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Lecture 1: What is a curve?
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Examples of curves

Line in R?; e.g., y = mx + b.
Graph in R?; e.g., y = x°.

Level curve of a function in R3:
{xuy,z)| 2+ y*+ 22 =1}n{(x,y,2)|z = 3}

Curves of intersection;
e.g.; intersect paraboloid z = x% + y
with plane z = %y + 1.

2

Level sets are curves of intersection

of graphical surfaces z = f(x, y) with planes z = k.

The constant k is the level.
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Graphs aren't everything

@ Circle x? 4+ y? = 2% is not the graph of a function:
It can be “double-valued”.

@ Inelegant solution:
It's the union of graphs of two functions:

y=vVa?—xZandy=—-vVa?2—-x? —a<x<a.

@ Better solution: Parametrize the circle:

x(0) = acosf
y(0) = asinf
6 € [0,2m)
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Parametrized curves

Definition

A parametrized curve is a map v : | — R", where [ is a connected interval of R. J

The textbook takes / to be open, because we need to define differentiation. But

sometimes we will need endpoints, and then / should be closed or half-closed (see
the last slide, where 6 € [0,27)). We won't impose that / is always open, but will
instead assume that any differentiation applies only in the interior of /, or applies
in a one-sided sense at endpoints.

@ It's very easy to parametrize a graph y = f(x).
@ Just choose x to be the parameter; i.e., write x(t) = t.
@ Then y(t) = f(t).

@ Don't forget to choose domain (e.g., perhaps t € (—oo, c0), perhaps not).
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Examples

@ The parametrized curve < y(t)
te
x(t)
@ The parametrized curve { y(t)
te

counter-clockwise.

@ The parametrized curve < y(t)
te

counter-clockwise.

t,
a2 — t2 , is a semi-circle.

[_ava] s

cost ,
sint, s a circle, traversed once

[0,27) ,

cost ,
sint, is a circle, traversed twice

[0,47) ,

Notice the parametrization carries extra information not available from the

graphical description of a curve.
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Example: The astroid

@ The parametrized curve 7(t) = (cos® t,sin® t),
t € [0,27), is called an astroid.

x(t) = cos® t
Can write it as { y(t) = sin’t

t €[0,2m)

Then x¥/3 = cos? t and y?/3 =sin’t,
so x?/3 4 y?3 =1.
Graphical form: y = & (1 — x?/3)
Level set form:
o Let z = f(x,y) = x?/3 + y?/3,
o Then the astroid is the level set
z="1(x,y)=1

Graphical and level set forms have less information than parametrized form,
but produce the same image. The image of a curve is called the trace of the
curve (not related to the trace of a matrix).
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Tangent vectors

@ Recall tangent line to graph y = f(x) at (xo, Y0)
is y —yo = f'(x0) (x — x0)-

@ Tangent vector: Any (non-zero) vector parallel to tangent line.

@ Parametrized form of line: Take s € R and
x(s)=x0+s
y(s) = yo + f'(x0)s

o Differentiate wrt s: x'(s) =1, y'(s) = f'(xo).

@ Tangent vectors to line are the vectors parallel to (1, f'(x)).
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Tangent vectors to parametrized curves

@ Parametrized curve v : | — R" is a vector-valued function.

o y(t) = (7(t), 1x(2); -, 7n(2)) = (xa(t), x2(2), - -, xa(2)).

Definition

. d’Y d/Yl d72 d'Yn
’ o _dr_ (9 dn
ORSIORE R Cr e

e A
At—0 At

Then +/(t) is a tangent vector to curve
~ at t provided /(t) # (0,...,0),

(Generally, we will just write O even if we mean the 0-vector (0,0, ...
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Example

o y(t) = te; + t?ey, t €R,
{e1,ex} = orthonormal basis (ONB).

t)=¢3
’ %Et; t2} ==
Y2(t) =

@ Chain rule:
dy _ dydx
dt — dx dt-

_ d 2
= 2t= -3t

— % = 2% undefined at t = 0.

Definition
A parametrized curve v : | — R" is
@ smooth at ty € | if all derivatives of all components ~;(t) exist at t = to, and

® regular at ty € | if it is smooth at t; and Z—Z(to) #(0,...,0); otherwise ty is
a singular point.

agnth hit nAt vamiilar A+ + — N
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The astroid again

E=llz
Astroid
® () = (cos® t,sin® t), and say Curvt o
t € [0,2m). t*
o Differentiate: 7/(t) = =1
(—3sintcos?t,3 sin® t cos t),
t € [0, 2r). GeEalc
@ Simplify:
v'(t) = 3costsint (—cost,sint),
t € [0, 27).
@ Then+/(t)=0<60=0,7,, 37“
@ Therefore v is smooth everywhere,

but it is not regular at four points.
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Lecture 2: Arclength and tangent vectors
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Arclength

@ Recall arclength in R?:

Szde:f\/dX2—|—dy2:f\/d'y%—kd'yg:

(

dn
dt

oIan;szz\/<%)2+...+( ) \/7

Definition
The arclength function of a curve 7y : [to, t1] — R" is

s :—f dr(t) ‘dt’

Tdt’
to

for t € [to, t1].

)2+<

d_7_2
2
2 ) dt
dy
2ol dt

Fundamental Theorem of Calculus — % =

This is called the speed of the curve.
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Example: Log spiral

@ The logarithmic spiral is the curve
~(t) = e (cos t,sin t).

@ +/(t) = ef(cost —sint,sint + cost)

o ||7/|| = et\/(cost —sint)2 + (sint + cos t)2 = v/2e’.

° s(t) = ftx/zerdr =12 (et — eb).
@ty — —oo = 7(to) — (0,0), s(t) — v2et.

@ 7 :(—o00,t] — R2 has finite arclength,
but no initial endpoint.
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Unit speed curves

o If ||3(t)|| =1, v is unit speed and t is an arclength parameter or unit speed
parameter.

o If ||4(t)|| = k = const > 0, 7y is constant speed and t is an affine parameter.

@ Fact:

o Let v be any unit vector field v-v = |v||? = 1.

o Let y(t) be a unit speed curve.
d d

o S(v-v)=2(1)=0.

o But then £ (¥-4) =0.

o Chain rule: 4-4=0.

o Conclude that 4 L % along any unit speed curve whenever acceleration
5 # 0.

o For unit speed curves, write t := 7 = unit tangent vector. Note that

It] = vE-t=1.
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Reparametrization

@ Say v : (a,b) - R" is a curve, and
@ Say 7 :(4,b) = R"is a curve.
Definition
If
@ there is a smooth map ¢ : (4, b) — (a, b)
@ with smooth inverse ¢~ : (a, b) — (3, b), such that
® () = v(8(f)) = (v 0 ¢)(£) = ~(t) for all f € (a, b),

then 4 = vy o ¢ is a reparametrization of ~.
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Theorem

Theorem

Any reparametrization of a regular curve is also a regular curve.

Proof.
o Let t = ¢(t) and 5(t) = (t).
o Then £ = ¢1(t) s0 t = &(F) = 6(¢71(1)).
@ Chain rule: —¢d(“3t_1) =1, so % #0.
o H=40)=0%

@ Now 7 is regular so ‘;t #0, and 75 0.

a5
@ Thus 37 #0.
O
v
Works iff reparametrization ¢ is smooth with smooth inverse,
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The arclength function of a regular curve is smooth

@ Say v:/ —R2:t— (x(t),y(t)) is a regular curve.

Then x(t) and y(t) are smooth functions.
@ The square root function f(w) = y/w is smooth if w # 0.

@ Since 7 is regular, X2 + y? # 0.

Thus £(t) = /X2 + y2 is smooth.
t

Therefore s(t) = [ 2 (t')dt’ is smooth.
to
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Regular curve have unit speed parametrizations

Theorem

A parametrized curve has an arclength parametrization iff it is regular.

Proof.

@ Curve 5 : | — R? and reparametrization t = ¢(£), such that v(t) = 5(f).
— Hd_“n E:
= || @t || It

= If £ is arclength, then H%}H =1, 0 %} is never zero. Then 7(t) is regular.

d5
dt

@ Chain rule:

&xlg-
QIS‘

dt
t dt

= o If d7 # 0, then % = H‘;—ZH # 0, so s is smooth and strictly increasing.
dy _ dy ds _ |93 |ds| — ||d7]|| ds
o Then G =% & _‘I|E|_‘E dt-
dy ds _ || dvy
o Buts= H dt — 9t — gt
o Compare last two lines. Then H%}H =1, so 4(s) is unit speed.

M
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Example

Parametrize curve (t) = (cos® t,sin’ t,cos 2t) € R®, t € [0,7/2] by arclength.

Solution:

o #(t) = (—3cos? tsint,3sin’ t cos t, —25sin 2t).
5117 =9 cos* tsin® t + 9sin® tcos? t + 4sin? 2t
=9 cos tsin® t + 16 cos? tsin’ t
=25cos? tsin®t .

@ Then ||¥]| =5costsint for t € [0,7/2].

t

d7:5 cos7'sm7'd7'— sin’ t.
; 2

© Then 2 = sin®t, so 1 — % = cos t, and then
cos2t—coszt—sin2t:1—4§5.

= _ _2s 3/2 12513/2 _4s
°7(5)_((1 =) (3) 5 )
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Regular curve, non-regular parametrization

Parabola y = x2.

Regular parametrization x(t) = t, y(t) = t2, t € R.
@ Then x =1, y = 2t, and x> + y?> = 1 + 4t> # 0.

Non-regular parametrization x(t) = t3, y(t) = t5 t € R.

@ Then x = 3t?, y = 6t°, and %% + y? = 9t* + 36t'0, equals 0 when t = 0.

@ What went wrong: Reparametrization map ¢(t) = t3 has inverse
#~1(t) = t¥/3, which is not differentiable at t = 0, so theorem on regular
reparametrizations fails.
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Closed curves

Example:

2
@ Ellipse ’;—i + *;—2 =1, p,q > 0 are constants.

Parametrize as y(t) = (pcost, gsint), t € R.

Then ~(t + 27) = ~(t) for all t € R.

@ v is 2m-periodic.

Definition
@ If y(t + T) = ~(t) for all t and for some T > 0, then v is T-periodic.
o If v(t) = p for all t (where p € R" is a point), then  is a constant curve.

@ If v is T-periodic and not constant, then ~y is a closed curve.
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Examples

@ Ellipses (including circles) are closed curves.

@ The curve ¥(t) = (t2 — 1,3 — t), t € R, is not closed.

o Curve has y(—1) = 4(1) = (0,0).

o Buty(t+ T)=r(t)with T =2
is only true when t = —1,
not true for all t.

e This curve is not closed and not periodic
but it does have a closed loop.
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Lecture 3: Curvature of plane curves
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Curvature
When is a curve ...curved?
Definition

If v : 1 — R" is a unit speed curve, then its curvature is x := ||¥/|.

Interpretation: Curvature as quadratic coefficient in Taylor's theorem:

v(to + At) = v(to) + F(to) At + %*y(to)(At)2 +0(At).

Can replace §(tp) by unit tangent t(tp) = ¥(to).

A(to) - ¥(to) =1 = 2%(to) - H(to) = 0, so ¥ L # for a unit speed curve (if
540).

Then 4 = +xn where n is unit normal vector (orthogonal to t).
Get v(to + At) = y(to) + t(to) At + 2r(to)n(to)(AL)? + O(AL3)

@ Two choices for n: we choose it so that {t,n} is right-handed.
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Curvature formulas: general parametrization

@ Say t is a general parameter for 7, and s is an arclength parameter.

o Chainrule 91 = 912 — v - ‘:/Z//jf-

@ Chain rule again ‘Z:TZ =4 (‘;Z//gtt) =gd (Zz//g:) _ ﬁ(t)s'((ts_)(;)ﬁ)gtﬁ(t).

°

@ Then k = %

@ Then k — ||752‘5—‘755|| = GG using that §2 = (%)2 _ ”7”2 A

(I512)’

and therefore $5 =+ - 4.

@ Finally, the "BAC-CAB rule” B(A-C) — C(A-B) = A x (B x C) yields
o = IAxEXNI
[l

® Notice that L 5 x 4. Thus || x (5 x %) = [I1]l 15 x ]|, so & = L3l
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Example: Circle

Circle in R%: ~(t) = (xo + acost, yp + asint), t € [0,27).
@ 4 = a(—sint,cost), ¥ = —a(cos t,sin t).

Use k = L3I Think of R2 as z = 0 plane in R3.

°
RET
(5] ()] e3
@ Yy x4 =| —asint acost 0
—acost —asint 0
_ e | 2cost 0 e —asint 0 te —asint acost
~ 71 —asint 0 2| —acost O 3| —acost —asint
= e3 (a®sin’ t + a? cos? t) = a’es.
o Also, ||4]| = Va?sin? t 4 a?cos? t = a.
@ Then k = M = =. Circles have constant curvature = 1/radius.
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Osculating circles

Definition
If a curve v : I — R? has curvature x(t) # 0 at point p = (t), we define its
radius of curvature at p to be p(t) = 1/x(t).

The osculating circle to v at p
is the circle that

@ passes through p,
@ has the same tangent line as v at p,
@ has radius p = % and

@ lies on the concave side of ~.
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Signed curvature

@ Parametrize the curve y(t) in R2.
@ The direction of increasing parameter is the orientation.
@ Define the unit tangent vector t =4/ ||3]|.

@ Define the unit normal n by rotating t by 7 counter-clockwise (also called
the right-handed sense).

@ Then the signed curvature ks is defined by
(s) = ksn

where s is an arclength parameter with ds/dt > 0 (i.e., same orientation as
t).

@ Relation to (ordinary) curvature is % := |ks]|.
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Interpretation: turning angle

Theorem (The turning angle)

There is a unique smooth function ¢, called the turning angle, along the regular
curve vy such that ¢(sg) = ¢o and t = (cos ¢(s),sin ¢(s)).

Tangent vector in {e1, e} basis:

t = A(s) = (cos ¢(s), sin ¢(s))

Calculate: t = 5(s) = ¢(s) (— sin ¢(s), cos ¢(s))
Normal vector in {e;, ey} basis:

n = (cos (¢(s) + 5) ,sin (¢(s) + 5))
= (—sin ¢(s), cos ¢(s))

Conclude that 5(s) = ¢(s)n.

