Last slide: We used the coordinate patch $X : U \mathbb{R}^3$ to describe the curve γ^λ using the curve $(u^\lambda(t), v^\lambda(t))$ in U , where $X(u^\lambda(t), v^\lambda(t)) = \gamma^\lambda(t)$.
- We wrote $g(\lambda, t) = \|\dot{\gamma}^\lambda(t)\|^2 = E(\dot{u}^\lambda)^2 + 2F(\dot{u}^\lambda)(\dot{v}^\lambda) + G(\dot{v}^\lambda)^2$.
- Now differentiate g (for simplicity, write $u = u^\lambda$, $v = v^\lambda$):

$$\begin{aligned}\frac{\partial g}{\partial \lambda} &= \frac{\partial}{\partial \lambda} \left[E(\dot{u})^2 + 2F(\dot{u})(\dot{v}) + G(\dot{v})^2 \right] \\ &= \left(E_u \frac{\partial u}{\partial \lambda} + E_v \frac{\partial v}{\partial \lambda} \right) (\dot{u})^2 + 2E\dot{u} \frac{\partial^2 u}{\partial \lambda \partial t} + \dots \\ &= (E_u \dot{u}^2 + 2F_u \dot{u} \dot{v} + G_u \dot{v}^2) \frac{\partial u}{\partial \lambda} + (E_v \dot{u}^2 + 2F_v \dot{u} \dot{v} + G_v \dot{v}^2) \frac{\partial v}{\partial \lambda} \\ &\quad + 2(E\dot{u} + F\dot{v}) \frac{\partial^2 u}{\partial \lambda \partial t} + 2(F\dot{u} + G\dot{v}) \frac{\partial^2 v}{\partial \lambda \partial t}.\end{aligned}\tag{2}$$

- Plug this into equation (1) of previous slide.

...continued

- Plugging equation (2) into equation (1) produces

$$\begin{aligned} 0 = \frac{dL}{d\lambda} \Big|_{\lambda=0} &= \int_a^b \frac{1}{2\sqrt{g}} \left[(E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2) \frac{\partial u}{\partial \lambda} \right. \\ &\quad \left. + (E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2) \frac{\partial v}{\partial \lambda} \right] dt \\ &\quad + \int_a^b \frac{1}{\sqrt{g}} \left[(E \dot{u} + F \dot{v}) \frac{\partial^2 u}{\partial \lambda \partial t} + (F \dot{u} + G \dot{v}) \frac{\partial^2 v}{\partial \lambda \partial t} \right] dt \end{aligned}$$

- The integral in the final line can be integrated by parts. It becomes

$$\begin{aligned} &- \int_a^b \left[\frac{\partial}{\partial t} \left(\frac{E \dot{u} + F \dot{v}}{\sqrt{g}} \right) \frac{\partial u}{\partial \lambda} + \frac{\partial}{\partial t} \left(\frac{F \dot{u} + G \dot{v}}{\sqrt{g}} \right) \frac{\partial v}{\partial \lambda} \right] dt \\ &\quad + \frac{1}{\sqrt{g}} \left[(E \dot{u} + F \dot{v}) \frac{\partial u}{\partial \lambda} + (F \dot{u} + G \dot{v}) \frac{\partial v}{\partial \lambda} \right]_a^b \end{aligned}$$

...continued

- We have $\frac{1}{\sqrt{g}} \left[(E\dot{u} + F\dot{v}) \frac{\partial u}{\partial \lambda} + (F\dot{u} + G\dot{v}) \frac{\partial v}{\partial \lambda} \right]_a^b = 0$ because $\frac{\partial u}{\partial \lambda}(a) = \frac{\partial v}{\partial \lambda}(a) = \frac{\partial u}{\partial \lambda}(b) = \frac{\partial v}{\partial \lambda}(b) = 0$.
- Putting everything else together, we can write

$$0 = L'(0) = \left. \frac{dL}{d\lambda} \right|_{\lambda=0} = \int_a^b \left[U \frac{\partial u}{\partial \lambda} + V \frac{\partial v}{\partial \lambda} \right] dt \text{ where}$$

$$\begin{aligned} U &= \frac{1}{2\sqrt{g}} (E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2) - \frac{\partial}{\partial t} \left(\frac{E\dot{u} + F\dot{v}}{\sqrt{g}} \right) \\ V &= \frac{1}{2\sqrt{g}} (E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2) - \frac{\partial}{\partial t} \left(\frac{F\dot{u} + G\dot{v}}{\sqrt{g}} \right). \end{aligned} \tag{3}$$

- Key point: We require $0 = L'(0) = \int_a^b \left[U \frac{\partial u}{\partial \lambda} + V \frac{\partial v}{\partial \lambda} \right] dt$ for all $\frac{\partial u}{\partial \lambda}$ and $\frac{\partial v}{\partial \lambda}$. This can only happen if $U = 0$ and $V = 0$ (for a proof, see text).

The equations $U = 0, V = 0$

- From equations (3), the equations $U = 0$ and $V = 0$ are

$$\begin{aligned} 0 &= \frac{1}{2\sqrt{g}} (E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2) - \frac{\partial}{\partial t} \left(\frac{E\dot{u} + F\dot{v}}{\sqrt{g}} \right) \\ 0 &= \frac{1}{2\sqrt{g}} (E_v \dot{u}^2 + 2F_v \dot{u}\dot{v} + G_v \dot{v}^2) - \frac{\partial}{\partial t} \left(\frac{F\dot{u} + G\dot{v}}{\sqrt{g}} \right). \end{aligned} \tag{4}$$

- But these are the *geodesic equations!*

Theorem

For all smooth curves γ from p to q in S , the arclength function $L[\gamma]$ is a stationary point with respect to any one-parameter family of variations of γ on S if and only if γ is a geodesic of S .

Final remarks

- We worked on one patch $X : U \rightarrow \mathbb{R}^3$ with smooth curves. Simple to generalize to finitely many patches and to variations that can include piecewise smooth curves. The critical points are still (smooth) geodesics.
- Geodesics are critical points of arclength but not all geodesics are absolute or even local minima. Example:
 - Segments of great circles on spheres (intersections of the sphere with any plane through the origin) are geodesics.
 - No segment of a great circle that begins at the north pole and extends past the south pole can be a minimum, nor even a local minimum, of arclength.
- A geodesic is a *minimizing curve* or *minimizing geodesic* if it is a local minimum. Minimizing geodesics don't always exist in general, but will always exist if the surface is Cauchy complete.
- The idea of a geodesic can be extended beyond surfaces to Riemannian manifolds and to metric spaces.

Lecture 18: Gauss-Codazzi-Mainardi equations, Theorema Egregium

Gauss-Codazzi-Mainardi equations

Reminder:

- Surface S with surface patch $X : U \rightarrow \mathbb{R}^3$. $(u, v) \in U$.
- 1FF of patch is $E(u, v)du^2 + 2F(u, v)dudv + G(u, v)dv^2$.
- 2FF of patch is $L(u, v)du^2 + 2M(u, v)dudv + N(u, v)dv^2$.
- Let \mathbf{N} be the unit normal to the surface S .
- Gauss equations:

$$X_{uu} = \Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v + L\mathbf{N}$$

$$X_{uv} = \Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v + M\mathbf{N}$$

$$X_{vv} = \Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v + N\mathbf{N}$$

- The Christoffel symbols depend only on the 1FF; e.g., $\Gamma_{11}^1 = \frac{GE_u - 2FF_u + FE_v}{2(EG - F^2)}$, etc.

A tedious calculation

- Differentiating the Gauss equations, compute $(X_{uu})_v$ and $(X_{uv})_u$.
- But partial derivatives commute, so $(X_{uu})_v = (X_{uv})_u$.
- In resulting equation, replace X_{uu} , X_{uv} , X_{vv} using Gauss equations again. Simplify. Get:

$$\begin{aligned} 0 = & \left(\frac{\partial \Gamma_{11}^1}{\partial v} - \frac{\partial \Gamma_{12}^1}{\partial u} + \Gamma_{22}^1 \Gamma_{11}^2 - \Gamma_{12}^1 \Gamma_{12}^2 \right) X_u \\ & + \left(\frac{\partial \Gamma_{11}^2}{\partial v} - \frac{\partial \Gamma_{12}^2}{\partial u} + \Gamma_{11}^1 \Gamma_{12}^2 - \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{12}^2 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 \right) X_v \quad (1) \\ & + (L_v - M_u - \Gamma_{12}^1 L + \Gamma_{11}^1 M - \Gamma_{12}^2 M + \Gamma_{11}^2 N) \mathbf{N} \\ & + L \mathbf{N}_v - M \mathbf{N}_u \end{aligned}$$

- Use $\mathbf{N} \cdot X_u = \mathbf{N} \cdot X_v = 0$, $\mathbf{N} \cdot \mathbf{N}_u = \frac{1}{2}(\mathbf{N} \cdot \mathbf{N})_u = 0$, $\mathbf{N} \cdot \mathbf{N}_v = \frac{1}{2}(\mathbf{N} \cdot \mathbf{N})_v = 0$. Then

$$L_v - M_u - \Gamma_{12}^1 L + \Gamma_{11}^1 M - \Gamma_{12}^2 M + \Gamma_{11}^2 N = 0. \quad (2)$$

Codazzi-Mainardi equations

- Last slide:

$$L_v - M_u - \Gamma_{12}^1 L + \Gamma_{11}^1 M - \Gamma_{12}^2 M + \Gamma_{11}^2 N = 0.$$

- Can repeat the procedure, starting instead by computing $(X_{vu})_v$ and $(X_{vv})_u$ and subtracting them to get zero. Get

$$M_v - N_u - \Gamma_{22}^1 L + \Gamma_{12}^1 M - \Gamma_{22}^2 M + \Gamma_{12}^2 N = 0.$$

- The two equations above are named for Codazzi and Mainardi.
- But can also subtract the equation at the top (equation (2) from last slide) from equation (1) of the last slide. Get (1) with its third line removed:

$$\begin{aligned} 0 = & \left(\frac{\partial \Gamma_{11}^1}{\partial v} - \frac{\partial \Gamma_{12}^1}{\partial u} + \Gamma_{22}^1 \Gamma_{11}^2 - \Gamma_{12}^1 \Gamma_{12}^2 \right) X_u \\ & + \left(\frac{\partial \Gamma_{11}^2}{\partial v} - \frac{\partial \Gamma_{12}^2}{\partial u} + \Gamma_{11}^1 \Gamma_{12}^2 - \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{12}^2 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 \right) X_v \quad (3) \\ & + L \mathbf{N}_v - M \mathbf{N}_u. \end{aligned}$$