Compare to 4(s) = ksn to get | ks(s) = ¢(s).

The signed curvature is the rate of change of the turning angle wrt arclength.
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Hopf's Umlaufsatz (rotation rate)

Integrate ks(s) = ¢(s) over curve .
fmg Ydu = f¢ u)du = ¢(s) — é(so).
Take ~y closed, with period T.
so+ T

[ ks(u)du= ¢(so+ T) — ¢(s0)-

S0
But ¢(so + T) — ¢(s0) = 2wk, k € Z.

In fact, can argue that k = £1 if curve traversed once; k is the winding
number.

Theorem (Hopf's Umlaufsatz)

so+T

The total curvature of a closed curve of period T is [ ks(u)du = £27.

So

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 8/8



Lecture 4: lsometries of R”
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Isometries of R”

Definition (Isometry of R")

F :R" — R" is an isometry of R" if it preserves the distance between any two
points:
[1F(v) = F(w)[| = [lv — w]|

for all v,w € R".

Definition (Orthogonal matrix)

An n X n matrix P is orthogonal if its columns (rows) form an orthonormal set of
column (row) vectors. Equivalently, the transpose of P is the inverse: PT = P71,
We write P € O(n) = the group of orthogonal n x n matrices.

Theorem (All isometries of R")

Let F: R" — R" be given by F(v) = Pv+a. Herev and a are column vectors
and P is an n x n orthogonal matrix. Then F is an isometry, and all isometries of
R" can be written this way.

T = - = = et
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Proving that F(v) = Pv + a is an isometry

Calculate:

IF(v) = F(w)[|* = (F(v) — F(w)) - (F(v) — F(w))
= [Pv— Pw]" [Pv — Pw]
=[v-—w]" PTP[v—w]
=[v-w] [v—w]
=(v—-—w) (v—w)

2
= v —w|

@ This proves that F(v) = Pv + a preserves the distance, so F is an isometry.

@ Fact: F~}(w) = PTw — PTa is also an isometry.
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Proving all isometries can be written as F(v) = Pv + a

@ Orthonormal basis {e;} and vectors w; := F(e;) — F(0), i =1,...,n.
@ The w; are unit vectors

o |lwi|| =||F(e;) — F(0)|| = |le; — O] = ||e;]] = 1 since F is an isometry.
o Then [lw; — w;|® = w; - w; + w; - w; — 2w, - wj = 2 — 2w; - wj.
2 2 2
© But [lw; —w;[" = [|[F(e;) — F(e;)|" = [le; — ¢j[|" = (e —&)) - (ei — &))
o it
:e,--e,-—i—ej~ej—2e,--ej= I;é'/
0 i=j
@ Compare last two lines to conclude that w; L w; if i # j.
@ Thus {w;} is an orthonormal basis too, and so w; = Pe; for some P € O(n).

@ Endgame: Using w; := F(e;) — F(0) then F(e;) = w; + F(0) = Pe; + a, for
some P € O(n) and for a = F(0).

o Finally, if F(e;) = Pe; + a for basis {e;}, then F(v) = Pv + a for all v.
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Direct isometries

@ PcO(n) = P 1=PT —= PTP=1,.
@ Then det(PTP) = (det P)2 = detT =1, so det P = +1.
@ If det P = 1 the corresponding isometry F is a direct isometry.

o Preserves orientations of basis sets.

o Includes rotations about the origin F(v) = Pv, and say P € SO(n) =
special orthogonal group.

o Includes translations F(v) = v + a.

o Every direct isometry in R? is a composition of a rotation about the

origin and a translation.
o Every direct isometry in R is a composition of a rotation about an axis
through the origin and a translation.

@ If det P = —1 the corresponding isometry F is an opposite isometry.

o Reverses orientations of bases.
o Includes reflections in planes in R3.
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Fundamental theorem of plane curves

Theorem

Let k : (a, ) — R be any smooth function.

@ There is a unit speed curve 7 : (a, 3) — R2 whose signed curvature is
RS = k.

@ If5: (o, ) — R2 is another unit speed curve with the same domain and if
its signed curvature also equals k, then there is a direct isometry
M : R? — R? such that

A(s) = M(~y(s)) = (M ov)(s) for all s € (e, ).
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Proof of part 1

@ Fix sp € (v, 8). Given function k, define (s f k(u)du and notice that
= k(s) by Fundamental Theorem of Calculus (FTC).

@ Define curve v(s) = (f cos(ip )du,isin(gp(u))du).

@ Compute: 4(s) = (cos(¢(s)),sin(p(s))) by FTC.

@ Clearly |5 = v/cos2 ¢ + sin® ¢ = 1 for ~ is unit speed.

@ Also, clearly ¢ is the turning angle for our curve v, so we know that
Rs = (p(S)
@ But ¢(s) = k(s), so ks(s) = k(s) which proves part 1.
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Proof of part 2

Two unit speed curves 7, 5(a, ) — R2:

4 = (cos p(s),sin p(s)), and say ¢(so) = 0.
5 — (cos 3(s),sin 3(s)), and say (so) = o.

Then ¥ <f cos @(u)du, fsm<p u)du) +4(0).

s

® And k(s) = ¢(s) = @(s), so 3(s) = [ k(u)du + F(s0) = () + Fo.

So

Then (s <fcos (u) + Go) du fsm o(u) +<,50)du> +4(0).

Use cos(A + B) = cos Acos B — sin Asin B,
sin(A+ B) = sin Acos B + cos Asin B.
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Proof of part 2 continued

=

So

(s) = (cos cﬁo/cos o(u)du — sin c;")o/sin p(u)du,
S0

s

sin gZJo/cosgo(u)du—i-congo/sin cp(u)du) +4(0)

S0 So

= (71(s) cos o — ¥2(s) sin Go, Y1(s) sin o + Y2(s) cos Po)

using 7(s) = (11(s). 72(5)) = (5{ cos p(u)du, s{ w(U)dU>-

@ Matrix form: ) ) .
B il R

= [4s)] = [P(&o)l [¥(s)] + [Fo] -
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Proof of part 2 continued

@ Last slide: [’"y(s)] = [P(&0)] [7(s)] + [H0], and

~\]_ | COs@g —sin@g . . .
[P(0)] = sin@do  cos ] This is a rotation matrix.

@ Then # is obtained by applying a rotation P(Jg) through angle @g and a
translation T(|bfa), a = Fo, to 7.

@ Since the composition of a rotation and a translation is an isometry of R?,
this proves part 2.

Consequence: Every unit speed curve in R? is completely determined by
@ choosing one point on the curve,
@ choosing the direction of t at that point, and
@ specifying the curvature function k(s).

and any smooth function is the curvature function of some curve.
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Example

Theorem

Any regular curve v : (a, b) — R? with constant curvature k = ¢ > 0 is (isometric
to) a part of a circle.

Proof:

@ Kk = c so the signed curvature is either ks(s) = ¢ for all s or ks(s) = —c for
all s.

@ The circle o4 (s) =
has ks = c.

o=

(cos(cs),sin(cs)) is unit speed; easy to check that it
@ The circle yc—(s) = I (cos(cs), —sin(cs)) is unit speed; easy to check that
it has ks = —c.

@ By the theorem of the previous slides, the curve v must be isometric to one
of these two circles, with domain restricted to (a, b).
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Lecture 5: Space curves
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Cross-product: quick review

Recall A x B:

Orthonormal basis (ONB) {e1, ez, e3}.

Let A= (A1, Ay, A3) = Are; + Ases + Ases.
Let B = (B, Ba, B3) = Bie; + Bxey + Bses.

Then the cross-product A x B is the vector

e e e3
AxB= Al A2 A3
Bi B, Bs

Ay Az A Az Al A
Bg B3 Bl B3 Bl B2

= (A2B3 — A3By)er + (A3By — A1B3)ex + (A1By — AxBr) e3
Recal: AxB=-B xA,andso Ax A=0.
AxB 1 Aand AxB 1L B.
I|A x B|| = ||A]| ||B]||sin 8], for 8 then angle between A and B.
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Space curves

Space curve v : | — R3.

Assume 7 to be unit speed: ||4(s)|| = /32 + 3 + 42 = 1.
Then s is an arclength parameter.

Unit tangent vector T(s) = 5(s).

Curvature x(s) = ||5(s)|| = HTH

Principal unit normal N(s) = ﬁ’y(s)

T L Nif K #0. Proof:

o T-T=1= 2T -T=0,s0T LT (note that T =5 # 0 iff k # 0).

o Since T=xN then T L N
Define binormal vector B = T x N.

{T,N,B} is an ONB for R® at each point of ~, called the Frenet frame.
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Frenet frame
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R
Frenet frame

For unit speed curves (s) we have
@ Unit tangent vector T = 4(s).
@ Principal unit normal vector N = %T = ﬁfy(s)
@ Unit binormal vector B =T x N.

Since Frenet frame {T, N, B} is an ONB, must have (up to a sign)

e B=TxN
e T=NxB
e N=BxT

With these sign choices, the Frenet frame is a right-handed ONB.
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Torsion

For a unit speed curve, we have T = kN. What about B and N?

Differentiate B=T x N. Get B=T x N+ T x N.
But Tx N=xNx N =0.

ThenB=TxN

Then B L T.

But also B L B (since 0 = < (B-B)=2B- B).
Conclude that B is parallel to N and write

B(s) =: —7(s)N(s).

This equation defines the torsion 7(s).
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Formula for torsion

Unit speed curves 7(s):
o Last slide: B=T x N and B =: —7N.
o = —7N=TxN.
o Then7=—N-(TxN)=N-(NxT)
Curves with arbitrary parametrization ~(t):
@ In above formula, replace N by N(s) = H(s) T(s) = K(S ~(s).

__dyds

@ Use chain rule to write Z—Z =218 — E 2 1|4(t)]l, and use formula for &.

ds dt
@ Tedious calculation (text Prop 2.3.1) gives

oy = G T
EEX]

Important point: When defining 7, needed to use N = %T.

= When k = 0, cannot unambiguously define T or even the Frenet frame.
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Meaning of torsion

o Curve v with K # 0 so {T,N, B} and 7 defined.

@ Suppose 7(s) = 0 for all s along 7.

@ Then B=—7N = B =0, so B is a constant vector.
® Then £(y-B)=92-B=T B =0since T L B.

@ —> v-B =d = const all along .

@ But this is the equation of a plane
with normal vector B! To see this,

if v = (x(s), y(s), z(s)) and B = (a, b, c),
then v - B = d becomes ax + by + cz = d.

Theorem

If a space curve v : | — R3 has 7(s) = 0 for all s € I, then it lies in a plane. The
binormal B to vy is normal to the plane.

Note: If k =0 for all s € I, ~y is a line and lies in a plane; indeed many. planes.
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The converse

Theorem

If a space curve v : | — R® with nonzero r lies in a plane, it has 7(s) = 0 for all
sel.

Proof:
@ Say plane has normal (a, b, ¢). Then « obeys (a, b,c) -y =d.
o Differentiate. Get (a,b,c)-4 = (a,b,c)-T=0,s0 (ab,c) L T.
e Differentiate again: (a, b,c)- T = (a, b, c) - (kN) = 0. Since s # 0, then
(a,b,c) L N.

@ Hence (a, b, ¢) is parallel to B, and so B has constant direction. But B also
has constant norm, so it's a constant vector; indeed,

B =+(a,b,c)/Va’+ b>+ 2.
@ Then B=0. But B = —7N. Therefore 7 = 0.

Note: By continuity, these theorems also hold if Kk = 0 at isolated points along ~.
Onl\'ne lectures for Math 348: Differential gec 9
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R
What is N?

For a unit speed curve 7(s) with x # 0:
e T=kN, and
e B=—7N.
@ Now N=B x T so
N=BxT+BxT
= —TNXT+xkBXxN=7TxN-xkNxB

=7B — kT.
The Frenet-Serret equations are:
Matrix form:
. d T 0 k 0 T
T=xN ZIN|=|-x 0 r||N
ds 0 B

N=-+xT+7B B 0 -7

Notice the square matrix is skew
symmetric (i.e., anti-symmetric).
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Circles again

Theorem

If a unit speed space curve vy : | — R3 has 7 =0 and xk = const # 0 for all t € I,
then vy is part of a circle of radius 1/k.

Proof:
@ 7 = 0 implies that  lies in a plane T1.
@ B is a constant vector field along v normal to 1.
o N= —xkT+7B=—kT soT—&—%N:O.

Since k = const, can write last formula as < (v + 1N) = 0.
Integrate: v + %N =pforp=(ab,c)cNcCR:
— n(s) —pll = £ = const.

That's the equation of a sphere of radius 1/ about centre p.

The curve is a great circle: intersection of the sphere with plane I that
contains the sphere’s centre p.
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Fundamental theorem for space curves

Theorem

Lety: I —TR3and# : 1 — R3 be two unit speed curves with the same domain I,
same curvature (s), and same torsion 7(s) for all s € I.
Then there is a direct isometry M : R3 — R3 such that

(s) = M(y(s)) = (Mo v)(s) forall's € I.

Furthermore, if k : | — R is a smooth positive function and ift: | — R is a
smooth function, then there is a unit speed curve v : | — R3 whose curvature is k
and whose torsion is t.

v

Proof.
See text, pp 52-53. O

v

Something to think about: What might the fundamental theorem of curves look
like in R*? in R"? in Minkowski spacetime (for those studying general relativity)?
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Lecture 6: Isoperimetric inequality
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Jordan curve theorem

Simple closed curves, also called Jordan curves, are closed plane curves that do
not self-intersect.

Theorem (Jordan curve theorem)

Every simple closed curve separates R? into two disjoint regions,
called the interior and exterior regions.

The interior region is bounded (contained within a circle).

The exterior region is unbounded.

Simple statement, surprisingly difficult to prove:
see graduate level algebraic topology texts for proof.
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The isoperimetric inequality

Theorem

Let v : | — R? be a simple closed curve of length L(7y), enclosing a region of area
A(v). Then

AR) < o (L)

Equality holds iff ~ is a circle.

This simple theorem has motivated a great many proofs and almost as many
profound ideas. The most common proof uses

Theorem (Wirtinger's inequality)
Let F : [0,7] — R be a smooth function with F(0) = F(m) = 0. Then

] (%)2 dt > ](F(t))2 dt,
0 0

and equality holds iff F(t) = Csint, C = const.
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Proof of isoperimetric inequality

@ Unit speed closed curve =, arclength L, positioned so that (0) =
© Reparametrize by t = Z*. Then t € [0, 7], speed is ||¥(t)[| = £ = const.
@ Polar coordinates: 7(t) —( (t),0(t)). Then

™

2= 3@ =7 [P de=r [ (#+02F) & @

0

@ From Calculus, area enclosed by a polar curve is
A= 5 (xy — xy)dt = S (t)0(t)dt. 2)
0 0

Combine (1) and (2):

r 1 f .2 22 2
E_A_Z/(r + re0° —2r G)dt—

™

/ [+ 7 (67 —20)] ot

0 0
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Isoperimetric inequality continued

@ Complete the square:

12 1 T o o ol 2
E—A—Z/[r—r +r (9—1>}dt
0
1] ()
ZZ/[rz—rz]dt
0

by Wirtinger's inequality, which we recall says that [ F?dt > [ r?dt for any
0 0
smooth function r(t) such that r(0) = r(w) = 0.

@ This proves the inequality.
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N
Case of equality

. 2 . . .
We still have to show that i—ﬂ = Aiff v is a circle.

. . 2
@ If vis a circle, then L = 27r so —‘f = 7r2.
T

e . . 2
@ But if 7y is a circle, then A = 7wr?. Hence i—ﬂ = A.

. 2 . .
@ Must prove converse: that if i—ﬂ = A then 7 is a circle.

o Use &= — A=0in first line of (3):

_ L _1Tr 2 2, 2, 2
O—E—A_Z/[r—r+r(9—1)]dt
0
N TS O
_4/[r r]dt+4/r((9 1) dt
0 0
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Equality case continued

@ Last slide: O:%f[r —r]dt—i— f ( —1)2dt.

@ By Wirtinger, first integral on right is nonnegative. Second integral on right
is obviously nonnegative. Thus, each integral must vanish:

T s

/[r'2—r2] dt=0 and /rz(é—l)zdtzo-

0 0
oButf (—1) dt=0 = =1 = 6 =t+ 0, for 6y = const.
Slmpllfy Rotate axes to get g = 0, then 6 = t.
© And 1 [[F?=r?]dt =0 = r = Csint by the equality case of Wirtinger.
0

@ So r = Csin 6, which is polar equation of circle that passes through the

origin. (Exercise: Obtain the Cartesian form x* + (y — %)2 = %2)
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N
Addendum: Sketch of proof of Wirtinger's inequality

Set-up:
o Define G(t) = F(t)/sint, t € (0, 7).

limeor G(£) = limeor £ = lim,or 48 = Jim, o+ F/(t). Exists

int t
because F is smooth. Like?wise, lim; .- (5(t) exists. So define G(0), G(n)

by continuity (i.e., G(0) := lim;_ 0+ G(t)).
Then G : [0,7] — R is smooth.
Then F(t) = G(t)sint, so F(t) = G(t)sint+ G(t)cost.

@ Use this an integration by parts (details: text p 61) to compute

s

F2(t) — F2(t)) dt — WG2()sin2 dt > 0.
/( ¢ t)t O/ t tdt

0

@ This proves the inequality.
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N
Addendum: Sketch of equality case

o Last slide: [ <F2(t) - F2(t)) dt = [ G2(t)sin? tdt > 0.

0 0

@ From this, if [ (Fz(t) - F2(t)> dt = 0, then necessarily
0

[ G?(t)sin® tdt = 0.
0

@ Because the integrand is nonnegative, the integral is zero only if
G(t)sint =0 for all t € [0, 7].

@ Then G(t) =0, so G(t) = C = const.

@ Since G(t) = F(t)/sint, we have F(t) = Csint, as required.
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Lecture 7: What is a surface?
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Review some basic concepts

Definition
An open set in R" is a set S that contains a neighbourhood of each of its points.
That is, if p € S, then there is an € > 0 such that g € S whenever ||p — q|| < e.

@ The ball of radius a > 0, {p € R? |||p|| < a}, is open.

@ The closed ball of radius a > 0, {p € R? |[|p|| < a}, is not open.

Definition

Let X CR™, Y C R". The function f : X = Y
is continuous at xg if, given that f(xp) = yo,

then points near xg are mapped to points near yj.
That is, f is continuous at xg if, for any € > 0,
we can make |f(x) — f(xo)| < e

whenever |x — xp| < ¢ for some § > 0.
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Homeomorphism

Definition (Equivalent definition of continuity)

f: X — R" with X C R™ is continuous if and only if for every open set V C R”
there is an open set U C R™ such that UN X = {x € X|f(x) € V}.

Definition

If f: X — Y is continuous and bijective (injective and surjective; in other words,
one-to-one and onto) and if f~1: Y — X is continuous, then f is called a
homeomorphism, and we say that X and Y are homeomorphic.
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R
Definition of a surface

Definition

A subset S C R3 is a surface if for every point p € S there are open sets U C R?
and W C R3 with p € W such that SN W is homeomorphic to U.

@ A homeomorphism X : U — SN W
is called a surface patch or a
parametrization of SN W.

@ For (u,v) € UCR? X(u,v)is a
parametrized surface.
@ A collection of surface patches

whose union covers S is an atlas for

S.

@ Notation: Text uses
oc:U— SN W where | used
X:U=5Snw.
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Example: Planes

@ Every plane M in R? is a surface
with an atlas consisting of just one
patch.

o Let (u,v) € R%

@ Let p L q be vectors tangent to I1.
@ Let a be a fixed point in 1.

@ Then X(u,v)=x=a+ up+ vq.

@ Inverse mapping: X 1(x) =
(u,v)=((b—a)-p,(b—a)-q)
since p L q.
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Smooth surfaces

Definition
A function f : U — R” from an open set U C R™ is smooth if each component f;
of f is continuous in each argument and has continuous partial derivatives at all

orders at every u = (uy,...,Uy) € U. If f is smooth, we sometimes write
f € C°(R") or simply f € C.

@ A surface patch X : U — R3
may or may not be smooth.

@ Example: the single-napped cone
X(u,v) = (u,v,Vu?+ v?) has no smooth

patches containing origin (u, v) = (0, 0).
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N
Regular patch

Definition
A surface patch X : U — R3, U C R?, is regular if it is smooth and the vectors

N X _ (axl 0Xs ax3>

““9u \Ou’ du’ du
X (9% 0% X
YTy \ v dv v

are linearly independent; equivalently, if X, x X, # 0 for all (u,v) € U.

o

When this condition holds, the set {X,, X, } is a basis set for the tangent plane to
the surface at the point X(u, v).

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 7/16



Allowable patches and atlases

Definition
If X : U — R3is a regular surface patch and if X is a homeomorphism from U to
an open subset of S then X : U — R3 is an allowable surface patch.

v

Definition
A smooth surface is a surface S such that, for each p € S, there is an allowable
surface patch X : U — R3 with p € X(U).

Definition

A collection of allowable surface patches for a surface S such that each pe S
belongs to at least one patch is an atlas for S. A maximal atlas for a smooth
surface S is one that contains every allowable surface patch for S.
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Example: Stereographic projection

@ Project S — R?
o 2 ={(xy,2)®+y*+22=1}.
o P={(x,y,2)|z=0}

@ Draw line from north pole N, meets

geS?andteP.

@ This patch, call it oy, maps t to g,

&)=
@ Patch covers every point of S? O L7 =%

except M.

@ A similar patch os covers every
point of S? except the south pole
S.
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Patches for stereographic projection

@ Projection from N = (0,0, 1) gives the patch

on(u,v) =(x,y,2) € S* C R® where (u,v) € P C R?

_ 2u 2v v+ v2-1
A\ v+ R v 41
@ Projection from S = (0,0, —1) gives the patch

os(ii, V) =(x,y,z) € S* C R® where (u,v) € P C R?

B 2ii 21— P
C\PH P+ R+ PR+ R+ R+ 1
@ Together, both patches cover S2. They form an atlas for S?.

@ The patches overlap: every point of S? except N = (0,0,1) and
S5 =(0,0,—1) lies in both patches.
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Transition maps

Definition
If two coordinate patches X : U — R3 and X : U — RR3 overlap on a region
V C R3, we can define transition maps
d:=X"toX:0U—U
X(i,7) = X(u,v) = X(d(d, 7)) = (X o ®)(d, ¥).

Theorem
The transition maps of a smooth surface are smooth maps.

@ The proof of this theorem is in Chapter 5 of the text.

@ Transition maps are sometimes called coordinate transformations.
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R
Jacobian determinants

@ Assume X : U — R3 is a regular surface patch, U € R2 is open, & : U — U
is a smooth bijection.

@ Then X = o o ® is smooth. We have X (i, V) = X(u,v) = X o &(i, V).

(o5
Xt

@ Chain rule: X; = 2% = 9X0u 4 9X0v _ %Xu + %X‘,.

9096 T ov o6
@ Matrix form: [ }

BEEE

@ The Jacobian matrix is [J(®)] = [ i

o5
i
S5
<
Q

@ Likewise: )N(g =

|

x 3 matrices, not column vectors.)

Q
Xt
Q
x
S
+

<t

0
uX, + X,

o5
<t
o5
<

Q

o IR
I
Q|

Q?lQ}Q)lQJ
SUSSHIS
SSSE

<t

13

v ] ()] { ic ] (Note:

3
<t =

x X

v

2

3

<t

I
N

Q
<
5

Q)|

G |. Its determinant is the

av oy
Jacobian determinant or simply the Jacobian of ®.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 12



Jacobian determinants continued

@ From last slide:

. ou ov
Xi = %Xu %X‘,
~ ou v
Xy %Xu %XV
@ Then
. -~ Oudv  Ouldv
X[,XX\”;—(%%—%%>XUXXV

= (det J(®)) X, x X, .

@ The formula B .
Xa x Xy = (det J(®)) X, x X,

will be important later.
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Properties of Jacobians

@ Three overlapping patches X, X = X o ®, and X =Xo®, so that
)A(:)N(o&):(Xod))o&):Xo(d)o&)),

@ Then [J(® o ®)] = [J(®)][J(P)] (proof: use chain rule).

@ Special case: ® = &1 Then [J(® o ®71)] = [J(P)][J(P 1

@ But ® 0 ! =id = identity map id(u, v) = (u, v), so

R O T

@ Conclude that [J(®)] is invertible, so det[J(®)] # 0.
@ Indeed, [J(®)]7L = [J(¢71)].

} — @)U

e If X is regular, then X, x X, # 0. Since X; x Xy = (det J(®)) X, x X, and

now det[J(®)] # 0, then X is regular too.

@ Theorem: Let U, U C R? be open and let X : U — R3 be a regular surface

patch. Let ®: U — U be a smooth bijection with smooth inverse. Then

X=Xod:U—-R3isa regular surface patch.
Onl\'ne lectures for Math 348: Differential gec
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Smooth maps between smooth surfaces

@ Smooth surfaces Sp, S,.

@ Patch X; : U; — R3 covers S; SSERRRREREREL:
@ Patch X, : Us — R3 covers S,. @
@ Map f ::1 S1 — S5 is smooth if the
z:jgoi%_ ofoXy from U; to Us is %, /S M X
13

@ Well-defined: If f is smooth using D) @/

patches Xi, X», it is smooth using AT

any other smooth patches. : "
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Diffeomorphisms

Definition

If f: S, — S, is smooth and bijective and f~1 : S, — S; is smooth, then f is a
diffeomorphism and we say that S; and S, are diffeomorphic.

Theorem

If f: 51 — S, is a diffeomorphism and X1 : U — S; is an allowable surface patch
for Sy, then X5 :=f o Xy : U — S, is an allowable surface patch for S,.

Proof: text p 83.

Definition

If f:5; — S5 is smooth, say that about

each p € 5; there's an open set O, > p such that
f(Op) is open in Sy, and say that

flo, : Op — f(Op) is a diffeomorphism.

Then we say that f is a local diffeomorphism.
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Lecture 8: Tangents, normals, orientations
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N
Tangents

@ Say v:/ — R3 is a smooth space curve, with image in surface S.
@ Then tangent vector ¥(to) to v at p = ¥(tp) is tangent to S at p.

@ The set of all tangents vectors to to curves in S through p is the tangent
space (or tangent plane) T,S to S at p.

Theorem

Let X : U — R3 be a regular
surface patch for surface S.
Letpe S. Let (u,v) € U.

Then T,S is the subspace of R3
spanned by the vectors {X,, X, }.
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Proof

@ Curve (u(t),v(t)) € U C R2

@ Use X to lift to curve v(t) = X(u(t), v(t)) in S.
@ Let p=~(to) = X(uo, vo)-

0 (1) = FLg + X = X,i+ X,v.

@ Hence tangent vector ¥(t) at p
belongs to Span{X,(to), X, (t0)}-

@ Conversely, any vector w € Span{X,(uo, v), X, (uo, vo) }
can be written as w = aX,(tp) + bX,(t).

@ Define curve y(t) = X(up + a(t — to), vo + b(t — to)).
@ Then ~(to) = X(uo, vo) and ¥(ty) = aX,(uo, vo) + bX, (o, vo) = w.

@ Hence any w € Span{X,(uo, v), X, (uo, vo)} is tangent to a curve in S
through p, and so is in T,S.
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Dimension and basis

Last theorem: for regular patch X : U — R3: (u,v) — p, then {X,, X, }
spans TpS.

@ X is a regular patch so X, x X, #0.

Then {X,, X, } is a linearly independent set.

A linearly independent spanning set is a basis set.
{Xy, X, } is a basis for T,S.

Then T,S is 2-dimensional.
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Parameter curves

@ Let up, vo € R be constants and (up, vp) € U.
@ Let X : U — R3 be a surface patch for surface S.
@ The map u— X(u, vp) is a curve (i.e., y(u) = (u, w)).

@ The map v — X(up, v) is a curve.

@ These maps are called parameter curves
or coordinate curves.