Simplify $L\mathbf{N}_v - M\mathbf{N}_u$

- When we introduced Weingarten map (Lecture 11), we had $W(X_u) = -DG(X_u) = -\mathbf{N}_u$ where $G = \mathbf{N}$ = Gauss map.
- Similarly, $W(X_v) = -DG(X_v) = -\mathbf{N}_v$.
- Can express this using E, \dots, N since in matrix notation $\mathcal{W} = \mathcal{F}_I^{-1} \mathcal{F}_{II}$.
- After some calculation, get $L\mathbf{N}_v - M\mathbf{N}_u = \frac{(NL - M^2)}{(EG - F^2)} [FX_u - EX_v] = K_G [FX_u - EX_v]$.
- Use this to substitute for $L\mathbf{N}_v - M\mathbf{N}_u$ in (3) (last slide).
- Resulting equation has X_u -component:

$$\frac{\partial \Gamma_{11}^1}{\partial v} - \frac{\partial \Gamma_{12}^1}{\partial u} + \Gamma_{22}^1 \Gamma_{11}^2 - \Gamma_{12}^1 \Gamma_{12}^2 + FK_G = 0.$$

- The X_v -component is

$$\frac{\partial \Gamma_{11}^2}{\partial v} - \frac{\partial \Gamma_{12}^2}{\partial u} + \Gamma_{11}^1 \Gamma_{12}^2 - \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{12}^2 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 - EK_G = 0.$$

Gauss curvature equations

- Last two equations were derived from $(X_{uu})_v - (X_{uv})_u = 0$. Get two more equations from $(X_{vu})_v - (X_{vv})_u = 0$.
- All four such equations are called the *Gauss equations* (we derived them by starting from another set of equations called Gauss equations).
- We can write the Gauss equations by isolating K_G :

$$EK_G = (\Gamma_{11}^2)_v - (\Gamma_{12}^2)_u + \Gamma_{11}^1 \Gamma_{12}^2 + \Gamma_{11}^2 \Gamma_{22}^2 - \Gamma_{12}^1 \Gamma_{11}^2 - \Gamma_{12}^2 \Gamma_{12}^2,$$

$$FK_G = (\Gamma_{12}^1)_u - (\Gamma_{11}^1)_v + \Gamma_{12}^1 \Gamma_{12}^2 - \Gamma_{22}^1 \Gamma_{11}^2,$$

$$FK_G = (\Gamma_{12}^2)_v - (\Gamma_{22}^2)_u + \Gamma_{12}^1 \Gamma_{12}^2 - \Gamma_{22}^1 \Gamma_{11}^2,$$

$$GK_G = (\Gamma_{22}^1)_u - (\Gamma_{12}^1)_v + \Gamma_{11}^1 \Gamma_{22}^1 + \Gamma_{22}^2 \Gamma_{12}^1 - \Gamma_{12}^1 \Gamma_{12}^1 - \Gamma_{12}^2 \Gamma_{22}^1.$$

- And recall Codazzi-Mainardi:

$$L_v - M_u = \Gamma_{12}^1 L - \Gamma_{11}^1 M + \Gamma_{12}^2 M - \Gamma_{11}^2 N,$$

$$M_v - N_u = \Gamma_{22}^1 L - \Gamma_{12}^1 M + \Gamma_{22}^2 M - \Gamma_{12}^2 N.$$

Ugly equations, beautiful results

- Four different equations for K_G . Therefore, there are identities amongst the right-hand sides, showing that they are all equal (these are called *Bianchi identities*).
- Combining the four Gauss equations, we get a determinant formula for K_G :

$$K_G = \frac{\begin{vmatrix} -\frac{1}{2}E_{vv} + F_{uv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_u & F_u - \frac{1}{2}E_v \\ F_v - \frac{1}{2}G_u & E & F \\ \frac{1}{2}G_v & F & G \end{vmatrix} - \begin{vmatrix} 0 & \frac{1}{2}E_v & \frac{1}{2}G_u \\ \frac{1}{2}E_v & E & F \\ \frac{1}{2}G_u & F & G \end{vmatrix}}{\begin{vmatrix} E & F \\ F & G \end{vmatrix}^2}$$

- $K_G = \det \mathcal{W} = \frac{\det \mathcal{F}_{IL}}{\det \mathcal{F}_I} = \kappa_1 \kappa_2$ only depends on the first fundamental form of the surface! This statement is often called the *Theorema Egregium* (remarkable theorem) of Gauss, though we will use the name for a corollary.

Relations between the 1FF and 2FF?

- $K_G = \det \mathcal{W} = \frac{\det \mathcal{F}_{II}}{\det \mathcal{F}_I}$, so we now have a relation between the 1FF and 2FF.
- The Codazzi-Mainardi equations also relate the 1FF and 2FF.
- These are the only such relations. (If the 1FF completely determined the 2FF, one of the assumptions of the following theorem would be redundant.)

Theorem

If $X : U \rightarrow \mathbb{R}^3$ and $\tilde{X} : U \rightarrow \mathbb{R}^3$ are two surface patches with the same 1FF and 2FF, there is a direct isometry Φ of \mathbb{R}^3 such that $\tilde{X} = \Phi \circ X$.

This is an analogue for surfaces of the fundamental theorem for plane curves.

K_G for a surface of revolution

$$K_G = \frac{\begin{vmatrix} -\frac{1}{2}E_{vv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_u & -\frac{1}{2}E_v \\ -\frac{1}{2}G_u & E & 0 \\ \frac{1}{2}G_v & 0 & G \end{vmatrix} - \begin{vmatrix} 0 & \frac{1}{2}E_v & \frac{1}{2}G_u \\ \frac{1}{2}E_v & E & 0 \\ \frac{1}{2}G_u & 0 & G \end{vmatrix}}{\begin{vmatrix} E & 0 \\ 0 & G \end{vmatrix}^2}$$
$$= -\frac{1}{2\sqrt{EG}} \left[\frac{\partial}{\partial u} \left(\frac{G_u}{\sqrt{EG}} \right) + \frac{\partial}{\partial v} \left(\frac{E_v}{\sqrt{EG}} \right) \right] = \frac{1}{\sqrt{\det \mathcal{F}_I}} \operatorname{div} \left(-\frac{(G_u, E_v)}{2\sqrt{\det \mathcal{F}_I}} \right)$$

- Recall the divergence of a vector field $\mathbf{V} = (V^1, V^2)$ on U :
 $\operatorname{div} \mathbf{V} = \frac{\partial V^1}{\partial u} + \frac{\partial V^2}{\partial v}$.
- If $F = 0$ and also $E = 1$, get $K_G = -\frac{1}{2\sqrt{G}} \frac{\partial}{\partial u} \left(\frac{G_u}{\sqrt{G}} \right) = -\frac{1}{\sqrt{G}} \frac{\partial^2 \sqrt{G}}{\partial u^2}$.
- Surface of revolution has 1FF $du^2 + f^2(u)dv^2$ (so $E = 1$, $G = f^2(u)$). Then $K_G = -\ddot{f}(u)/f(u)$.

Theorema Egregium

Theorem (Theorema Egregium)

The Gauss curvature is preserved by local isometries.

Proof.

- $f : S_1 \rightarrow S_2$ is a local isometry if it is a local diffeomorphism that maps any curve in S_1 to a curve of the same length in S_2 .
- A local diffeo is a local isometry iff surface patches $X_1 : U \rightarrow \mathbb{R}^3$ for S_1 and $X_2 = f \circ X_1 : U \rightarrow \mathbb{R}^3$ for S_2 have same 1FF [text, Corollary 6.3.2].
- But K_G is completely determined by the 1FF.

- Meaning: Gives a necessary condition for two surfaces to have the same “local intrinsic geometry” (the 1FF); e.g., If two surfaces have different values of, say, $\sup K_G$, they cannot be isometric.
- Naive question: Is it a sufficient condition? In what sense?

Consequence for map making

Theorem

Any geographic map of the Earth's surface must distort distances.

Proof.

- Geographic maps are regions of planes. Planes have $\mathcal{W}_{II} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, so $K_G = \det \mathcal{W} = 0$.
- The Earth is (approximately) a round sphere, so $\mathcal{W}_{II} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, so $K_G = \det \mathcal{W} = 1$.
- $0 \neq 1$.

When we study the Gauss-Bonnet theorem, we will see that this argument does not require the Earth to be perfectly or approximately round.

Lecture 19: Minimal surfaces 1

Minimal surfaces

Definition

Consider a surface S .

- If the 2FF of S vanishes everywhere, S is *totally geodesic*.
- If K_G vanishes everywhere (so $\det \mathcal{W} = 0$), S is *Gauss flat* or *intrinsically flat*.
- If the mean curvature vanishes everywhere $H = 0$, S is a *minimal surface*.
- A surface that minimizes area is a *least area surface*.

- Just as geodesics are extrema of the arclength, compact minimal surfaces are extrema of the area.
- Every least area surface is a minimal surface, but not every minimal surface is a least area surface.
- Minimal surfaces always minimize area compared to other surfaces which differ only in a “sufficiently small region”.

A few examples

- Planes $ax + by + cz = d$.