@ Their tangents are X, (u, v) and X, (uo, v) respectively.
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Pushforwards

@ f:5— Sisasmooth map
between surfaces (or possibly from

S to itself).
@ pe S, we T,5, where w = (tp)
is tangent to some curve « at

V(to) = p-
@ Let 4 be the curve f o+ through

p = f(p), and let w = 7(to) be 7
tangent to 4 at f(p).

@ We call w the pushforward of w.

—<e
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Derivative of a diffeomorphism

@ Recall linear approximation in Calculus: Ay = f'(x)Ax.

@ Derivatives convert “tangent vectors” 2% along curves x(t) to “tangent

At
vectors” Ay along curves y(t) where y = f(x).

Definition (Derivative of a diffeomorphism)

@ The derivative of f at p € S is the linear map Dyf : 7,5 — Ty, S defined
such that D,f(w) = W for any w € T,5.

@ In a patch X : U — R3 with p = X(uo, w), the components of D,f are the
partial derivatives of f o X along the parameter curves:

d d

T lu=uf (X(w:v0)) s (Dpf)(Xv) = |

(Dpf)(Xu) = f(X(uo, v)) -

@ Infinitely many curves through p with tangent w.

@ Definition of derivative does not depend on which such curve we use: text p
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Normals and orientability

@ Every plane P in R3 has

o infinitely many normals (if N is normal to P, so is kN for any k # 0),

but
e two unit normals =N, where N is normal to P and ||N|| = 1.

@ If X : U — R3 is a regular patch for surface S and if p = X(ug, w) € S,
then {X,(uo, vo), X, (uo, vo)} is a basis for TpS. This gives a unique choice
of normal:

Xy x Xy

Nx == ———— at p = X(uo, vo).
Xy > X |

This choice is called the standard unit normal for the patch X.
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Orientations

o If X:U—R3is another regular patch then Xi x Xy = (det J(9))X, x X,,
J=Jacobian, ® : U — U is the transition map.

Soxfe | ders XX, _ ded Nx, detJ>0,
[Kax Xo[] = Tdet JITXuxX, T Tdet J] —Nx, detJ <O0.

@ Then I§|)~< =

Definition
A surface S is orientable if there exists an atlas A for S such that, if ® is the

transition map between any two surface patches in A, then det(J(®)) >0
wherever ¢ is defined.
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Final points

Theorem

If S is an orientable surface with an atlas A as in the definition, then there is a
smooth choice of unit normal at every point of S.

Proof: Take the standard unit normal in each patch in A. By the above
calculation, Ny = Nx whenever patches overlap.
Definition (Orientation)

Such a choice of smooth unit normal at every point of S is called an orientation
for S, and then S is said to be oriented.

To state the obvious, any oriented surface is orientable.
Examples (see handwritten PDF notes):
@ The Mdbius band (not orientable).

@ The 2-dimensional torus (orientable).
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Lecture 9: The first fundamental form 1FF
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The first fundamental form (1FF) of a surface

Definition (First fundamental form)

The 1FF of a surface S at p is the restriction of the inner product in R3 (i.e., the
dot product) to vectors in T,S:

(u,v)ps=u-v, uve TPSCR3.

@ Usually just write {u,v) (omit subscripts p, S when no confusion can occur).
@ Older books sometimes use a roman /, as in /(u,v) = (u,v). We will use F;.
@ In Riemannian geometry, the 1FF is called the induced metric on S.

@ Can consider the 1FF to be the map that associates to each p € S an inner
product (-,-), on T,S at p € S.
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The 1FF on a single surface patch

The 1FF (-,-)p,s is a symmetric bilinear form.

Surface patch X : U — R3? containing p.
Basis {X,, X, } for T,S,sove T,5§ = v =aX,+(X,.
(v,v)x = a®(Xy, X,) +2a6(X,, X,) + B2(X,, X, ).

@ Notation: When expressed in the above basis, we write (-, ), x.
o Write
2
E :<XL,,XU> = ”XUH )
F= (X, X)) =X, Xy, = (v,v) = Ea? +2Faf + GB?
2
G =(X,,X) = HXVH )
@ Define the linear maps du and dv (scalar projection) by
o du(v) =«
o dv(v)=p§

o Then (v,v)x = E du(v) du(v) + 2F du(v) dv(v) + G dv(v) dv(v).
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Explicit form for the 1FF on a patch

@ Patch X : U — R3, U c R2.

@ From last slide, can write the 1FF as
(v,v)x = E du(v) du(v) + 2F du(v) dv(v) + G dv(v) dv(v).
@ Often write (v,v) = (E dudu+ 2F dudv + G dv dv) (v,v) or simply
ds® = Edu® + 2Fdudv + Gdv?.

This notation is sometimes called the line element form of the 1FF.

@ Matrix for (-,-)p x in {X,, X,} basis:

[]:/]:[l,f: g]

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec
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Arclength and line element form

@ The 1FF can be used to find the arclength of a space curve ~ lying on
surface S.

@ Say v : [a, b] — R? lies within one patch X : U — R3 of S, so
v(t) = X(u(t), v(t)).

) Then&:%%"‘%—)\f%:qu-{-\}Xw

o (4,%) = Ei? +2Fav + Gv? where E, F, G are evaluated at 7(t).

@ Arclength

b

b b
ds . o
s— [as= [ = [Iitnlae= [t3.3) 2

a
b

= / VEM(0)i2 +2F(y(1))av + G(~(t))v2dt.

a
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Why are the projections called du, dv?

@ Two overlapping patches X : U — R3 and X:0—R3forS.

o v=aX,+ X, =aX; + AX; with X(u,v) = X(i, ¥).
o X;= OX _ DX 0Qu 4 0XOv _ x Ou 4 x Ov

Bbi — ou 8u+ ov Oii ”E)u von-
R OX _ 0Xou | 09Xy _ x du L x v
° Xo =57 =%uov T ovor = Xugs + Xvgp-

(st + ) %
(v) + 22di(v).

dii
@ X,-component: 8 = dv(v) = d% —1—53—; = g—d (v) + 3~dv(v)

U<

® Sov=aX,+ X, =aX;+ g:( Qu Bg—)
3

® X,-component: a = du(v) = &%% + %4 = 24

il

@ This gives an easy mnemonic for the transformation rules
(u,v) — (@, ) = ®~1(u, v); compare to chain rule for differentials, which
gives:
du ou ov ov

du = 8“d 7% —dV and dv = 8”d +%dv.
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Example: Surfaces of revolution

2 < S
r
f{’*ﬂw
.umx
|
| y L]
AaaE s
f
I

@ v(u) = (f(u),0,g(u)), f(v) >0, is called the profile curve.

o Unit speed if f2(u) + g2(u) = 1.
@ Surface X(u,v) = (f(u)cos v, f(u)sinv, g(u)).
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1FF of a surface of revolution

Surface X(u,v) = (f(u)cos v, f(u)sinv, g(u)).
Basis for T,5:

X, = (f(u) cos v, f(u)sin v,g(u)) , Xy = (—f(u)sinv, f(u) cosv,0).

E = || X,||> = f2(u) + &%(u) = 1 if profile curve is unit speed.

@ F=X,-X,=—ffcosvsinv + ffsinvcosv = 0.

G = [X]* = f(u).

- 2 _ 2 2 2 . . _ 1 0
@ 1FF is ds* = du® + f*(u)dv® or in matrix form [Fj] = [ 0 ) |
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Example: a sphere

@ Profile curve: semi-circle x = Va2 — z2, a > 0.
@ Unit speed parametrization: y(u) = (asin¥,0,acos g) u € [0, ar].

Surface of revolution X(u, v) = a (sin £ cosv,sin £sinv,cos ), u € [0, an],
v € [0,27), is a sphere of radius a.

Then f(u) = asin %, g(u) = acos 4.
o 1FF is ds? = du? + f2(u)dv? = du? + a®sin’ “dv2.

@ Looks more familiar if we let ¢ = & € [0, 7], 0 = v € [0, 27):

ds® = a* (d¢® + sin® pd6?) .
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Pullbacks

@ Saype S;andv,w e T,5.
@ Let ¥ = D,f(v), W = D,f(w) be push-forwards.
@ Let (-, -)q.s, be the 1IFF on S, g = f(p).

Definition (pullback metric)
We define an inner product f*(-,-), s, called the pullback of (-,-)q.s, by f, by

f*<V7W>P751 = <‘7’W>f(P)752 = <Dva’ DPfW>f(P)752'

Notation: When comparing 1FFs on two surfaces, say S; and S, we will
sometimes use parentheses rather than angle brackets to distinguish them; e.g.,

()5 and (),
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Local isometry and pullbacks

Definition (Local isometry)

Let f : S; — S, be a smooth map between surfaces. If for every curve v : | — R3
in Sy, itsimagey=foy: [l — R3 in S, has the same arclength, then f is a local
isometry, and we say that S; and S, are locally isometric.

@ Let (-, -)p s, be the 1FF on S;.
@ Let (+,-)q,s, be the 1IFF on S, g = f(p), for some smooth map f : §; — 5.

Theorem

Say that f*(-,")p.s, = (,*)p.s, forall p € Sy. Ify: 1 —R3 is a curve in Sy with
arclength s and % = f o~y : | — R3 is its image curve in S, with arclength §, then
s=5 and so f is a local isometry.
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Proof

@ Arclength of v : [to, t;] — R3 in S;:
ty
_ 1/2
5—/<7 5.5 9t
to
@ Arclength of ¥ = f o~y : [t, 1] — R3 in Sy:
ty

NZ/(Df( ). DF(3)) 00 s, dt /\/Tdt

to

@ Butif f*(,-), 5, =()p,s forall p€ S, these two expressions are clearly
equal.

The converse is also true, but harder to prove so we'll skip the proof:
Theorem

If s = § for all curves vy is S; and their images 7 = f o~y in S,, then
(1,7, =" ("Y» ), for a//p € 51
Onlme lectures for Math 348: Differential gec 12 / 14
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Moreover...

Theorem
(v,v) = f*(v,v) for allv € T,S iff (v,w) = f*(v,w) for all v,w € T,S.

Proof.
If (v,v) = f*(v,v) for all v € T,S, then compute

(v+w,v+w)=r7"(v+w,v+w)
= (v,v) + 2(v,w) + (w,w) = f*(v,v) + 2f"(v,w) + " (w, w)
= 2(v,w) = 2" (v, w)

and we are done. This is an example of the polarization identity.

Theorem

A smooth map f : S; — S, is a local isometry if and only if the symmetric
bilinear forms (-,-)p and f*(-,-), on T,S1 are equal for all p € 5.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec
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Local isometries and the 1FF

If our smooth map f is a diffeomorphism (i.e., if it has a smooth inverse), then

Corollary

A local diffeomorphism f : S1 — S is a local isometry if and only if, for any
surface patch X for Sy, the patches X and X = f o X of S, have the same 1FF:

<'7 ')X = f*('v '))~(,p'

In other words, if f is a local diffeomorphism from S; to S;, the geometry
encoded in the 1FF is the same about p € §; as it is f(p) € Sz.
Proof: See text p 128.
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Lecture 10: Equiareal maps
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Area of a surface

@ Surface S, parameters (u,v) € U.
@ Surface patch X : U — R3.
@ Basis {X,, X,} for T,S.

@ Small parallelogram of area AuAv
in U.

@ Image has sides X,Au, X,Av in §
and area AA = || X, x X, || AuAv.

@ Let R be a region in U and
R = X(R) be its image in S. The
area of R is

AX(R):/dA:/ Xy x X, || dudv.
R U
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Area “well-defined”

Theorem

Ax(R) does not depend on the choice of regular coordinate patch X : U — R3

v

In consequence, we can simply write A(R), without a subscript
Proof.

If X : U — R3 is another regular coordinate patch covering R and ¢ : U — U is
smooth, we already know that

Xa x Xy = (det J())X, x X,
— & x % || = (et S(@))] 1%, x X,

:>A)~<_/HX~><X~

v_/ X, % X, || |(det J(®))| diidi

= / | Xy x X, | dudv by the change of variables formula
U

= Ax.
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Local form of area element

Theorem

In a patch X the area element dA = dAx = || X, x X,|| dudv can be written as
dA = \/det (F;)dudv, where F; is the matrix for the 1FF.

Proof.

X0 x X |I> = (Xu % X,) - (Xy % X,)

= (Xu- X)) (X, - X,) = (Xu- X,)? by a standard identity
=EG — F? =det(F)).

Area of surface region R covered by a single patch X : U — R3:

A(R):/RdA:/U\/F(}‘,)dudv.
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Equiareal maps

Definition
A local diffeomorphism f : S; — S, is equiareal if it takes each region Ry C S5 to
a region Ry = f(R1) C S, of the same area.

v

Theorem

f Sy — S, is equiareal iff for any surface patch X : U — R3 on S;, the 1FFs
o Eidu® 4 2F dudv + Gidv? if the patch X on Sy and
@ Eydu? + 2F,dudv + Gydv? if the patch f o X on S,

satisfy Ey Gy — F? = E,Gy — F2.

Proof.
E1Gy — F? = det (‘7:’51) and E;G; — F} = det (]-"152) and by the previous theorem,
the area elements equal iff these determinants are equal. O

v
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Archimedes's equiareal map

@ Unit sphere x> + y? + 22 =1
(denoted S?) and unit vertical
cylinder x2 4+ y2 = 1.

@ Let p and q lie on horizontal radial
line, with p on the sphere and g on

the cylinder.
s horizorta |
@ This defines a map f taking i
p € 52, except the poles, to some spReu ,éﬂia’:l
g on the cylinder. | cylindes Sy’

o If p=(x,y,z) then l
q=f(p) <\/ma \/mvz>-

@ Archimedes’s theorem: f is an
equiareal diffeomorphism.
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Proof of Archimedes's theorem

@ Need an atlas for S? minus the poles.

@ Take X(, ) := (cos 8 cos ¢, cos @ sin p,sin #), defined on two open sets:
Uh={-3<0<30<¢p<2rfand h={-3<0<3,—m<p<m}

@ Two patches, same formula for X : Uy — R3 and X : U, — R3.

@ Basis for tangent space: Xy = (—sin 6 cos ¢, — sin #'sin ¢, cos §),
X, = (—cos@sin g, cos b cos v, 0).

o Then E; = | Xp° =1, L = Xp - X, = 0, G = || X,,||> = cos? 6.