- Catenoid

$$X(u, v) = (x(u, v), y(u, v), z(u, v))$$

$$x = \cosh(u) \cos(v)$$

$$y = \cosh(u) \sin(v)$$

$$z = u$$

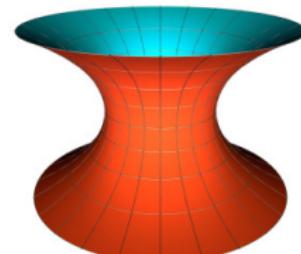
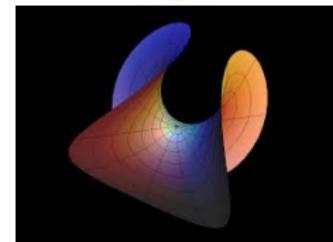
- Enneper's surface

$$X(u, v) = (x(u, v), y(u, v), z(u, v))$$

$$x(u, v) = \frac{u}{3} \left(1 - \frac{u^2}{3} + v^2\right)$$

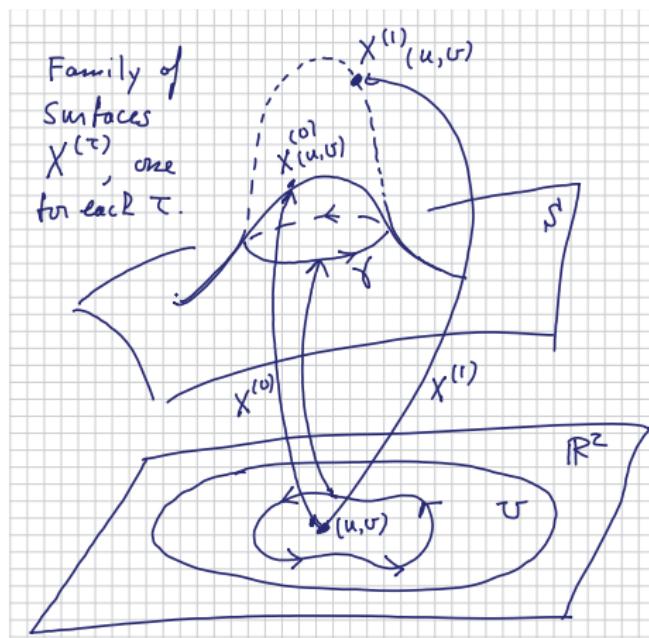
$$y(u, v) = \frac{v}{3} \left(1 - \frac{v^2}{3} + u^2\right)$$

$$z(u, v) = \frac{1}{3} (u^2 - v^2)$$



Variation of area

- Family of surface patches
 $X^{(\tau)} : U \rightarrow \mathbb{R}^3$
 $\tau \in (-\delta, \delta)$ for $\delta > 0$.
- Require map $(u, v, \tau) \mapsto X^{(\tau)}(u, v)$ to be smooth.
- Define the *variation vector field*
 $\Phi := \frac{d}{d\tau} \Big|_{\tau=0} X^{(\tau)}(u, v) =$
 $\dot{X}^{(\tau)} \Big|_{\tau=0}$.
- γ is a simple closed curve containing interior region $\text{int}(\gamma)$.
- Area of $\text{int}(\gamma)$ is
 $A(\tau) = \int_{\text{int}(\gamma)} dA_{X^{(\tau)}}$.



Variation of area: set-up

- $X^{(\tau)}(u, v) = X(\tau, u, v)$.
- The boundary curve doesn't vary: $\Phi(u, v) = 0$ if $X(\tau, u, v) = \gamma$.
- For each $X(\tau, u, v)$, we have the basis $\{X_u, X_v, \mathbf{N}\}$.
- Then $\Phi = a(\tau, u, v)\mathbf{N} + b(\tau, u, v)X_u + c(\tau, u, v)X_v$.
- Area $A(\tau) = \int_{\text{int}(\gamma)} \|X_u \times X_v\| dudv = \int_{\text{int}(\gamma)} \mathbf{N} \cdot (X_u \times X_v) dudv$.
- $\dot{A}(\tau) = \frac{dA}{d\tau} = \int_{\text{int}(\gamma)} \frac{\partial}{\partial \tau} (\mathbf{N} \cdot (X_u \times X_v)) dudv$.
- \mathbf{N} is a unit vector, so $\dot{\mathbf{N}} \perp \mathbf{N}$. Therefore $\dot{\mathbf{N}} \perp X_u \times X_v$, so $\dot{\mathbf{N}} \cdot (X_u \times X_v) = 0$.
- Then $\dot{A}(\tau) = \frac{dA}{d\tau} = \int_{\text{int}(\gamma)} \mathbf{N} \cdot \frac{\partial}{\partial \tau} (X_u \times X_v) dudv$.
- Then $\dot{A}(\tau) = \frac{dA}{d\tau} = \int_{\text{int}(\gamma)} \mathbf{N} \cdot \left(\dot{X}_u \times X_v + X_u \times \dot{X}_v \right) dudv$, where $\dot{X} = \frac{\partial X}{\partial \tau}$.

First variation of area

- Last slide: $\dot{A}(\tau) = \frac{dA}{d\tau} = \int_{\text{int}(\gamma)} \mathbf{N} \cdot (\dot{X}_u \times X_v + X_u \times \dot{X}_v) dudv$, where $\dot{X} = \frac{\partial X}{\partial \tau}$.
- Calculation in text p 310 then gives $\frac{dA}{d\tau} \Big|_{\tau=0} = \int_{\text{int}(\gamma)} \left[\left(b\sqrt{EG - F^2} \right)_u + \left(c\sqrt{EG - F^2} \right)_v - 2a(EG - F^2)H \right] dudv$, where $H = \frac{LG - 2MF + NE}{2(EG - F^2)}$.
- Use Green's theorem $\int_{\text{int}(\gamma)} \left(\frac{\partial g}{\partial u} - \frac{\partial f}{\partial v} \right) dudv = \int_{\gamma} (fdv + gdv)$.
- Get $\frac{dA}{d\tau} \Big|_{\tau=0} = \int_{\gamma} \sqrt{EG - F^2} (bdv - cdu) - 2 \int_{\text{int}(\gamma)} aH (EG - F^2) dudv$
- $\Phi = 0$ along γ , so $b = c = 0$ in line integral along γ .
- *First variation of area formula:*
$$\frac{dA}{d\tau} \Big|_{\tau=0} = -2 \int_{\text{int}(\gamma)} aH (EG - F^2) dudv = -2 \int_{\text{int}(\gamma)} aH \sqrt{\det \mathcal{F}_I} dudv.$$

Lecture 20: Plateau's problem, minimal surfaces 2

Plateau's problem

- First variation of area: $\frac{dA}{d\tau} \Big|_{\tau=0} = -2 \int_{\text{int}(\gamma)} aH\sqrt{\det \mathcal{F}_I} dudv$.
- $a = a(0, u, v)$ is the normal component of the variation vector field $\Phi = a\mathbf{N} + bX_u + cX_v$ (last lecture).
- Stationary points: $\frac{dA}{d\tau} \Big|_{\tau=0} = 0$ for all a iff $H \equiv 0$ on $\text{int}(\gamma)$.
- Plateau's problem: Given a simple closed curve $\gamma : [\alpha, \beta] \rightarrow \mathbb{R}^3$, find a least area surface whose boundary is γ .
- Step 1: Find the minimal surfaces (the critical points of area) spanning γ . These are minimal surfaces $H = 0$.
- Soap films spanning a ring are solutions of Plateau's problem
- Soap bubbles are not usually solutions of Plateau's problem. Bubbles are supported by air pressure, and are *CMC surfaces* (constant mean curvature surfaces). They obey $H = c = \text{const}$, so minimal surfaces $H = 0$ are a special case.

Nonpositive curvature

Theorem (Gaussian curvature of minimal surfaces)

Minimal surfaces in \mathbb{R}^3 have $K_G \leq 0$.

Proof.

- If S is a minimal surface then $H = 0$ at each point of S .
- $H = \frac{1}{2}(\kappa_1 + \kappa_2)$ (κ_i = principal curvatures).
- Then κ_1 and κ_2 have opposite signs at each point, or one of them is zero; so their product is negative, or zero.
- Then $K_G = \kappa_1 \kappa_2$ must be negative, or zero.

No compact minimal surfaces in \mathbb{R}^3

- Recall a surface $S \subset \mathbb{R}^3$ is compact if it is bounded so it lies within some sphere, and complete so Cauchy sequences converge. (Some definitions also require no boundary, but that follows from our definition of a surface.)
- A sphere is compact. So is a torus. A punctured sphere (i.e., a sphere minus a point) is not compact. A plane is not compact.

Theorem

There are no compact minimal surfaces embedded in \mathbb{R}^3 .

Proof.

- At every point of a minimal surface, $0 = 2H = \kappa_1 + \kappa_2$, so the principal curvatures have opposite signs or are both zero.
- Then $K_G = \kappa_1 \kappa_2 \leq 0$ at every point.
- But every compact surface has at least one point where $K_G > 0$.

Example of a minimal surface: A catenoid

Consider the catenoid $\cosh z = \sqrt{x^2 + y^2}$ parametrized by

$$X(u, v) = (\cosh u \cos v, \cosh u \sin v, u).$$

Exercise:

- Compute that $\mathcal{F}_I = \cosh^2 u \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Compute that $\mathcal{F}_{II} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Conclude that $\mathcal{W} = \mathcal{F}_I^{-1} \mathcal{F}_{II} = \operatorname{sech}^2 u \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- Then $\kappa_1 = -\operatorname{sech}^2 u$, $\kappa_2 = \operatorname{sech}^2 u$.
- $H = \frac{1}{2}(\kappa_1 + \kappa_2) = 0$, so this is a minimal surface.
- $K_G = \kappa_1 \kappa_2 = -\operatorname{sech}^4 u < 0$.

Minimal surfaces of revolution

Theorem

Any minimal surface that is a surface of revolution is an open subset of a catenoid or a plane.

- To begin proof, recall surface of revolution. If necessary, use an isometry so that surface is revolved around z -axis.
- Then $X = (f(u) \cos v, f(u) \sin v, g(u))$.
- Choose profile curve to be unit speed: $\dot{f}^2(u) + \dot{g}^2(u) = 1$.
- We had $\mathcal{F}_I = \begin{bmatrix} 1 & 0 \\ 0 & f^2 \end{bmatrix}$, $\mathcal{F}_{II} = \begin{bmatrix} \dot{f}\ddot{g} - \ddot{f}\dot{g} & 0 \\ 0 & f\dot{g} \end{bmatrix}$,
 $\mathcal{W} = \begin{bmatrix} \dot{f}\ddot{g} - \ddot{f}\dot{g} & 0 \\ 0 & \dot{g}/f \end{bmatrix}$.
- This is a minimal surface iff $0 = H = \dot{f}\ddot{g} - \ddot{f}\dot{g} + \dot{g}/f$.

Proof continued

- Must solve ODE system $\dot{f}^2 + \dot{g}^2 = 1$, $\dot{f}\ddot{g} - \ddot{f}\dot{g} + \dot{g}/f = 0$.
- Possibilities:
 - ① $\dot{g} = 0$ on open interval.
 - ② $\dot{f} = 0$ on open interval.
 - ③ $\dot{f} \neq 0, \dot{g} \neq 0$ except perhaps at isolated points.
- Possibility 1: Then $g = k = \text{const}$ and $\dot{f}^2 = 1$ so $f = \pm u + u_0$, $u_0 = \text{const}$. The 1FF is $du^2 + (\pm u + u_0)^2 dv^2 = 0$. Writing $r := \pm u + u_0$ and $\theta := v$, get $dr^2 + r^2 d\theta^2$. This is the 1FF of a horizontal plane in polar coordinates.
- Possibility 2: $\dot{f} = 0$ on open interval, then $f(u) = k = \text{const}$ and $\dot{g}^2 = 1$. But then $H = \dot{f}\ddot{g} - \ddot{f}\dot{g} + \dot{g}/f = 0 + 0 + 1/k \neq 0$. No solution.
- Possibility 3: Differentiate $\dot{f}^2 + \dot{g}^2 = 1$ to get $\dot{f}\ddot{f} + \dot{g}\ddot{g} = 0$. Use this in H on next page.

Proof continued

- We have $\ddot{f}\ddot{f} + \dot{g}\ddot{g} = 0$ and $0 = \dot{g}H = \dot{f}\dot{g}\ddot{g} - \ddot{f}\dot{g}^2 + \dot{g}^2/f$.
- Combining these, then

$$\begin{aligned} 0 &= -\dot{f}^2\ddot{f} - \ddot{f}\dot{g}^2 + \dot{g}^2/f = -\ddot{f}(\dot{f}^2 + \dot{g}^2) + \dot{g}^2/f = -\ddot{f} + \dot{g}^2/f \\ &= -\ddot{f} + \frac{1}{f}(1 - \dot{f}^2). \end{aligned}$$

- Multiplying by $-f$, we get $0 = f\ddot{f} + \dot{f}^2 - 1 = \frac{1}{2} \frac{d^2}{du^2} (f^2) - 1$.
- Then $\frac{d^2}{du^2} (f^2) = 2$, so $f^2(u) = u^2 + au + b$.
- A translation of u removes the au term. We choose $b = c^2 > 0$ so that $f^2(0) > 0$.
- Then $f^2(u) = u^2 + c^2$, so $\dot{f} = \frac{u}{\sqrt{u^2+c^2}}$.
- Then $\dot{g} = \frac{c}{\sqrt{u^2+c^2}}$ and $g(u) = c \operatorname{arcsinh} \frac{u}{c}$.

End of proof

We need only do a little rewriting:

- Define $\tilde{u} := g(u) = c \operatorname{arcsinh} \frac{u}{c}$, so $u = c \sinh \frac{\tilde{u}}{c}$.
- Then $f^2(u) = u^2 + c^2 = c^2 \left(\sinh^2 \frac{\tilde{u}}{c} + 1 \right) = c^2 \cosh^2 \frac{\tilde{u}}{c}$, so $f(u) = c \cosh \frac{\tilde{u}}{c}$.
- Then

$$\begin{aligned} X(u, v) &= (f(u) \cos v, f(u) \sin v, g(u)) \\ &= \left(c \cosh \frac{\tilde{u}}{c} \cos v, c \cosh \frac{\tilde{u}}{c} \sin v, \tilde{u} \right). \end{aligned}$$

- This is a catenoid.

The minimal graph equation

- Graph $z = f(x, y)$.
- Mean curvature is $H = \frac{(1+f_y^2)f_{xx}-2f_xf_yf_{xy}+(1+f_x^2)f_{yy}}{2(1+f_x^2+f_y^2)^{3/2}}$ (text, exercise 8.1.1).
- The equation $(1+f_y^2)f_{xx}-2f_xf_yf_{xy}+(1+f_x^2)f_{yy}=0$ is called the *minimal graph equation* (or *minimal surface equation*).

Theorem

Consider solutions of the minimal graph equation of the form

$f(x, y) = F(x) + G(y)$. Up to isometry, the only solutions are planes and Scherk's surface $z = \ln \frac{\cos y}{\cos x}$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Lecture 21: Local Gauss-Bonnet (one patch)

Gauss Bonnet theorem 1: single patch

Theorem (Gauss Bonnet for a single surface patch)

- Let $X : U \rightarrow \mathbb{R}^3$ be a surface patch covering surface S .
- Let $\gamma(s)$ be a simple closed curve separating S into two regions, the interior $\text{int}(\gamma)$ and the exterior $\text{ext}(\gamma)$.
- Let s be a unit speed parameter for γ .
- Let κ_g be the geodesic curvature of γ .
- Let K_G be the Gauss curvature of S .

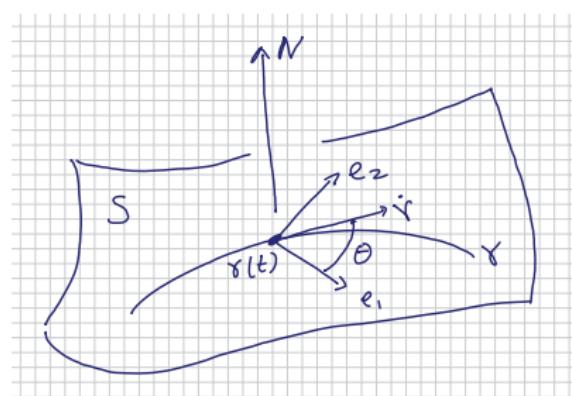
Then

$$\int_{\text{int}(\gamma)} K_G dA_X + \oint_{\gamma} \kappa_g ds = 2\pi.$$

- Compare: Hopf's umlaufssatz: $\oint_{\gamma} \kappa ds = 2\pi$ for a simple closed curve in \mathbb{R}^2 .
- Follows from Green's theorem $\int_{\text{int}(\gamma)} (Q_u - P_v) dudv = \oint_{\gamma} P du + Q dv$.

Orthonormal basis: ONB

- Surface S with normal \mathbf{N} , patch $X : U \rightarrow \mathbb{R}^3$.
- $\{X_u, X_v, \mathbf{N}\}$ is not an ONB.
- Curve γ in S has tangent $\dot{\gamma}$.
- Choose $\mathbf{e}_1, \mathbf{e}_2 \in T_{\gamma(t)}S$, $\mathbf{e}_1 \perp \mathbf{e}_2$.
- Then $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{N}\}$ is an ONB along γ .



$\dot{\gamma}$ and $\ddot{\gamma}$

- Take $\gamma(s)$ to be unit speed.
- $\dot{\gamma}$ makes angle θ with \mathbf{e}_1 .
- $\dot{\gamma} = \cos \theta \mathbf{e}_1 + \sin \theta \mathbf{e}_2$.
- $\implies \mathbf{N} \times \dot{\gamma} = -\sin \theta \mathbf{e}_1 + \cos \theta \mathbf{e}_2$.
- $\ddot{\gamma} = \cos \theta \dot{\mathbf{e}}_1 + \sin \theta \dot{\mathbf{e}}_2 + \dot{\theta}(-\sin \theta \mathbf{e}_1 + \cos \theta \mathbf{e}_2)$.
- Remark: We have not assumed a “transport law” for the \mathbf{e}_i along γ , except that they remain tangent to S , orthonormal to each other, and differentiable wrt the parameter s along γ .
- $\kappa_g = \ddot{\gamma} \cdot (\mathbf{N} \times \dot{\gamma})$ if γ is unit speed.
- Can use this to compute that

$$\begin{aligned}\kappa_g &= \dot{\theta}(\sin^2 \theta + \cos^2 \theta) + (\cos \theta \dot{\mathbf{e}}_1 + \sin \theta \dot{\mathbf{e}}_2) \cdot (-\sin \theta \mathbf{e}_1 + \cos \theta \mathbf{e}_2) \\ &= \dot{\theta} + \sin \theta \cos \theta (\dot{\mathbf{e}}_2 \cdot \mathbf{e}_2 - \dot{\mathbf{e}}_1 \cdot \mathbf{e}_1) + \cos^2 \dot{\mathbf{e}}_1 \cdot \mathbf{e}_2 - \sin^2 \dot{\mathbf{e}}_2 \cdot \mathbf{e}_1.\end{aligned}$$

Simplify

- $\kappa_g = \dot{\theta} + \sin \theta \cos \theta (\dot{\mathbf{e}}_2 \cdot \mathbf{e}_2 - \dot{\mathbf{e}}_1 \cdot \mathbf{e}_1) + \cos^2 \theta \dot{\mathbf{e}}_1 \cdot \mathbf{e}_2 - \sin^2 \theta \dot{\mathbf{e}}_2 \cdot \mathbf{e}_1.$
- Two easy simplifications:
 - $\dot{\mathbf{e}}_i \cdot \mathbf{e}_i = \frac{1}{2} \frac{d}{ds} (\mathbf{e}_i \cdot \mathbf{e}_i) = \frac{1}{2} \frac{d}{ds} (1) = 0$, and
 - $\dot{\mathbf{e}}_1 \cdot \mathbf{e}_2 = \frac{d}{ds} (\mathbf{e}_1 \cdot \mathbf{e}_2) - \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 = -\mathbf{e}_1 \cdot \dot{\mathbf{e}}_2.$
- So we get $\kappa_g = \dot{\theta} - \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2.$
- Integrate the result around closed curve γ :

$$\begin{aligned}\oint_{\gamma} \kappa_g ds &= \oint_{\gamma} \dot{\theta} ds - \oint_{\gamma} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds \\ &= 2\pi - \oint_{\gamma} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds,\end{aligned}$$

using $\oint_{\gamma} \dot{\theta} ds = \theta \Big|_0^{2\pi} = 2\pi.$

- Next: Convert last term on right to area integral of K_G (use Green's theorem).