1 0

@ Then the determinant of the 1FF is 5
0 cos“6

’ = cos? 4.
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Proof of Archimedes's theorem continued

@ Since f(x,y,z) (W, X2+y2,z> and
X(0,9) = (x,y,z) = (cos b cos p, cos O sin p,sind), then

cosf cosy cosfsinyp
cosf ~  cosf

(F o X)(0, ) = ( ,sin9> = (cos ¢, sin @, sin 0)

@ Then (f o X)g = (0,0, cos6) and (f o X), = (—sin g, cos¢,0).
@ Then £, = ||(f o X)g||> = cos20, Fa = (f o X)g - (f 0 X), =0,
Gy = [|(Fo X)u|* = 1.

cos2f 0

@ Then the determinant of the 1FF is 0 1

‘ = cos? 6.

@ This determinant equals the one on the last slide. This completes the proof.
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Corollary: spherical triangles

@ Consider a 2-dimensional unit sphere S? defined by x? + y? + z% = 1.

@ A great circle is the curve of intersection of this sphere with a plane that
contains (0,0, 0).

@ A spherical triangle is a triangle on S? whose sides are segments of great
circles that meet at 3 vertices.

Theorem

If a spherical triangle on the unit sphere S has interior angles o, 8, and -y, then
the area of the spherical triangle is o+ +~v — .

Proof.
See text pp 145-147. Uses Archimedes’s theorem.
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Lecture 11: The second fundamental form 2FF
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Curvature of surfaces

X(u,u)&

@ Plane:

s X(ardu, o +au)

N-(X(v+ Au,v+ Av) — X(u,v)) =0 L/

@ Sphere:

N-(X(v+ Au, v+ Av) — X(u,v)) #0

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec
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@ Taylor's theorem:
X(u+ Au,v+ Av) =X(u,v) + X, (u, v)Au + X, (u, v)Av
1

+ 5 [)<uu(Au)2 +2X,, AulAv + XW(AV)2] + ...

SO
1
N- (X(u+Au,v+ Av) = X(u,v)) =5 [N Xuu(Au)® + 2N - X, AuAv
+N - X (AV)?] + ...

@ We define: L:=N-X,,, M=N-X,,, N:=N-X,,. The above equation is
1
2

@ Compare to unit speed curve (t) in R?:

N-(X(u+ Au, v+ Av) — X(u,v)) =

A+ A8 =(0) + (DAL + (OB + .
— N (y(t+ A1) — (1) = %Hs(mf +o

@ So L(Au)?> +2MAuAv + N(Av)? is a “surface version” of ks(At)>.
Onl\'ne lectures for Math 348: Differential gec 3
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The Second Fundamental Form (2FF)

Definition (Second Fundamental Form of a surface patch)

The 2FF of a surface patch X : U — R3 is the map ((-,"))x : TS x T,S = R
defined in line element form to be

Ldu? + Mdudv + Mdvdu + Ndv?,
so that
((v,w))x = Ldu(v)du(w) + Mdu(v)dv(w) + Mdv(v)du(w) + Ndv(v)dv(w).
We also write the (symmetric) matrix form as [Fj;] where

(=W F i = 00 | g |

The 2FF is also called the extrinsic curvature.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 4/
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Transformation law

Patches X : U — R3 and X : U — R3 with X(u,v) = X(&, ¥).

Chain rule X; = Xu% + XV%'

Then (using N = £N = fj;EJJ)l N) we get

N | x (6u)2+x 8v8u+x 62“+X 0u8v+x (0V)Z+X 9%y
ue "\ aii “Yonou ew  oedon " \oi

du\ 2 dv du du dv v\ 2
- L(—) +M——+O+M——+N(—) 40
oii i od oii

Xt

[=N-

1] oi Oii o Oi
In the last line, we used that N L 7,5 = Span{X,, X, }.

This is one component of the matrix equation
L m gu v L m|[ &
ERIEE R TR

@ Transformation law for 2FF: [j-://} = IdngJ)l A7 [Fu] [J].

} STLTAT)

<Y<
El|< 133
QJlQ)QJlQ)
<< <

<l|
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Gauss and Weingarten maps

Definition
The Gauss map G of an oriented surface S maps each p € S to the unit normal
N at p.

@ The set of all unit vectors based at the origin in R3 is a unit sphere S? = S2.
Therefore we may regard the Gauss map as a smooth map G : S — S?.

@ The image of the Gauss map of a plane is a single point in S?.

@ The image of the Gauss map of a graph is contained in the upper
hemisphere.

@ The image of the Gauss map of a sphere is contains every point of S2.

@ Exercise: What does the gauss map of a torus look like? (Answer: it covers
S? twice.)
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N
The Derivative of G

@ Diffeomorphism G : S — S2.

@ Derivativeat p€ S'is
DPG . TPS — TG(p)SQ.

@ Measures the change in N as
p = X(u,v) € S changes.

o AN = (D,G)(AX).

@ Since |[N|| =1, then
D,G(AX) L G(p) = N,. So
D,G(AX) € T,S.

@ Therefore, D,G : T,S — T,5.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec
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The Weingarten map

Definition (Weingarten map)

We define the Weingarten map W, s : T,5 — T,5 of the surface Sat pc S to
be the linear map W, s = —D,G.

We note that W), s is an operator or endomorphism since it maps T,S to itself.
Therefore W), s can have eigenvalues/eigenvectors.

Definition (2FF of a surface)

The second fundamental form of a surface S at p € S is the bilinear form
((-s))p,s = TpS x TS — R such that

<<V7W>>p,5 = <Wp,$(V),W>, V,W € T,,S.
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How to compute the 2FF of a surface

Theorem
Q ((-,))p.s Is bilinear.
Q ((-,))p.s is symmetric: ({v,w)),s = ((w,v)),s.
© On a surface patch X : U = R3, ((-,'))p.s = ({, ))p.x-

@ The first line above means that for a,b € R and u,v,w € T,S, then

o ((au+ bv,w)), s = a((u,w)), s + b{{v,w)), s and
o ((w,au+ bv))ps = a{(w,u))p s+ b{{w,v))ps.

This follows form the linearity of D,G.
@ If the third line is true, then the second line follows from the symmetry of

wow]

@ So we must prove the third statement.
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But first, interpret statement 2 of theorem

@ By the definition of the 2FF of a surface we have ({u,v)), s = (W(u),v),s.
@ We can also write ((v,u)), s = (W(v),u)ps.
@ Since the 1FF is symmetric, the last line gives ((v,u)), s = (u, W(v)), s.

@ Therefore, the left-hand sides of the first and third lines equal if and only if
their right-hand sides equal:

({v)ps = {{v,u)ps & (W(u),v)ps = (u, W(v))p,s

@ The left-hand equation expresses the symmetry of the 2FF. The right-hand
side expresses the self-adjointness of W with respect to the inner product
that is the 1FF.

@ The eigenvalues of a self-adjoint operator are always real numbers.
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Proving part 3

Step 1: Rewrite the surface patch 2FF Ldu® + 2Mdudv + Ndv?.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 12/

Patch X : U — R3 with standard normal N = |‘§”§§V”.

Then N- X, =0and N- X, =0.
Differentiate: N, - X, + N- X,, =0=N, - X, + N - X,,.
And N, - X, +N-X,,=0=N,- X, +N-X,,.

Using L=N-X,,, M=N-X,, and N=N - X,,, we now get
L= _Nu'Xu,
M= —N,-X,=-N,-X,,
N=—N,-X,.

Because N, N, X,,, X, € T,S, can replace dot product by (-,-) in these
expressions.



Step 2: Rewrite the surface 2FF {((v,w)), s = (W s(v),w), W, s = —D,G,
v,we T,5.

@ Choose a patch X containing p = X(uo, vp). Then:

d
Wpys(Xu) = — DPG(XU) = _E u=up G(X(u, Vo))
d
=~ =i N (U, v0) = —Nu(uo, vo)

= (W, s(Xu), Xu) = — (N, X,) =L
— L= <WP75(Xu)aXu>'

@ Similar calculations give M = (W, s(X,), Xy) = (W, s(Xy), X,) and
N = <Wp75(X\,),X\,>.

@ We conclude that when ((v,w)), s is restricted to a patch X and its
components are computed, they equal the components of the surface patch
2FF ((v,w))p x.
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Lecture 12: Normal and geodesic curvatures
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Curves on surfaces

@ 7 a unit speed curve.

o y-4=1.

° 4-5=0. ¥

@ Then 4 € Span {N,N x 4}

@ Note: N x 4 is a unit vector. d
ToS

@ ¥ = kyN + kgN x ¥ where ky and
kg are coefficients in this linear
combination.
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The components xy and x, of

@ v is a unit speed curve in surface S.
o v =ryN+rgN x 7.

@ Then ky =4 - N is called the normal curvature of +. It is due to the
bending of the surface S.

@ kg =4 (N x %) is called the geodesic curvature of ~, due to bending (i.e.,
acceleration) of curve within S.

@ Since N and N x % are unit vectors and are perpendicular to each other, then
117 = (kN -+ N < 3) - (ruN 4 rgN x 5) = 1y + .

@ But 7 is a space curve, so if has curvature « given by ||§]| = k. Then we
have the relation between curvature, geodesic curvature, and normal
curvature:

K% = /4:%, —|—/£§.
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The Frenet frame again

@ Recall principal normal n to unit speed curve ~.

1.
n=—4.
K
@ Principal normal might not lie in T,S, where ~ lies in S.
@ Let N be normal to surface S.
@ Define 1) to be angle between n and N, so n- N = cos .
@ Then

kn=%=ryN+rgN x ¥
= kn-N=xryN-N+£x,(Nx75)-N
= KCOSY =K.

2

® Then ky = Kcostp and kg = ksiny (since K% = K} + K2).
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ky is a property of the surface, not the curve

Normal to S at p is N = G(p) (Gauss map).

Curve v(t) in S passes through p = (0).

N = G| oG = (D,G)(9) = ~W(4).

Now we can compute ) )
iv=N-5=G(N-9)—N-§=-N-5=W() 5= (W(}),4)
Finally, recall the definition of the 2FF: ({v,w)) = (W(v),w

@ Then sy = ({(},%)).

Surface patch form: If y(t) = X(u(t), v(t)) where (u(t), v(t)) is a curve in
U C R? then

M
N

wn =4 [ AL/, } [4] = Li® + 2Mav + Nv2,

Theorem (Meusnier's theorem)

Any two curves that lie in a surface S and have a common tangent at some p € S
have the same normal curvature at p.
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Normal sections of a surface

Definition

A curve v : | — R3in a surface S is a
normal section if it is the curve of
intersection of S with a plane I
perpendicular to T, (;)S for every t € /.

@ ~isin both S and I1.

o dxeNforallk=1,2,....

@ Then 4,y €Tl

@ Unit speed: v L 4.
@ Then % is parallel to N.
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Normal sections continued

@ Let y(t) be a unit speed normal section of S with x # 0.
@ Let n be the principal normal to the curve: n = %’y
@ Recall ky = Kcos®, kg = Ksiny, where ¢ = ZNn.

@ Since 4 is parallel to N, then the principal normal n to the curve is parallel
to N (the normal to S), so ¢ = 0.

@ Therefore, kg = 0 and ky = £k for a normal section with nonzero
curvature. We may write its curvature as k = |sn| = [({(§,%))]-

@ By Meusnier, all curves in S tangent to a normal section at p € S have the
same Ky at p.
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Lecture 13: Parallel transport
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Covariant derivative

What can “parallel” mean on an arbitrary surface?

@ Vector field v in R3.

@ Curve v on a surface S in R3.
@ v is the derivative of v along ~.
@ N is a unit normal field for S.

@ v— (v-N)N is the component of v tangent to S.

Definition (Covariant derivative along a curve)

Given the above, we write Vv :=v — (v- N)N and call it the covariant
derivative (sometimes called the directional covariant derivative, sometimes

written V;v) of v in the direction of 4. It is the projection of v into T,(;S.
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Parallel transport

Definition
If V,v =0 along -, we say that v is parallel (in physics: parallel-transported or
covariantly constant) along 7.

Theorem
v is parallel along v if and only if v L TS for all t in the domain of ~.

Proof.
Vw:i=v—(v-N)N=0if and only if v = (v- N)N.
Then v||N. But v||N if and only if v L T_S.

Conversely, if v L T, (S for all t then v|[N, and then necessarily v = (v - N) N,
soV,v:=v—(v-N)N=0.

O

v

Remark: If a vector field in a plane 1 C R3 is parallel along a curve in I, it is
parallel in the usual sense of a translation isometry in the plane.
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Christoffel symbols

Definition (Christoffel symbols)

Let X : U — R3 be a coordinate patch and let F; =
this patch. Note that det 7; = EG — F2. The Christoffel symbols of the 1FF of

this patch are

GE, — 2FF, + FE,

1 _

" 2(EG — F?)

. . GE —FG,
Mo =T = AEG = F?)
1 _ 2GF, — GG, — FG,

27 2(EG - F?)

E F

F G } be the 1FF of

_ 2EF, - EE, - FE,

r2
1 2(EG — F2)
2 _ 2 _ EG.—FE
12 — 21 — (EG . F2)
2. _ EG —2FF, + FG,
2 2(EG — F2)

Note: Christoffel symbols depend only on the 1FF, not the 2FF, on a surface

patch.
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When can tangent vector fields be parallel?

@ Surface patch X : U — R3. Then {X,, X, } is a basis for T,S.

@ If N is normal to S at p then {X,, X,, N} is a basis for R3.
@ Express X, Xuv, X,y in this basis:
Xy =a1 Xy + a X, + asN
Xuv = Avy = bIXu + b2Xv + b3N
X =aX, + X, + csN.
for coefficients ay, ..., c3 which we will now find.
@ To start, take dot products with N:
N-X,, =as, but L:=N-X,, soas=L.

N - X,, =bs, but M:=N-X,,, so b3 =M.
N-X,, =c;3, but N:=N-X,,, soczs=N.
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..continued

@ So now we have
Xyu = a1 Xy + a2 X, + LN
Xy =Xy = i Xy + b2 X, + MN
Xw =aX,+ X, + NN.

@ Now take dot products with X,:
Xy Xoy =ar Xy - Xy + X, - X, = a1E + aoF
Xy Xaow =b1 Xy - Xy + 02Xy - X, = biE + boF
Xy X =aX, - Xy + X, - X, =aE+ ofF.

@ Taking dot products with X, yields
X, - Xyp=ar X, - Xy+ aX,- X, =aF+ aG
Xy - Xow =1 X, - Xy + b X, - X, = b1 F 4+ by G
X, Xy =aX, X, +6X, - X, =cF +cG.
@ Need to simplify the left-hand sides.
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..continued

Consider the equation X, - X,, = alE + aoF.

o Now X, - X,y = 2au(||Xu|| )=3E,.
o The above equation becomes ;E =a1E + a>F.

@ Consider the equation X, - X,, = a1F + a»G.

o Xy Xuw=2(X - Xu) — 32(X,- X,) = - 3E,.
o The above equation becomes F, — —E = 31F+ aG.
© Solve for a; = BGERLLH L, 2 = 20 e E

@ But these are two of the Christoffel symbols: a; = 1;, a, = 3.

Xyu =a1 Xy + aX, + IN=TH X, + 2 X, + LN,
Xow = Xou = b1 Xy, + b2 X, + MN =T1,X, +%,X, + MN,
Xo =a Xy + X, + NN =T3,X, +3,X, + NN.
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Gauss equations (first version)

Definition
The equations we just obtained are sometimes called the Gauss equations:

Xuw =11 Xu + T3 X, + LN,

Xuv =1 Xy + T3 X, + MN,

Xow =3 Xy + 3, X, + NN.
They provide a link between the 1FF (through the Christoffel symbols), the 2FF
(last terms on right), and transport of vector fields (the basis vectors appearing
on the left-hand sides).

We will use these to obtain related equations, also named for Gauss (and Codazzi
and Mainardi) a few lectures from now.

v
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Return to issue of parallel tangent fields

@ Curve v(t) = X(u(t), v(t)) in S, field v(t) along ~, tangent to S.
v(t) =a(t)X, + B(t)X, € TyyS
Vv =aX, + BX, + aXt + BXE where Xi = X, — (x : N) N
= aX,y + BXy + o (Xuul + Xy V) + B (Xl + X 0)
=Xy + BX, + o (T X, +TH X))
+ (av + Bu) (T1pXy + T3 X)) + BV (T Xy + T3,X,)
using the Gauss equations in the last line.

@ If v is parallel along ~, then V||N, so coefficients of X, and X, above must
both vanish.

0=d+ aull, + (av+ Bu) T, 4+ pvrl,
0 =3+ aul?, + (av + Ba) T2, + Bvl3,.

@ These are the equations of parallel transport.
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Equations of parallel transport

@ We have proved that if a vector field v = a(t) X, + 3(t)X, tangent to S is
parallel along a curve +, then necessarily

0=d+adll + (av + Ba) T, + BV,
0=8+adl? + (av + Ba) 3, + Bil3,.
@ Conversely, this system of equations has form
a(t) =f(a, B, t)
B(t) =g(a, B, t).
for smooth functions f, g. From ODE theory, there is always a unique
solution (a(t), 5(t)) (from which we can then construct v) on some open

interval containing to, given initial values ag = a(tp), Bo = B(to). This
proves:

Theorem

Let v be a curve on S. Let vy € T,S, where p = ~(ty). Then there is exactly one
vector field in T.S that is parallel along v and equal to vq at p.
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The parallel transport map

@ Let p,g € S be two points along curve v in S, where y(ty) = p and
() =g
© Define a map 59 : 7,5 — T4S as follows:

o Given vo € T,S, say v(t) is the unique parallel vector field along
v [t(), tl] — R3 with V(to) = .
o Then MN&9vy := vy where vy = v(ty).

Theorem
° I'Iqu is linear.

® [15:9 is an isometry:

(vo,wo), = (v1,w1), for vy = M5, wy = M5 wo.

Proof: text pp 175-176.
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Example: Sphere (minus the poles)

o 0 = latitude, ¢ = azimuth (longitude).

@ First patch Uy = {-3 <0< 3,0 < ¢ < 2r}.

@ Second patch U, = {-3 <0< 3, —m<op<m7}

@ X(6,p) = (cosf cos p, cosfsin p,sin ) for both patches.

of,:d02+cos29dcp2:[1 0 }

0 cos?f
oM, =13 =r3,=ri,=r}=0,1%="r3 =—tan6, I}, = —sinfcos¥.
@ Along any constant-latitude circle 6 = 6y, ¢ = t, a parallel vector field v
obeys
v=aXy+ BX,
& = — [sinfgcosby
B =atanty

@ Equator: 6y =0, so a(p) = ao, B(¢) = Bo, V() = aoXy + o X,.
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Sphere example continued

Last page: v = aXy + BX,, where & = —fsin 6y cos §p and B = atanb.

If 6y # 0, differentiate middle equation again and use bottom equation:

— &= —asin’by
= @+ (sin’fp)a =0
= a(p) = Acos(psinfby) + Bsin(psin by).

Then ﬂ(@) _ Asin(<psin 6o) Bcos(<psin 00).

cos 0y cos By
Special case: v(0) = X, so «(0) =0 and 3(0) = 1. Then A=0,
B = cos by, so a(p) = —(cos ) sin(psin ) and S(p) = cos(¢sin bp).

= v(p) = —(cosby) sin(psin By) Xy + cos(p sin ) X,

Parallel vector field initially tangent to v cannot remain so. (What happens
after one complete cycle around ~7?)
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Parallel vector field on sphere
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Lecture 14: Gaussian and mean curvatures
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N
Self-adjointness of W

Definition (Adjoint)

Say A and B are operators on a vector space V and (-,-) is an inner product for
V. If (v, A(w)) = (B(v),w) for all v,w € V then we say that B is the adjoint of
A with respect to the inner product (-, ).

@ Recall: The 2FF can be written as a symmetric matirx, so the Weingarten
map is self-adjoint wrt the inner product defined by the 1FF:

(W(v),w) = ((v,w)) = ((w,v)) = (W(w),v) = (v, W(w)).

@ W=W,s:T,5— T,S is a linear operator.

@ Self-adjoint linear operators have real eigenvalues, so

W (t1) = kit
W(t2) = koto,

with k1,k> € R and ||t1|| 75 0, ||t2|| 75 0.
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Eigenvectors of self-adjoint operators produce orthonormal
bases

@ Last slide: W(tl) = r1tyg, W(t2) = Koty, K1, K2 € R.
@ If k1 # Ky then
(W(ty),tp) = (t1, W(tp)) since W is self-adjoint
= K1 (b1, t) = Ko (t, t2)
— (/’Qz — /il) <t1,t2> =0.
and since kp # K1 then we must have t; | t5.

@ Eigenvectors belonging to distinct eigenvalues are orthogonal; normalize
them to obtain an orthonormal basis (ONB) {t;,t} for R?.

@ If k1 = Ka, the eigenspace is 2-dimensional, and from it we can choose
eigenvectors that form an ONB {ty, to}.

@ We will always label eigenvectors so that {t,to} is right-handed.
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Principal curvatures

Definition (Principal curvatures)

The eigenvalues k1 and sy of W are the principal curvatures of surface S. The
corresponding eigenvectors are the principal vectors or principal directions.

@ We can always find an orthonormal basis for T,S whose elements are
principal vectors.

@ Points at which k1 = ky are called umbilics. At umbilics, the eigenspace is
2-dimensional, so it's all of 7,5, and then:

W, s(t) = Kt

forall t € T,,S, where we write kK = k1 = k».

@ Therefore at umbilics W = kid (id is the identity map id(t) = t).
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Mean and Gauss curvatures

In an eigenvector basis, the matrix W for the Weingarten map is
o K1 0
W= [ 0 K2 :|

Definition (Mean curvature)
The mean curvature H of a surface is one-half the trace of W:
1

1
H = Etr(W) = 5(/431 +I€2).

Definition (Gauss curvature)

The Gauss curvature K = Kg is the determinant of W:

K=K = det(W) = K1K2.
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Interpretation

@ Say {t1,to} is an ONB for T, at
p € S, consisting of eigenvectors of
w.

@ Say I is a plane through p and
containing the normal N to S at p.

@ Then the (unit speed) curve of
intersection v of [T and S is a
normal section.

@ Say 4 makes angle 6 with t, so
4 = cos Ot + sin Ot,.
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Interpretation continued

@ Since 7y is a normal section, kK = Ky = ({(¥,7))p.s-

@ From last slide, 7 = cos 6ty + sin 0t,.

@ Then ky = cos® O((ty, t1)) + 2cosfsin O((t1, ts)) + sin? O((ty, t2)).
Rij, l:J,

@ Moreover, ((ti,t;)) = (W(t),t;) = ki(t;, t;) = T
0, i#j.

@ Combine last two lines:

KN = K1 0s2 0 + rpsin? 6.

@ Any curve tangent to v at p will have same k.
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Theorem

Theorem

k1 and ko are the extreme values of the normal curvature ky among all curves at
p. The max and min values occur for normal sections in orthogonal planes.

Proof:

@ Meusnier's theorem: two curves through p have same xp if they have same
tangent at p, so it suffices to extremize over unit speed normal section
curves.

@ From last slide, for these curves ky = k1 cos? 0 + Ky sin 6.

@ If kK1 = Ky, then Ky = K1 (cos2 6 + sin® 0) = K1 = Kp and Ky is constant
with respect to 6, hence constant over all curves through p.

o If k1 # Ko, then extremize:
e 0= d%m\, =2 (kp — k1) sinfcosf = (ky — k1) sin(20), so

=0,7,m, 37”, 27 at extrema.

@ If 0 =0,m,2m, then Ky = k1. If 0 = g,%’r then ky = ko.
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|
The matrix of W, x

Coordinate patch X : U — R3 for S > p, (u,v) € U.

@ Basis {X,, X, }.
. E F
@ Matrix for 1FF: F; = [ F G }
. L M
@ Matrix for 2FF: Fj = [ M N }
@ Write matrix for W as W = [ Z 2 ] for unknowns a, b, ¢, d.
o Use (W(X,), X,) = ({(Xu, Xy)). In matrix form, this is
a ¢ "TE F 11 1y gL M1
b d F G 0| M N 0
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Matrix for W), x continued

o Last slide: We used (W(X,), X,) = ((Xu, Xu)) to get aE + bF = L.
@ Next use (W(Xy,), Xy) = ((Xu, Xv)):

(L5 sl TR s ]-tn on i W[S ]
— [a b][g]:M

— aF + bG = M.

@ Likewise (W(X,), Xy,) = ((Xy, X)) yields cE + dF = M.
o (W(X,),X,) = ({(X,, X)) yields cF +dG = N.
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Matrix for W, x ... endgame

@ For the unknown elements a, b, ¢, d of W we have aE + bF = L,
aF +bG =M, cE +dF = M, cF 4+ dG = N. Can write these four as the

matrix equation
E F a c|_ | L M
F G b d| | M N |-

@ Thisis .F/W = .7://.

@ Then for the matrix of W, x we get

_ 1 G -—F L M

— 1 —

W=7 P =g —Fy [ -F E ] [ M N ]
B 1 GL— FM GM — FN
" (EG-F2) | EM—FL EN—-FM |-

® Mean curvature: H=3trW = %

@ Gauss curvature: Kg =detW = ‘Cilztt“;’l’ = %

@ Can also extract formulas for k1, ko in terms of E. ... N.
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Example: Surface of revolution

Unit speed profile curve in xz-plane: x = f(u), y =0, z = g(u),

£2(u) + &2(u) = 1.

o X(u,v)=(f(u)cosv, f(u)sinv,g(u)), f(u) >0, g(u) #0.
e X, = ( cos v, f(u)sinv g(u))
o X, = (—f(u)sinv, f(u)cosv,0).
o 7 [ IXIP XX, ]_[1 0
- [ X X X ] - [ 0 7(u) }
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Surface of revolution continued

X, % X, = (—f(u)g'(u) cos v, —F(u)g(u)sin v, f(u)f(u)).

1% x X = \/F2(0)g2(u) + F2(u) 2(u) = F(u).
N = 3557 = (—g(u) cos v, —g(u)sinv, f(u)),

Xpy = (f(u) cos v, f(u)sinv, g(u)).

Xoy = Xpy = (—f(u) sin v, f(u) cos v,O).

@ X,, = (—f(u)cosv,—f(u)sinv,0).
[ N-X, N-X,., | [Ffeg—Ffg 0
°f”—{|\|-xvu N.XW]_{ 0 fg]'
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Surface of revolution continued

1. _[1 0 fe—fe 0] [fe—fg 0
° W=7 f”_{o 1/f2H 0 fe |~ o g/f |
OH:%trW:%[fé—Fg'-i-%}.
ch;:detW:%[fg—fg'}.
@ Special case: Sphere of radius a > 0:

Unit speed profile curve y(u) = (acos £,0, asin £).

]
o surface X(u,v) = (acos ¥ cosv,acos ¥sinv,asin¥).
° f(u):ac.osg = f( )= —sin% =>.f( u)= —%_cosg.
o g(u)=asin? = g(u)=cos¥ = g(u)=—1Lsin’
' Fo_1a2 1,q2u 1 s 1
o Then fg—lfgl— —lsm 51—1— scos®?=2and £ =2
oThenH—§(5 5):3.
o And Kg = %.
o Important: Notice the dimensions. H (and k1, k2) have dimension

[distance] 1. K has dimension [distance] 2.
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N
Standard tori

Definition (Standard torus in R3)
A standard torus in R3 is any torus in the family of surfaces of revolution

obtained by revolving the profile curves

() = (a—l—bcos%,o,bsin %) a>b, uel0,2m),

about the z-axis (the vertical axis).

Exercise: For a standard torus T
@ Find R1, K2, H, KG-
@ Compute the Willmore energy W(a/b) = fT H2dA.

@ The Willmore energy of a standard torus is W(z) is a function of the single
variable z = a/b. Find z such that W(z) is a minimum. Standard tori with
a/b given by this value are called Willmore tori.

@ For more information, google “Willmore conjecture”.
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Lecture 15: Principal curvatures
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Surface area and Gauss curvature

@ Gaussmap: S:S —S%:pr> Np.
@ Disk: U= {uv?+v? <4} CR
@ Image of disk: R = X(U) C S.