Dealing with $\oint_{\gamma} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds$

- Chain rule: $\dot{\mathbf{e}}_2 = (\partial_u \mathbf{e}_2) \dot{u} + (\partial_v \mathbf{e}_2) \dot{v}$.
- Then $\oint_{\gamma} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds = \oint_{\gamma} [\mathbf{e}_1 \cdot (\partial_u \mathbf{e}_2) \dot{u} + \mathbf{e}_1 \cdot (\partial_v \mathbf{e}_2) \dot{v}] ds$.
- Line integral form: $\oint_{\gamma} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds = \oint_{\gamma} (\mathbf{e}_1 \cdot \partial_u \mathbf{e}_2) du + (\mathbf{e}_1 \cdot \partial_v \mathbf{e}_2) dv$.
- Use Green's theorem: $\oint_{\gamma} P du + Q dv = \int_{\text{int}(\gamma)} (Q_u - P_v) dudv$.
- Get $\oint_{\gamma} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds = \int_{\text{int}(\gamma)} [\partial_u (\mathbf{e}_1 \cdot \partial_v \mathbf{e}_2) - \partial_v (\mathbf{e}_1 \cdot \partial_u \mathbf{e}_2)] dudv$.
- Expand/simplify: $\oint_{\gamma} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds = \int_{\text{int}(\gamma)} [(\partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2) - (\partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2)] dudv$.
- So now we have

$$\oint_{\gamma} \kappa_g ds = 2\pi - \int_{\text{int}(\gamma)} [(\partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2) - (\partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2)] dudv.$$

The final lemma

Last slide: $\oint_{\gamma} \kappa_g ds = 2\pi - \int_{\text{int}(\gamma)} [(\partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2) - (\partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2)] dudv.$

Lemma

- Let the 1FF of the patch $X : U \rightarrow \mathbb{R}^3$ be $Edu^2 + 2F dudv + Gdv^2$.
- Let the 2FF of the patch $X : U \rightarrow \mathbb{R}^3$ be $Ldu^2 + 2M dudv + Ndv^2$.

Then $\partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2 - \partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2 = \frac{LN - M^2}{\sqrt{EG - F^2}} = K_G \sqrt{EG - F^2} = K_G \sqrt{\det \mathcal{F}_I}$.

We must prove this, but first:

Corollary (Gauss-Bonnet for one patch X)

$\oint_{\gamma} \kappa_g ds = 2\pi - \int_{\text{int}(\gamma)} K_G \sqrt{\det \mathcal{F}_I} dudv = 2\pi - \int_{\text{int}(\gamma)} K_G dA_X.$

Proof.

Plug the result of the theorem into the equation at the top of the slide. □

Proof of the lemma

- Idea: Write $\partial_u \mathbf{e}_i$, $\partial_v \mathbf{e}_i$ in the $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{N}\}$ orthonormal basis.
- Simplification: $\mathbf{e}_1 \cdot \mathbf{e}_1 = 1$, so $\partial_u(\mathbf{e}_1 \cdot \mathbf{e}_1) = 2\mathbf{e}_1 \cdot \partial_u \mathbf{e}_1 = 0$.
- Likewise $\mathbf{e}_1 \cdot \partial_v \mathbf{e}_1 = 0$, $\mathbf{e}_2 \cdot \partial_u \mathbf{e}_2 = 0$, $\mathbf{e}_2 \cdot \partial_v \mathbf{e}_2 = 0$.
- Then $\partial_u \mathbf{e}_i$ and $\partial_v \mathbf{e}_i$ have no \mathbf{e}_i component, so:
 - $\partial_u \mathbf{e}_1 = a\mathbf{e}_2 + c\mathbf{N}$,
 - $\partial_v \mathbf{e}_1 = b\mathbf{e}_2 + d\mathbf{N}$,
 - $\partial_u \mathbf{e}_2 = -f\mathbf{e}_1 + g\mathbf{N}$,
 - $\partial_v \mathbf{e}_2 = -h\mathbf{e}_1 + k\mathbf{N}$,
- for coefficients a, \dots, k (the minus signs are for later convenience).
- Then we get

$$\begin{aligned} & \partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2 - \partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2 \\ &= (a\mathbf{e}_2 + c\mathbf{N}) \cdot (-h\mathbf{e}_1 + k\mathbf{N}) - (-f\mathbf{e}_1 + g\mathbf{N}) \cdot (b\mathbf{e}_2 + d\mathbf{N}) \quad (1) \\ &= ck - dg. \end{aligned}$$

Proof of lemma continued...

- $\mathbf{N} = \mathbf{e}_1 \times \mathbf{e}_2$ (since $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{N}\}$ is right-handed ONB).
- Then $(\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N} = (\mathbf{N}_u \times \mathbf{N}_v) \cdot (\mathbf{e}_1 \times \mathbf{e}_2)$.
- $\implies (\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N} = (\mathbf{N}_u \cdot \mathbf{e}_1)(\mathbf{N}_v \cdot \mathbf{e}_2) - (\mathbf{N}_u \cdot \mathbf{e}_2)(\mathbf{N}_v \cdot \mathbf{e}_1)$ (identity).
- $\implies (\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N} = (\mathbf{N} \cdot \partial_u \mathbf{e}_1)(\mathbf{N} \cdot \partial_v \mathbf{e}_2) - (\mathbf{N} \cdot \partial_u \mathbf{e}_2)(\mathbf{N} \cdot \partial_v \mathbf{e}_1)$ (Leibniz).
- Use from last slide that:
 - $\partial_u \mathbf{e}_1 = a\mathbf{e}_2 + c\mathbf{N}$,
 - $\partial_v \mathbf{e}_1 = b\mathbf{e}_2 + d\mathbf{N}$,
 - $\partial_u \mathbf{e}_2 = -f\mathbf{e}_1 + g\mathbf{N}$,
 - $\partial_v \mathbf{e}_2 = -h\mathbf{e}_1 + k\mathbf{N}$,
- $\implies (\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N} = ck - dg$.
- Inserting this into (1) from the last slide, we have

$$\partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2 - \partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2 = (\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N}. \quad (2)$$

End of proof

- Last slide: $\partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2 - \partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2 = (\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N}$.
- Chapter 8 (Lecture 15): $\mathbf{N}_u \times \mathbf{N}_v = K_G X_u \times X_v$.
- Then $(\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N} = K_G (X_u \times X_v) \cdot \mathbf{N} = K_G (X_u \times X_v) \cdot \frac{(X_u \times X_v)}{\|(X_u \times X_v)\|}$.
- $\Rightarrow (\mathbf{N}_u \times \mathbf{N}_v) \cdot \mathbf{N} = K_G \sqrt{\det \mathcal{F}_I} = K_G \|X_u \times X_v\| = K_G \sqrt{EG - F^2}$.
- Then we conclude that

$$\partial_u \mathbf{e}_1 \cdot \partial_v \mathbf{e}_2 - \partial_v \mathbf{e}_1 \cdot \partial_u \mathbf{e}_2 = K_G \sqrt{EG - F^2} = K_G \sqrt{\det \mathcal{F}_I},$$

which proves the lemma, and Gauss-Bonnet follows as a corollary.

A consequence of $\int_{\text{int}(\gamma)} K_G dA_X + \oint_{\gamma} \kappa_g ds = 2\pi$.

Lemma

Let S be a surface covered by a single patch and bounded by a closed geodesic γ . Then S cannot have everywhere nonpositive Gauss curvature.

Proof.

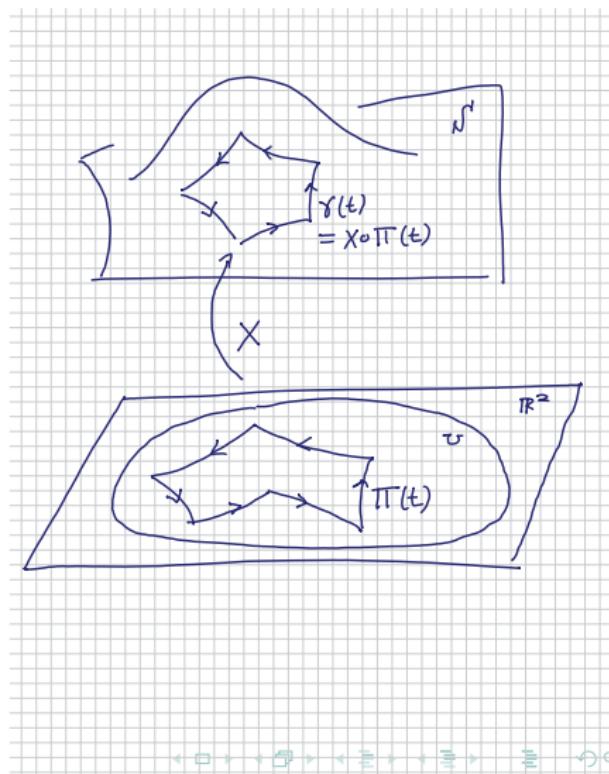
Geodesics have $\kappa_g = 0$, so $\int_{\text{int}(\gamma)} K_G dA_X = 2\pi$, so $K_G > 0$ somewhere on S . □

Recall we already had a similar result for compact surfaces without boundary.

Lecture 22: Gauss-Bonnet for curvilinear polygons

Curvilinear polygons

- A *curvilinear polygon* is a region in \mathbb{R}^2 bounded by edges that meet at corners.
- We denote the boundary curve by $\Pi(t)$.
- One surface patch $X : U \rightarrow \mathbb{R}^3$, for simplicity only.
- Use X to lift it up to a region in surface S , bounded by curve $\gamma = X \circ \Pi(t)$.



Curvilinear polygon definition

Definition

A *curvilinear polygon* is a continuous map $\Pi : \mathbb{R} \rightarrow \mathbb{R}^2$ such that, for some $T \in \mathbb{R}$ and a partition $0 = t_0 < t_1 < \dots < t_n = T$, we have the following:

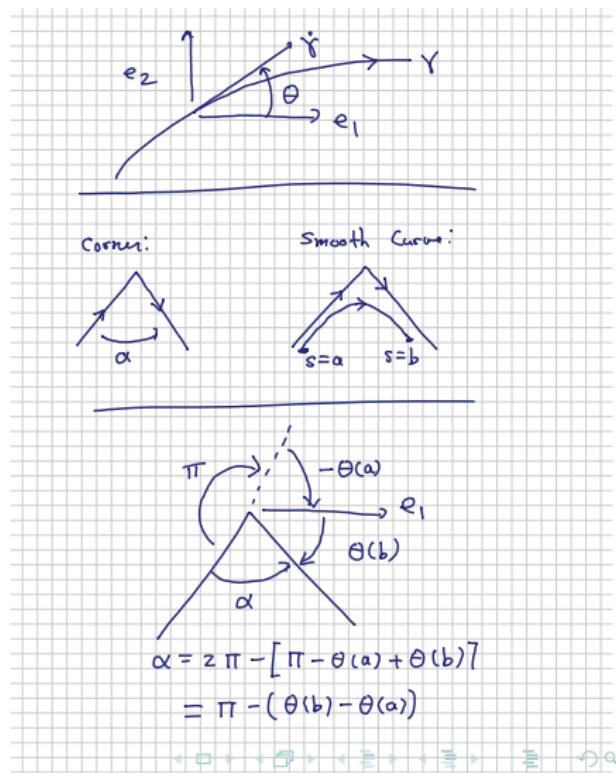
- (i) (Boundary curve is closed:) $\Pi(t) = \Pi(t')$ if and only if $t - t'$ is an integer multiple of T .
- (ii) (Boundary curve is smooth between finitely many corners:) Π is smooth at any $t \in (t_{i-1}, t_i)$, $i = 1, \dots, n$.
- (iii) (Corners form well-defined angles:) The one-sided derivatives

$$\dot{\Pi}^+(t_i) = \lim_{t \nearrow t_i} \frac{\Pi(t) - \Pi(t_i)}{t - t_i}, \quad \dot{\Pi}^-(t_{i-1}) = \lim_{t \searrow t_{i-1}} \frac{\Pi(t) - \Pi(t_{i-1})}{t - t_{i-1}},$$

exist for each $i = 1, \dots, n$.

Rounding off corners

- $\gamma(t)$ a unit speed curve.
- $\{\mathbf{e}_1, \mathbf{e}_2\}$ an ONB.
- $\dot{\gamma} = \cos \theta \mathbf{e}_1 + \sin \theta \mathbf{e}_2$.
- Plane curves: $\kappa_g = \kappa_s = \dot{\theta}$.
- Curve in diagram smooths out corner with angle α .
- Along the smooth curve:
$$\int_a^b \dot{\theta} ds = \theta(b) - \theta(a) = \pi - \alpha.$$
- We will consider when $\alpha \in [0, 2\pi)$ is an interior angle in polygon.



Gauss-Bonnet for curvilinear polygons

$$\int_{\text{int}(\gamma)} K_G dA_X + \sum_{i=1}^n \int_{\gamma_i} \kappa_g ds + \sum_{i=1}^n (\pi - \alpha_i) = 2\pi ,$$

where

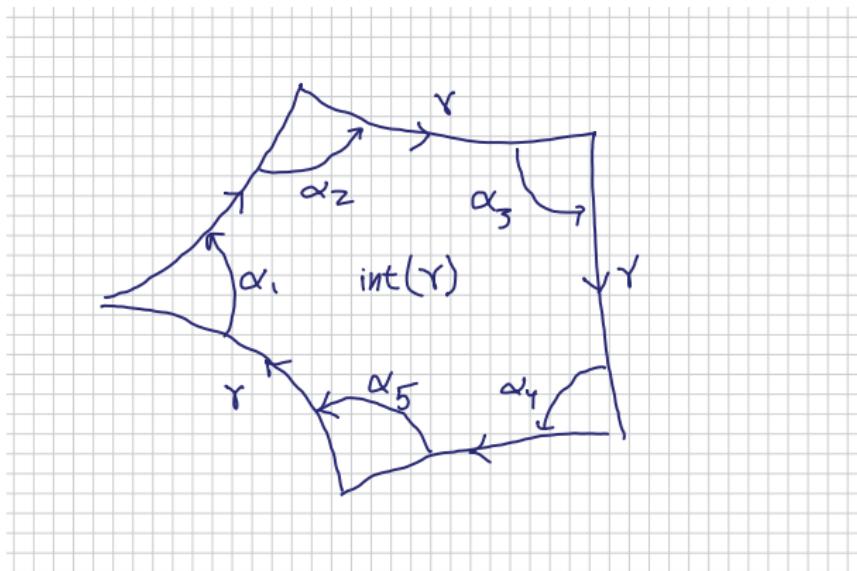
- γ is a simple, closed, unit speed curve bounding a curvilinear polygon in a patch X of surface S ,
- γ is a union of n smooth segments γ_i which meet at n vertices $\gamma(t_i)$, $i = 1, \dots, n$, and
- $\alpha_i \in [0, 2\pi)$ is the interior angle at the i^{th} vertex.

We can also write this formula as

$$\int_{\text{int}(\gamma)} K_G dA_X + \int_{\gamma} \kappa_g ds = \sum_{i=1}^n \alpha_i - (n-2)\pi ,$$

where \int_{γ} means $\sum_{i=1}^n \int_{\gamma_i}$.

Gauss-Bonnet illustrated



$$\int_{\text{int}(\gamma)} K_G dA_X + \sum_{i=1}^n \int_{\gamma_i} \kappa_g ds = \sum_{i=1}^n \alpha_i - (n-2)\pi .$$

$$\int_{\text{int}(\gamma)} K_G dA_X + \sum_{i=1}^n \int_{\gamma_i} \kappa_g ds = \sum_{i=1}^n \alpha_i - (n-2)\pi$$

Special case:

- If γ consists of geodesic segments γ_i then

$$\int_{\text{int}(\gamma)} K_G dA_X = \sum_{i=1}^n \alpha_i - (n-2)\pi .$$

Corollary

- The total curvature of a hemisphere of any radius is $\int K_G dA = 2\pi$.
- The total curvature of a sphere of any radius is $\int K_G dA = 4\pi$.

Proof.

- Hemisphere: Boundary curve γ is the equator, which is a geodesic.
- Sphere: Add two hemispheres.

Triangulations of a surface S

Definition

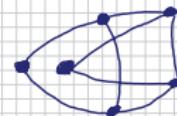
A *triangulation* of S is a collection of curvilinear polygons such that

- (i) every point of S is in at least one polygon,
- (ii) any two polygons are either disjoint or intersect at a common vertex or along a common edge, and
- (iii) each edge is an edge of exactly two polygons.

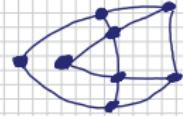
Theorem

Every compact surface can be triangulated by finitely many curvilinear polygons.

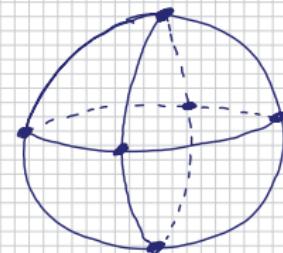
Not Allowed



Allowed



Sphere triangulated
by its octants



8 faces (octants)

12 edges

6 vertices

Euler number (Euler characteristic)

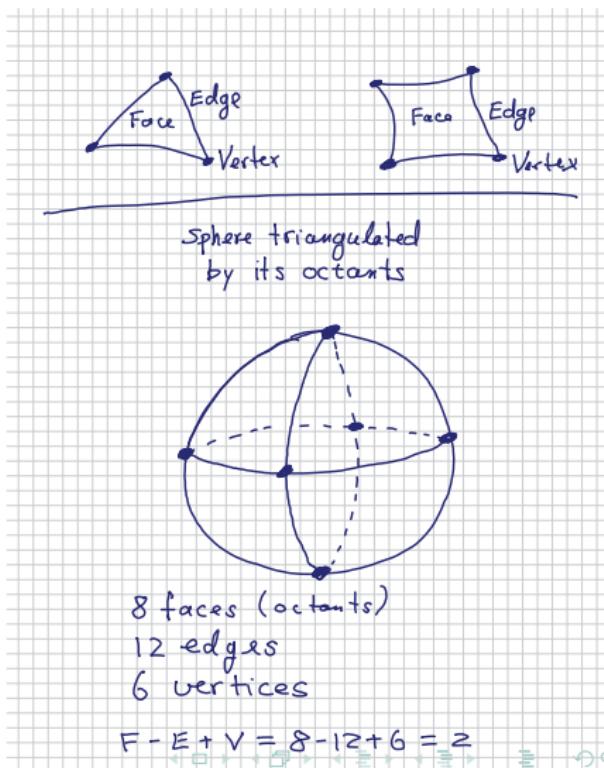
- Curvilinear polygons have (i) faces, (ii) edges, and (iii) vertices.
- A triangulation will have (ii) F faces, (ii) E edges, and (iii) V vertices.

Definition

The *Euler number* (or *Euler characteristic*) of a triangulation of a surface S is

$$\chi := F - E + V.$$

e.g., Sphere triangulated by its octants has $\chi = 8 - 12 + 6 = 2$.



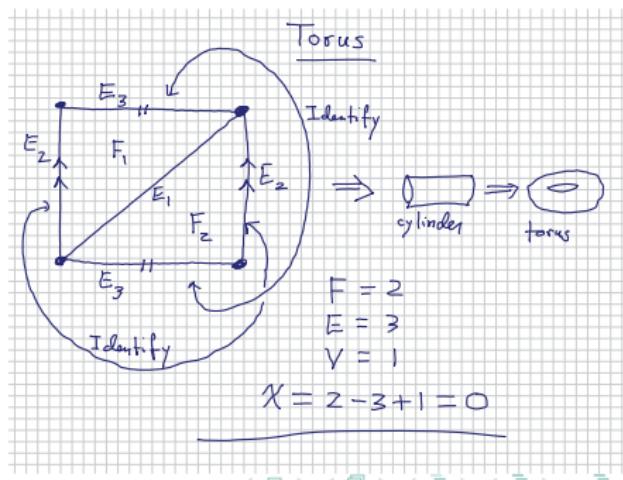
Gauss-Bonnet theorem for compact surfaces

Theorem

For any compact surface S we have

$$2\pi\chi = \int_S K_G dA.$$

- Corollary: χ depends only on the surface S , not on the triangulation.
- We write $\chi = \chi(S)$.
- For any sphere, we have $\chi(\mathbb{S}^2) = 2$.
- For any torus, we have $\chi(\mathbb{T}^2) = 0$.



Lecture 23 Gauss-Bonnet for compact surfaces

Proof of Gauss-Bonnet theorem for compact surfaces

Theorem

For any compact surface S we have $2\pi\chi = \int_S K_G dA$.