@ Area of R:
A(R) = [, IXu x X, | dudv, where
{Xu, X, } is a basis for T,S.

@ GoX:U—$S2%
@ (GoX)(u,v)=N,.

@ Area of G(R) is
Ju (G o X)y x (G o X),| dudv.
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Compare areas

@ Compare A(R) and A(G(R)).
Acox(G(R)) _ Ju (G o X)y x (G o X),| dudv
Ax(R) Ju IXu x X, || dudv

@ To begin, recall (Ch 7)

W(Xu)(UQ7 Vo) = — %|u:u0
W(X,)(uo, vo) = — % v—vOG(X(u()’ v)) = —N,(uo, vo)
W(X,) x W(X,) = (aXy, + cX,) x (bX, + dX,)

G(X(u’ VO)) = _Nu(uO; VO)

= N, xN, =

using W = { b d } in {X,, X, } basis. Then

(GoX)yx(GoX), =
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Compare areas...continued

@ Then
Acox(G(R)) _ Jyll(G o X)u x (G o X)y|| dudv

Ax(R) Ju IXu x X, || dudv
_ JulKal 11X > X,|| dudv
Ju X x X, || dudv
_ JulKel dAx
JydAx

@ Take radius § of disk U to be arbitrarily small. Then
K¢ — Kg(ug, vo) = Ko = const and so

Acox(G(R)) _ Ju |Ke| dAx
Ax(R) T, dAx

— |Kol -
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Simple Gauss curvature calculations

@ Plane: Normals are parallel in R3
so K¢ = 0.

@ Sphere S2 of radius a > 0. Then
N:G:ang. Then

IIr

G(S?) =$%, so

AG(S?) ASH  4ar 1 Tt i (ﬁ’//‘

AS?) A a2 2 i
- |Kg| = 1/32.
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Umbilics

Theorem

If every point of surface S is an umbilic, then S is an open subset of a plane or a
sphere.

Proof:

@ Umbilics are points p with k1 = kp =: k. Then W(t) = kt for every t € T,,.
At an umbilic then W(X,) = kX, W(X,) = rX,.
But W(X,) = —-4& G(X(u,vp)) = —=N,. Likewise, W(X,) = —N,.

u=ug

Conclude that kX, = —N,, kX, = —N, at umbilic.

If every point of S is umbilic, these equations hold everywhere. Hence we
can differentiate them.

Then (kX,), = =Ny and (kX,), = —N.,.
@ These equations have same right-hand side, so the left-hand sides equal.
Expanding and simplifying, then
Ky Xy = Ky Xy
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Proof continued

@ Since {X,, X, } is a linearly independent set, x,X, = x,X, can hold only if
Ky = 0 = K, everywhere.

@ Thus k is constant.
@ Say k =0.

e We had kX, = —N,, kX, = —N,,so N, =0=N,.
o Then N is constant, and S must be (an open subset of) a plane.

@ Say k is a nonzero constant.
o We still have kX, = —N, and kX, = —N,.

e Then kX = —N + a, for a constant vector a.
o Then —IN = X — La. Because ||N|| =1 then
1 1|
oo
K K

This says that 5 = (x — x0)? + (v — %0)? + (z — 20)?, where
2 = (x0, Y0, 20)- It's the equation of a sphere.
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N
The 2FF of a graph

@ z = f(x,y) defines a graphical surface S C R3.

@ Parametrize: x =u, y = v, z = f(u,v).

@ One patch covers a graph: X : U — R3: (u,v) — (u, v, f(u,v)).

@ Basis vectors for T,5: X, =(1,0,f,), X, =(0,1,1,).

Il XeeXe ] [ 1+ £2 0 fuf

CIFEAI=1 X, X, X | 7| ff 1+r
e e e3

o XyxXy=| 1 0 f |=(-f,—F1).
0 1 f

o XuxX, (7fu’7fw1)
o N= IXax Xl ™\ /1472472
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The 2FF of a graph continued

o qu - (0707 fuu)y Xuv - Xvu = (anv fuv)y va = (0707 fvv)-

— (=) (=f—F,1)

@ From last slide: N = .
1+2+f2 1+ V2

. o N : qu N : Xuv _ 1 fuu fuv
° 2FF: Fu = [ N-X, N-X, } = VN [ fo o ]

@ Special case of z = f(x,y) = au® + bv?:

— 2 a 0
° Fi = Fazarars [ 0 b ]
o At a critical point Vf = (2au,2bv) = (0,0) then Fj =2 8 2 }

andf,:“ ° ,soW:]-“,_l]-',,:2[g 0

point (0,0) of f(x,y) = au® + bv?.
o So z=f(u,v) = 3 (R1U? + Rov?), for ky, ko the principal curvatures

at (0,0), and H(0,0) = a+ b= &1 + k2 and K¢(0,0) = 4ab = 4~ R;.

] at the critical
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z = f(u,v) = 3 (A1u® + Rov?)

© Elliptic point: Kg > 0, and either
K1, k2 both positive, or both
negative. S resembles elliptic
parabola.

@ Hyperbolic point: K < 0, and
K1, K2 have opposite signs. S
resembles hyperboloid.

© Parabolic point: K¢ = 0 but only
one of k1, kp is zero. S resembles
parabolic cylinder.

@ Planar point. K¢ =0,
k1 = K2 = 0. S doesn’t necessarily
resemble a plane (see text p 194).

Sutlace S neara (am)

S gk
Pt

Hypeckolic
mH w
T
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Compact K¢ < 0 surfaces do not embed in R3

The following obstruction prevents flat tori and compact hyperbolic surfaces from

globally isometrically embedding in R3.
Theorem

If S € R? is a compact surface it has a point where K¢ > 0.

Proof:
@ Define F: R3 = R: v~ F(v) = |lv]
@ Let S = compact surface, O = origin of R3.
o Let f(P) = F(OP) for OP the vector from O to P € S.

@ Maximum principle: Every continuous function with compact domain has a
maximum.

@ Then f has a maximum. Call the maximum a2, where P is the furthest
point on S from O and a = ||OP||
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Proof continued

@ Let v be a unit speed curve on S passing through P, with v(0) = P.
Then f((t)) has a maximum f(v(0)) = f(P) = a® at t = 0.
Therefore %L:Of(fy(t)) =0.

Second derivative test: 2| _ f(~(t)) < 0.

From &[,_of(7(t)) =0 and f(v(t)) = ||7(t)
0 = 27(0) - 4(0) (1)

(so 7(0) = OP L TpS; therefore (0) = OP||N).

F(7(t)) <0 and f(y(t)) = [[7(t)]%, we have

|2, we have

d2
de? ’ t=0

0 > 27(0) - 5(0) +27(0) - %(0) = 2(+(0) - (0) + 1). ()

@ From
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Proof continued

@ From ( ) on last slide, 7(0) L 4(0). Thus OP = y(0) L TpS, so

N = OP is normal to S at P.
||0P||

@ Recall: For any unit speed curve in S: 4 = kyN + £gN x 4.

@ Then rn(0) = N -5(0) = LOP - 4(0) = 14(0) - (0) < —1 by (2) of last
slide.

@ Then ky(0) < —1/a.

@ This must hold for all unit speed curves in S through P, so the maximum of
kn over all such curves at P is < —1/a.

@ Since the maximum and minimum of xy through a fixed point are principal
curvatures, we have k1 < —1/a and K < —1/a.

@ Therefore Kg = r1kp > 1/a> >0at P € S. QED.
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Lecture 16: Geodesics on surfaces
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Geodesics and minimal curves

Definition
A geodesic in S is a curve 7y such that ¥ is perpendicular to the tangent plane
T,(#)S (including possibly 4 = 0) for each t.

If v is a geodesic in S and N is normal to S, then 4||N (including possibly ¥ = 0).
Properties:

@ Geodesics have constant speed.
Proof: % (¥-49) =2%-4=0since ¥ L TS, so - = const.

@ A unit speed curve 7y is geodesic if and only if it has zero geodesic curvature
kg = 0.
Proof: Recall kg := 4 - (N x 4). First, if v is geodesic then either ¥ = 0 or
7|IN; either way we see that k; = 0. Conversely, if kg = 0 then either ¥ =0
of ¥ L N x 4, and then 5 € Span{N,+}. Since 4 -4 = 0, then 4||N. But
then v is geodesic.
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Properties continued

@ Recall a vector v is parallel along v iff v L T, (»S. Letting v =+ then:

‘ Geodesics in S parallel-transport their own tangent vectors.

VA =45 -N)N=0

@ If a (segment of a) straight line in R3 lies on a surface S, it's a geodesic of S.
Proof: Can parametrize line as (t) = at + b (unit speed: ||a|| =1). Then
i(t) =0,

@ Any normal section of S, parametrized by arclength, is a geodesic. (Recall

that normal sections are curves of intersection of S with a plane that
contains the normal to S. As a special case, great circles are geodesics.)
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The geodesic equations: set-up

@ Patch X : U = R3: (u,v) — X(u,v).
o Let (u(t), v(t)) be a curve in U.

@ Then ~(t) = X(u(t), v(t)) is a curve in S, unit speed (reparametrize if
necessary).

© Tangent: §(t) = 2Xdu 4 9Xdv — X ii(t) + X, v(t).
@ 7 is geodesic, so ¥||N for N normal to S.

@ Theny-X,=0,v-X,=0.

@ Equivalently, ¥ — (- N)N = 0.

@ In other words, V¥ = 0.
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If %||N then 4 - X, =0, 5 - X, = 0.

@ Consider the equation %4 - X, = 0:

0= Xy = S (3 X,) — 4 - Ko where () = X,i(£) + X,9(2)
:t(Eu+Fv) (Xut + X, v) - (Xuull + Xy v)
jt (Ei+ Fv) — (X, - Xou) 0P — (Xu - Xoy + Xy Xow) 0V — X, - Xy V2,
where we used that 5 - X, = || X,||?0 + X, - X,v = Ei + Fv.
@ Now X, - Xy, = (X Xy) = 3E,. Similarly,

X X + X, - xu = 2(X,-X,) = F, and

U du

u
Xy Xy =3 OU(X\, - Xy) = %G Use these to simplify the above equation.

@ Get 0= E(Eu—l—Fv) — 5 [Euu + 2F,av + Gu\'/z].

@ Likewise, our other equation, 4 - X, = 0, yields
0=4(Fi+ GV)—L[E,i?+2F,uv+ G,v?].
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The geodesic equations

The geodesic equations are any of the following three equivalent sets of equations
along a curve ¥(t) on S:

@ Vector form: V.4 = 0.

@ Component form:

1

0= % (Ei+Fv) =3 [Eui? + 2F,0v 4 G, V2]
1

0= % (Fu+ Gv) — > [E,i? +2F,uv + G,V

@ Component form written using Christoffel symbols:
0 =ii+ %+ 2M,ov + M2
0=V +T23®+2r%av + M3,v?
@ We've proved equivalence of the first two forms above. Equivalence of these
with the third form is Proposition 7.4.5 of the text.
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Existence and uniqueness of geodesics

Theorem

For each p € S and each v € T,S there is a unique maximal geodesic ~y defined
on an open interval | 3 ty such that v(t) = p, ¥(to) = v.

Proof:
@ The equations
0=ii+ 0%+ 2,0 + 3,02
0=V+T3?+2rav + 3,2
have the form
i=f(u,v,u,v),
v=g(u,v,a,v),
for smooth functions f, g : Q@ = R, Q c R*.

@ ODE theory: There is a unique solution of this system on an open interval /
containing to, obeying initial conditions u(ty) = a, v(ty) = b, u(ty) = c,
V(to) =d.
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Proof continued

o Write v(t) = X(u(t), v(t)).

@ Then 4(t) = X,u+ X,v.

o Initial data y(ty) = p = X(u(to), u(to)) = X(a, b) give u(ty) = a, v(to) = b.
o Initial data ¥(tp) = v = cX,, + dX, give u(ty) = ¢, v(tp) = d.

@ Now all the conditions of the ODE existence and uniqueness theorem are

satisfied. QED.
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N
Example: Unit cylinder

@ Patch X(u,v) = (cos u,sin u, v).
X, = (=sinu,cosu,0), X, =(0,0,1).
Then E = [[X, P =1, F=X,-X, =0, G =X, |>*=1

@ Geodesic equations:

%(EL'I-F Fv) — % [EuiP + 2F,0v + G,v°] = i =0,
%(Fu +Gv) — % [E,i® +2F,0v + G,v?] =V =0.

Solutions: u(t) = At+ B, v(t) = Ct+ D, for A,B,C,D € R.
~(t) = X(u(t), v(t)) = (cos(At + B),sin(At + B), Ct + D).
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|
v(t) = (cos(At + B),sin(At + B), Ct + D)

@ For A=0, get
~(t) = (cos B,sin B, Ct + D).

These are vertical lines. A=0 j T ,f
ven heal
@ For A#0and C #0, get Loces

~(t) = (cosT,sinT, kT + D) where

T:=At+B, k=% D =D- 5. A#O
This is a circular helix. C 70 g
circulan ‘

@ A#0but C=0, get Relix
~(t) = (cosT,sin T, D), where

0% hre )
_ c=o0
These are circles. ciaplas =
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Lecture 17: Minimizing the arclength
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The geodesic equations: from last lecture

The geodesic equations are any of the following three equivalent sets of equations
along a curve y(t) on S:

@ Vector form: V.7 = 0.

@ Component form:
d , _. . 1 2 . 2
0 :E(Eu—i— Fv)— 5 [Eui® + 2F,0v + Guv°]
d 1
0=— (Fi+GV)—3 [E,i? + 2F, 0V + G,V
@ Component form written using Christoffel symbols:

0 =ii + T} %4 2Mov + M2
0=V+Ti?+2rhav + 3,2

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 2/10



N
First integral

Define g := Ei? + 2F v + Gv2.

Differentiate and use geodesic equations. Get & = 0.

@ Then g = const along any geodesic.

Therefore ||§(t)|| is constant along any geodesic .

@ For later convenience, multiply geodesic equations by 1/,/g, which can now
be moved inside the t-derivative.

d (Ei+Fv
—$< NG ) 2\/_[Eu—l—ZFuv—i—Gv]
d (Fi+ Gv
=— E, 2F,
0 dt( N > 2\/_[ i + uv—l—Gv]
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Minimizing curves

Definition

Say § > 0, € > 0. Consider a function « : (—6,8) x (—e¢,¢) — R3 with image
contained in a single patch X : U — R3 of surface S.