Proof:

- Consider a triangulation with
 - faces f_i , $i = 1, \dots, F$,
 - edges e_j , $j = 1, \dots, E$, and
 - vertices v_k , $k = 1, \dots, V$.
- Choose the faces f_i small enough so each “triangle” (i.e., curvilinear polygon) fits in one patch $X_i : U_i \rightarrow \mathbb{R}$.
- Say face f_i is a polygon with p_i edges e_{im} and p_i vertices v_{in} , $m, n = 1, \dots, p_i$. Let α_{in} be the interior angle of vertex v_{in} . Then

$$\int_S K_G dA = \sum_{i=1}^F \int_{f_i} K_G dA_{X_i} = \sum_{i=1}^F \left\{ - \sum_{m=1}^{p_i} \int_{e_{im}} \kappa_g ds - \sum_{n=1}^{p_i} (\pi - \alpha_{in}) + 2\pi \right\}.$$

Proof continued

$$\int_S K_G dA = - \sum_{i=1}^F \sum_{m=1}^{p_i} \int_{e_{im}} \kappa_g ds - \sum_{i=1}^F \sum_{n=1}^{p_i} (\pi - \alpha_{in}) + \sum_{i=1}^F 2\pi.$$

- Last term: $\sum_{i=1}^F 2\pi = 2\pi F$.

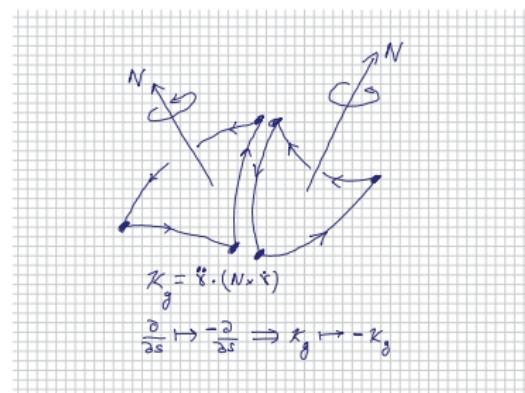
- Middle term:

- $\sum_{i=1}^F \sum_{n=1}^{p_i} \alpha_{in}$ is the sum over every face of every interior angle in that face.
- Same as sum over every vertex of every interior angle at that vertex, which is therefore $2\pi V$.
- Also, $-\sum_{i=1}^F \sum_{n=1}^{p_i} \pi = -\pi \sum_{i=1}^F \sum_{n=1}^{p_i} 1$, and $\sum_{i=1}^F \sum_{n=1}^{p_i} 1$ equals twice the number of edges, since each edge belongs to two faces and so is counted twice.
- Then $-\sum_{i=1}^F \sum_{n=1}^{p_i} (\pi - \alpha_{in}) = -2\pi E + 2\pi V$.
- Collect results: $\int_S K_G dA = - \sum_{i=1}^F \sum_{m=1}^{p_i} \int_{e_{im}} \kappa_g ds + 2\pi(-E + V + F)$.

Proof continued

$$\int_S K_G dA = - \sum_{i=1}^F \sum_{m=1}^{p_i} \int_{e_{im}} \kappa_g ds + 2\pi(-E + V + F).$$

- But $\sum_{i=1}^F \sum_{m=1}^{p_i} \int_{e_{im}} \kappa_g ds = 0$ because, when summing over faces, each edge e_{im} is counted twice, once for each face to which it belongs, but with opposite orientations.
- $\kappa_g = \ddot{\gamma} \cdot (\mathbf{N} \times \dot{\gamma})$, so $s \mapsto u = -s \implies \kappa_g \mapsto -\kappa_g$.



Hence $\int_S K_G dA = 2\pi(-E + V + F) = 2\pi\chi(S)$. QED.

A corollary

Theorem

Any two diffeomorphic compact surfaces have the same Euler number and (therefore) the same total curvature $\int K_G dA$.

Proof:

- Diffeomorphisms map curves to curves, intersections of curves to intersections of curves, etc.
- Therefore they map triangulations by curvilinear polygons to triangulations by curvilinear polygons, preserving the number of faces, edges, and vertices. QED.

Remark:

- \mathcal{F}_{II} detects curvature of a surface S .
- But $K_G := \det \mathcal{W} = \frac{\det \mathcal{F}_{II}}{\det \mathcal{F}_I}$ depends only on \mathcal{F}_I .
- For S compact, then $\int_S K_G dA$ doesn't even depend on local geometry encoded in \mathcal{F}_I . It depends only on the *topology* of S .

A further corollary

Theorem

Define the genus g of an orientable compact surface S to be the “number of holes”. Then

$$\chi(S) = 2 - 2g.$$

- Proof by induction.
- We've proved $g = 0$ and $g = 1$ cases.
- Must prove: If true for g , it's true for $g + 1$.

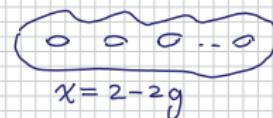
$$\underline{\chi(S) = 2 - 2g}$$

1. Sphere $g=0$ $\chi(S^2)=2$
2. Torus $g=1$ $\chi(T^2)=0$
3. Double Torus $g=2$ $\chi(\Sigma_2)=-2$
4. Multi-Torus $g=3$ $\chi(\Sigma_3)=2-2g$

The induction hypothesis

- Σ_g triangulated n -gons by V vertices, E edges, F faces, with $\chi(\Sigma_g) = F - E + V = 2 - 2g$.
- \mathbb{T}^2 triangulated by n -gons V' vertices, E' edges, F' faces, with $\chi(\mathbb{T}^2) = 0$.
- Select one n -gon from each, and glue them together.
- Get $V'' = V + V' - n$ vertices, $E'' = E + E' - n$ edges, $F'' = F + F' - 2$ faces.
- $\chi(\Sigma_{g+1}) = (F + F' - 2) - (E + E' - n) + (V + V' - n) = (F - E + V) + (F' - E' + V') - 2 = \chi(\Sigma_g) - 2$.

1.



2. Triangulate:

An n -gon of
the triangulation

3. Glue the n -gons:

Gluing 2 n -gons removes
 n vertices, n edges, 2 faces

$$\begin{aligned}\chi(\Sigma_{g+1}) &= \chi(\Sigma_g) - 2 + n - n \\ &= 2 - 2g - 2 = 2 - 2(g+1).\end{aligned}$$

Corollary

Corollary

- No surface diffeomorphic to \mathbb{S}^2 has $K_G \leq 0$ everywhere.
- No surface diffeomorphic to a multi-torus has $K_G \geq 0$ everywhere.

Note: We already know that no compact surface in \mathbb{R}^3 has $K_G \leq 0$ everywhere.

Proof.

- $\int_{\mathbb{S}^2} K_G dA = 2\pi\chi(\mathbb{S}^2) = 4\pi > 0$, so $K_G > 0$ somewhere. This proves part 1.
- $\int_{\Sigma_g} K_G dA = 2\pi\chi(\Sigma_g) = 2 - 2g < 0$ for $g > 1$ so $K_G < 0$ somewhere. This proves part 2.
- Remark: Since $K_G > 0$ somewhere on every compact surface embedded in \mathbb{R}^3 , and $\int_{\mathbb{T}^2} K_G dA = 2\pi\chi(\mathbb{T}^2) = 0$, this also proves that $K_G < 0$ somewhere on $\mathbb{T}^2 \subset \mathbb{R}^3$.

Lecture 24: Combing hair on compact surfaces

Stationary points of a vector field

Definition

A *stationary point* of a vector field \mathbf{V} is an isolated zero of \mathbf{V} . The *index* (or *multiplicity*) of a stationary point p is defined as follows:

- Enclose p within a simple closed unit speed curve γ , traversed counterclockwise.
- Choose any smooth vector field ξ which doesn't vanish on or inside γ .
- Let ψ be the angle from ξ to \mathbf{V} at each point of γ .

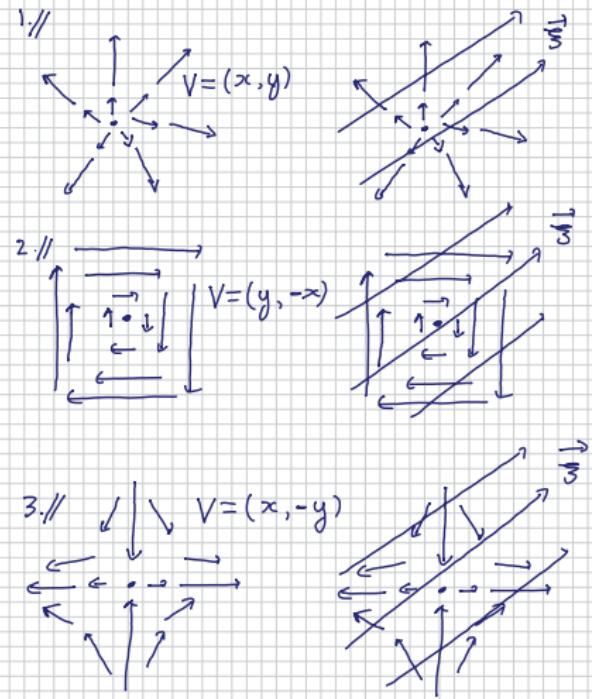
Then the multiplicity $\mu(p)$ of \mathbf{V} at p is

$$\mu(p) = \frac{1}{2\pi} \int_{\gamma} \frac{d\psi}{ds} ds.$$

To understand the definition, note that $\frac{1}{2\pi} \int_{\gamma} \frac{d\psi}{ds} ds = \psi(b) - \psi(a)$ where $\gamma : [a, b] \rightarrow \mathbb{R}^2$ is a closed curve, and $\psi(b) = \psi(a)$ modulo an integer multiple of 2π .

Examples

1. $\mathbf{V} = (x, y)$ has $\mu(p) = 1$.
2. $\mathbf{V} = (y, -x)$ has $\mu(p) = 1$.
3. $\mathbf{V} = (x, -y)$ has $\mu = -1$.



Compute $\mu(p)$ for $\mathbf{V} = (x, -y)$

- Pick ξ to have no zero: $\xi = (1, 0) = \mathbf{e}_1$ will do nicely.
- Compute $\cos \psi = \frac{\mathbf{V} \cdot \xi}{\|\mathbf{V}\| \|\xi\|} = \frac{x}{\sqrt{x^2+y^2}}$.
- Also, $\sin \psi = -\frac{y}{\sqrt{x^2+y^2}}$ (careful of the sign!).
- Encircle p with a simple, closed, unit speed curve traversed counterclockwise, say $\gamma(s) = (\cos s, \sin s)$ (taking coordinates so that p is the origin).
- Then $\cos \psi = \frac{x}{\sqrt{x^2+y^2}} = \frac{\cos s}{\sqrt{\cos^2 s + \sin^2 s}} = \cos s$,
 $\sin \psi = -\frac{y}{\sqrt{x^2+y^2}} = -\frac{\sin s}{\sqrt{\cos^2 s + \sin^2 s}} = -\sin s$ along γ .
- Read off that $\psi(s) = 2\pi - s$.
- Then $\frac{d\psi}{ds} = -1$ and $\mu(p) = \frac{1}{2\pi} \int_0^{2\pi} (-1) ds = -1$.

(N.B. Second-last bullet point also gives $\psi(2\pi) - \psi(0) = -2\pi$ so

$$\mu(p) = \frac{1}{2\pi} \int_0^{2\pi} (-1) ds = \frac{1}{2\pi} (\psi(2\pi) - \psi(0)) = -1 \text{ without finding } \frac{d\psi}{ds}.)$$

Can you comb the hair on a sphere?

Theorem

If \mathbf{V} is a smooth vector field on a compact surface S with n stationary points (i.e., n isolated zeroes) p_1, \dots, p_n , then

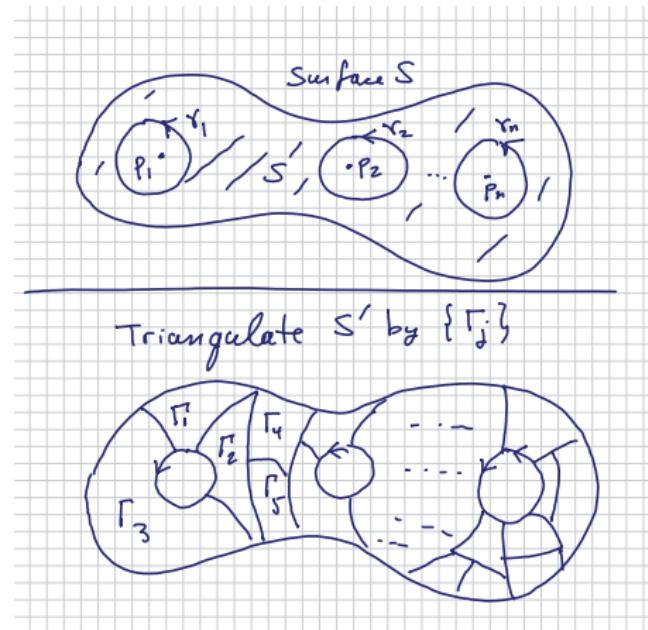
$$\sum_{i=1}^n \mu(p_i) = \chi(S).$$

Corollary:

- On a genus g compact surface Σ_g , we have $\chi(\Sigma_g) = 2 - 2g$. From the theorem any smooth vector field \mathbf{V} on Σ_g must have at least one stationary point unless Σ_g is a torus (so $g = 1$).
- To answer the title question, “Not without a bald spot.”
- For spheres this generalizes, and is true for all even dimensional spheres \mathbb{S}^{2n} (subsets $x_1^2 + \dots + x_{n+1}^2 = a^2$, $a > 0$, in $\mathbb{R}^{n+1} \ni (x_1, \dots, x_{n+1})$). However, you can comb the hair on any odd-dimensional sphere smoothly, without any bald spots (stationary points of the vector field).

The proof

- Surface S , vector field \mathbf{V} , stationary points p_1, \dots, p_n .
- Encircle the p_i with (disjoint) unit speed simple closed curves γ_i .
- Let S' be the closure of the region of S outside the γ_i (closure means that the γ_i are included in S').
- Triangulate S' with curvilinear polygons Γ_j . \mathbf{V} has no stationary points in S' .



$$2\pi\chi(S) = \int_S K_G dA = \int_{S'} K_G dA + \sum_{i=1}^n \int_{\text{int}(\gamma_i)} K_G dA.$$

The exterior region S'

- Pick ONB $\{\mathbf{e}_1, \mathbf{e}_2\}$ in S' , with $\mathbf{e}_1 = \mathbf{V}/\|\mathbf{V}\|$.
- From a previous proof (of the “local” Gauss-Bonnet formula) for a region Σ bounded by curves β_i , we have

$$\int_{\Sigma} K_G dA = \oint_{\beta_i} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds,$$

for $\dot{\mathbf{e}}_2$ the derivative of \mathbf{e}_2 along β_i .

- Now let Σ be S' and β_i be $-\gamma_i$. The minus sign is because “counterclockwise about $p_i \in \text{int } \gamma_i$ ” is clockwise about a point in S' . (Notation: $-\gamma$ is used to indicate reverse orientation, so $\frac{d}{ds} \mapsto -\frac{d}{ds}$, not the negative of the components of γ .)
- Then

$$\int_{S'} K_G dA = - \sum_{i=1}^n \oint_{\gamma_i} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds. \quad (1)$$

The disks $\text{int } \gamma_i$ containing stationary points p_i

- Pick an orthonormal basis $\{\mathbf{E}_1, \mathbf{E}_2\}$.
- As before, get

$$\int_{\text{int } \gamma_i} K_G dA = \oint_{\gamma_i} \mathbf{E}_1 \cdot \dot{\mathbf{E}}_2 ds. \quad (2)$$

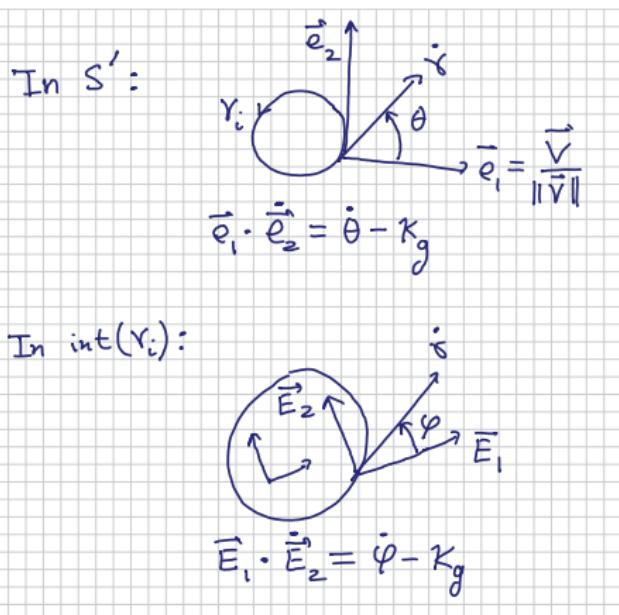
- Combine (1) and (2):

$$\begin{aligned} 2\pi\chi(S) &= \int_S K_G dA = \int_{S'} K_G dA + \sum_{i=1}^n \int_{\text{int}(\gamma_i)} K_G dA \\ &= - \sum_{i=1}^n \oint_{\gamma_i} \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 ds + \sum_{i=1}^n \oint_{\gamma_i} \mathbf{E}_1 \cdot \dot{\mathbf{E}}_2 ds \\ \implies 2\pi\chi(S) &= \sum_{i=1}^n \oint_{\gamma_i} \left(\mathbf{E}_1 \cdot \dot{\mathbf{E}}_2 - \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 \right) ds. \end{aligned} \quad (3)$$

Put the pieces together

- Use result from “local Gauss-Bonnet” proof. Let κ_g be the geodesic curvature of γ_i , let θ be the angle from \mathbf{e}_1 to $\dot{\gamma}$, and let φ be the angle from \mathbf{E}_1 to $\dot{\gamma}$.
- Then $\mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 = \dot{\theta} - \kappa_g$.
- Also $\mathbf{E}_1 \cdot \dot{\mathbf{E}}_2 = \dot{\varphi} - \kappa_g$
- $\implies \mathbf{E}_1 \cdot \dot{\mathbf{E}}_2 - \mathbf{e}_1 \cdot \dot{\mathbf{e}}_2 = \dot{\varphi} - \dot{\theta}$.
- Equation (3) on the last slide becomes

$$2\pi\chi(S) = \sum_{i=1}^n \oint_{\gamma_i} (\dot{\varphi}(s) - \dot{\theta}(s)) ds.$$

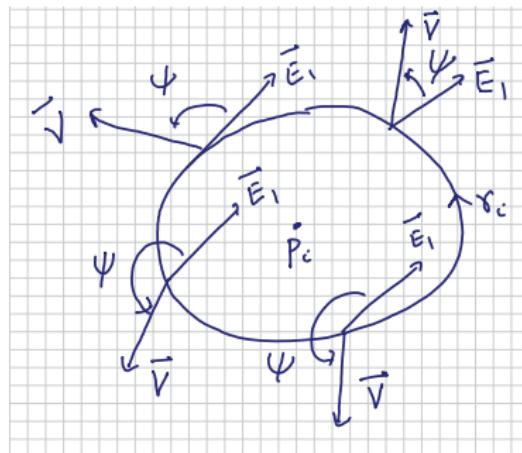


Finish the proof

$$2\pi\chi(S) = \sum_{i=1}^n \oint_{\gamma_i} \frac{d}{ds} (\varphi(s) - \theta(s)) ds.$$

- θ is angle from \mathbf{e}_1 to $\dot{\gamma}$.
- φ is angle from \mathbf{E}_1 to $\dot{\gamma}$.
- Then $\varphi - \theta$ is angle from \mathbf{E}_1 to \mathbf{e}_1 .
- But $\mathbf{e}_1 = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ so $\varphi - \theta = \psi = \text{angle from } \mathbf{E}_1 \text{ to } \mathbf{v}$.
- But then $\oint_{\gamma_i} \frac{d}{ds} (\varphi(s) - \theta(s)) ds = \oint_{\gamma_i} \frac{d\psi}{ds} ds = 2\pi\mu(p_i)$.

We conclude that $2\pi\chi(S) = 2\pi \sum_{i=1}^n \mu(p_i)$, so $\chi(S) = \sum_{i=1}^n \mu(p_i)$. QED.



Post-mortem

Theorem

If \mathbf{V} is a smooth vector field on a compact surface S with n stationary points (i.e., n isolated zeroes) p_1, \dots, p_n , then

$$\sum_{i=1}^n \mu(p_i) = \chi(S).$$

- Left-hand side is a statement about vector fields.
- Right-hand side is a topological quantity.
- No local geometry (1FF, 2FF) at all.
- But we needed the tools of local differential geometry to prove this.
- The real power of differential geometry, and its modern incarnation in the form called *geometric analysis*, is its applicability to related but distinct fields.