@ For each \ € (—4,6) then v*(t) = a(\, t) is a curve.

@ Say there is an a and a b with —e < a < b < € and points p,q € S such
that a(A, a) = p, a(A, b) = g for all A € (=4, ).

@ Say that 1°(t) =: ¥(t) is a geodesic from p = y(a) to g = y(b).

Then « is a one parameter variation of the geodesic ~(t).

®(,€): Prrzae,

¥ L'Z)U': }zﬂ(.‘z )
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N
Arclength

@ The arclength of the curve v*(t) = a(\, t), t € [a, b], is

a—?()\, t)H dt.

b b
L(A):/W(t)”dt:/’ :

@ Minimize this function. The condition for the curve v(t) = ~°(t) to be a

critical point of L is
i 0 0
o
_0:/5]A_0( 5()‘ >dt

b
1 Og
/ 28 oot

 £)

(1)

where

g\ t) = —()\t —||’y (®)|]° = E (%) +2F (i*) () + 6 (v)°.
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Differentiating g

@ Last slide: We used the coordinate patch X : UR3 to describe the curve v*

using the curve (u*(t), v (t)) in U, where X(u?(t), v (t)) =

g—i’ = % |E () +2F (i) (V) + G (v)]

ou ov 5%u
(E 3 Ev5>( ) +2E0—+ +...

(8.
o We wrote g(\, t) = |3*(1)||° = E (6*)% + 2F (&*) (v*) + G (#)*.

o Now differentiate g (for simplicity, write u = u?, v = v?*):

OOt
(Eu +2Fuv—|—Gv)g)\ (Eu —|—2Fuv+Gv)
92u v
+2(EU+FV)6)\8 +2(FU+GV)8>\3T_

@ Plug this into equation (1) of previous slide.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec

ov
o\

()

6 /10



..continued

@ Plugging equation (2) into equation (1) produces

dL ou
:ﬁh /2\/_{(Eu +2Fuv+Gv)a)\

. .. o\ OV
+ (E,0* + 2F,0v + G, v?) 8)\} dt

b
1 %u 9?
+/\/§ [(Eu+Fv) EYr +(Fa+ Gv) B

@ The integral in the final line can be integrated by parts. It becomes
b
_ / O (Ea+Fv\ou 0 (FutGv)ov] .
ot N3 ox ot N3 oA

b
(Ea+ Fv)— +(Fu+ Gv) g/\]

1
+—
&
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..continued

@ We have f [(Eu+ Fv) 8%+ (Fu+ Gv) %]: = 0 because
%(2) = 35(0) = (6) = %(8) = 0.
@ Putting everything else together we can write

0=L'(0)= % o f (US4 + V%] dt where

1 0 (Edu+Fv
U:_ EU +2F UV+GV <—>

8 Fa+ Gv

b
@ Key point: We require 0 = L'(0) = [ [U% + V%] dt for all % and %.

a
This can only happen if U =0 and V = 0 (for a proof, see text).
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The equations U =10, V=0

@ From equations (3), the equations U =0 and V =0 are

5' Eu+ Fv
8 Fia+ Gv

@ But these are the geodesic equations!

Theorem

For all smooth curves ~ from p to q in S, the arclength functions L[] is a
stationary point with respect to any one-parameter family of variations of v on S
if and only if v is a geodesic of S.
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Final remarks

@ We worked on one patch X : U — R3 with smooth curves. Simple to
generalize to finitely many patches and to variations that can include
piecewise smooth curves. The critical points are still (smooth) geodesics.

@ Geodesics are critical points of arclength but not all geodesics are absolute
of even local minima. Example:

o Segments of great circles on spheres (intersections of the sphere with
any plane through the origin) are geodesics.

o No segment of a great circle that begins at the north pole and extends
past the south pole can be a minimum, nor even a local minimum, of
arclength.

@ A geodesic is a minimizing curve or minimizing geodesic if it is a local
minimum. Minimizing geodesics don't always exist in general, but will
always exist if the surface is Cauchy complete.

@ The idea of a geodesic can be extended beyond surfaces to Riemannian
manifolds and to metric spaces.
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Lecture 18: Gauss-Codazzi-Mainardi equations, Theorema Egregium
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Gauss-Codazzi-Mainardi equations

Reminder:

Surface S with surface patch X : U — R3. (u,v) € U.
LFF of patch is E(u, v)du? + 2F (u, v)dudv + G(u, v)dv2.
2FF of patch is L(u, v)du? + 2M(u, v)dudv + N(u, v)dv>.
Let N be the unit normal to the surface S.
Gauss equations:

Xow =TT X + T3 X, + LN

Xuw =T1oXu + T X, + MN

X =T5Xy + 3, X, + NN

The Christoffel symbols depend only on the 1FF; e.g., 1, =
etc.

2(EG—F?)
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A tedious calculation

@ Differentiating the Gauss equations, compute (X,,), and (X,

@ But partial derivatives commute, so (Xyuy), = (Xuw),,-

V)u'

@ In resulting equation, replace X,,, X,,, X\, using Gauss equations again.

Simplify. Get:

ori ort
0= (G- G 4 it - rhrh) X,

Oh M | pnr2, L2, — 12, 1 1A%, ) X (1)
8V 5U 11" 12 127 11 127 12 11% 22 v
+ (L, = My —TL+THM—THM+ T3 N)N

+ LN, — MN,

o UseN-X,=N-X, =0, N-N,=3(N-N), =0, N-N, =

Then

L, — M, —TLL4+T{ M —-T2,M+T3,N=0.
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Codazzi-Mainardi equations

@ Last slide:
L, — M, —TLL4+T{ M —-T2,M+T3N=0.

@ Can repeat the procedure, starting instead by computing (X,,), and (Xu),
and subtracting them to get zero. Get
M, — Ny — T3 L+ T1,M —T5,M + T2,N = 0.

@ The two equations above are named for Codazzi and Mainardi.

@ But can also subtract the equation at the top (equation (2) from last slide)
from equation (1) of the last slide. Get (1) with its third line removed:

ori ort
0= ( 2 2 - r%zriz) Xu

ov du
or? or? 3
(G- TRt - rhrh - hrh iy ) x @
+ LN, — MN,.
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Simplify LN, — MN,

@ When we introduced Weingarten map (Lecture 11), we had
W(X,) = —DG(X,) = —N, where G = N = Gauss map.

o Similarly, W(X,) = —DG(X,) = —N,.

@ Can express this using E, ..., N since in matrix notation W = .Fflfu.

@ After some calculation, get
LN, — MN, = %’&%"Q [FX, — EX,] = K¢ [FXy — EX\].
@ Use this to substitute for LN, — MN,, in (3) (last slide).
@ Resulting equation has X,-component:
oty I,
ov ou
@ The X,-component is
oy, _ o,
ov ou
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Gauss curvature equations

@ Last two equations were derived from (X,), — (Xu), = 0. Get two more
equations from (X,,), — (Xw), = 0.

@ All four such equations are called the Gauss equations (we derived them by
starting from another set of equations called Gauss equations).

v

@ We can write the Gauss equations by isolating Kg:

EKg = (ril) - (riz) + rl F%2 + M55 — Tl — MLl

FKe = (r12) ( )v r22r11a
FKe = ( ) (F§2)u - r22r§15
GKg = ( ) (rh)v I-22 + 5y — Tl — Mol g,

@ And recall Codazzi-Mainardi:
L, — M, =ThLL-T{;M+T3,M—-T3N,
M, — N, =T3,L—TL,M+T3,M —T2,N.
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Ugly equations, beautiful results

@ Four different equations for Kg. Therefore, there are identities amongst the
right-hand sides, showing that they are all equal (these are called Bianchi
identities).

@ Combining the four Gauss equations, we get a determinant formula for Kg:

_% vv+Fuv_%Guu %Eu Fu_%Ev 0 %Ev %Gu
F,— %G, E F - %E\, E F
ke 1q, F G ¢, F ¢
E F |
e

@ Kg=detW = ‘iittf%’,’ = k1Ko only depends on the first fundamental form of
the surface! This statement is often called the Theorema Egregium

(remarkable theorem) of Gauss, though we will use the name for a corollary.
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Relations between the 1FF and 2FF7

0 Kg=detW = ‘izttf;’l’ so we now have a relation between the 1FF and 2FF.

@ The Codazzi-Mainardi equations also relate the 1FF and 2FF.

@ These are the only such relations. (If the 1FF completely determined the
2FF, one of the assumptions of the following theorem would be redundant.)

Theorem

IfFX:U—R3and X : U— R3 are two surface patches with the same 1FF and
2FF, there is a direct isometry ® of R3 such that X = ® o X.

This is an analogue for surfaces of the fundamental theorem for plane curves.
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K¢ for a surface of revolution

_%Evv %Guu %Eu _%Ev 0 %Ev %Gu

16, E 0 |- %E‘, E 0

K 1G, 0 G 3G, 0 G
G — 2
E 0
0 G

+

sl ()& ()] o (452

@ Recall the divergence of a vector field V = (V! V?) on U:
divV = 8V1 + (’)V2

o If F=0andalso £ =1, get Ko = —3 2% () = ~ L %4E.
@ Surface of revolution has 1FF du? + f2(u)dv? (so E =1, G = f2(u)). Then

Ko = —F(u)/f(u).
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Theorema Egregium

Theorem (Theorema Egregium)

The Gauss curvature is preserved by local isometries.

Proof.

@ f:5 — S is a local isometry if it is a local diffeomorphism that maps any
curve in S; to a curve of the same length in S,.

@ A local diffeo is a local isometry iff surface patches X; : U — R3 for S; and
Xy = foX;:U— R3for S; have same 1FF [text, Corollary 6.3.2].

@ But K is completely determined by the 1FF.

@ Meaning: Gives a necessary condition for two surfaces to have the same
“local intrinsic geometry” (the 1FF); e.g., If two surfaces have different
values of, say, sup K¢, they cannot be isometric.

@ Naive question: Is it a sufficient condition? In what sense?
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Consequence for map making

Theorem

Any geographic map of the Earth’s surface must distort distances.

Proof.
. . 0 0

@ Geographic maps are regions of planes. Planes have W), = 0 0|

Ke =detW = 0.
. . 10

@ The Earth is (approximately) a round sphere, so Wy, = [ 01 } o)
Ke =detW =1.

e 0#1L

O

o

When we study the Gauss-Bonnet theorem, we will see that this argument does
not require the Earth to be perfectly or approximately round.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 11/

11



Lecture 19: Minimal surfaces 1
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Minimal surfaces

Definition

Consider a surface S.

If the 2FF of S vanishes everywhere, S is totally geodesic.
If K¢ vanishes everywhere (so det W = 0), S is Gauss flat or intrinsically flat.
If the mean curvature vanishes everywhere H = 0, S is a minimal surface.

A surface that minimizes area is a least area surface.

Just as geodesics are extrema of the arclength, compact minimal surfaces
are extrema of the area.

Every least area surface is a minimal surface, but not every minimal surface
is a least area surface.

Minimal surfaces always minimize area compared to other surfaces which
differ only in a “sufficiently small region”.
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A few examples

@ Planes ax + by + cz = d.

@ Catenoid
X(u,v) = (x(u,v), y(u, v), z(u, v))
x = cosh(u) cos(v)
y = cosh(u)sin(v)
@ Enneper's surface
X(v) = (x(u ), (0, v). 2w V)
x(u,v) = %(1—%—|—v2)
y(u,V)I%(lf%erUz)
1
3

z(u,v) = 3 (¥ — v?)
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Variation of area

@ Family of surface patches

X1 U - R3 Fouily °f ,,--\m(u,u)
T € (=6,0) for § > 0. Suntaces /
52,
@ Require map (u,v,7) — X()(u,v) X7 o
to be smooth. bn ack T

@ Define the variation vector field
¢:=2L T:OX(T)(U’ v) =

X big|,—o.

@ 7 is a simple closed curve
containing interior region int(7y).

@ Area of int(y) is
AlT) = finw dAx ).
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Variation of area: set-up

o XM(u,v) = X(7,u,v).

@ The boundary curve doesn't vary: ®(u,v) =0 if X(1,u,v) =~.
@ For each X(7,u,v), we have the basis {X,, X,, N}.

@ Then & = a(7, u, v)N + b(7, u, v)X, + c(7, u, v)X,.

© Area A(7) = [ I1Xu X Xoll dudv = [ N« (X, x X,) dudv.

n

o Ar) = &= ﬁnt("/) a% (N- (Xy x X)) dudv.

@ N is a unit vector, so N L N. Therefore N L X, x X,, so N - (Xy x X,) =0.
® Then A(m) = 92 = [,y N - 2= (Xu x X,) dudv.

=4 =

® Then A(r) = 4 = fint(w N - (Xu x X, + X, x Xv) dudv, where X = %.

=4 =
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First variation of area

o Last slide: A(r) = 4 = fint(w N - (Xu x X, + Xy % XV) dudv, where

v _ OX

@ Calculation in text p 310 then gives %|

Jiiy [ (BVEG=F?) + (eVEG = F2):O—:23 (EG — F?) H] dudv,

LG— 2MF+NE

Where H = (EG—F?)

@ Use Green's theorem fintm (% — %) dudv = f,y(fdu + gdv).

o Get | = [ VEG—F*(bdv —cdu) =2 [, .y aH (EG — F?) dudv

@ ® =0 along v, so b= c = 0 in line integral along ~.

@ First variation of area formula:

F o = =2 fi(y @H (EG — F?) dudv = —2 [\ aH+/det Fjdudv.
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Lecture 20: Plateau’s problem, minimal surfaces 2
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Plateau’s problem

@ First variation of area: %L:o =2 fint(v) aH+/det Fidudv.

@ a = a(0,u,v) is the normal component of the variation vector field
® = aN + bX, + cX, (last lecture).

@ Stationary points: 92| _ =0 for all aiff H =0 on int(y).

@ Plateau’s problem: Given a simple closed curve 7 : [a, 8] — R3, find a least
area surface whose boundary is .

@ Step 1: Find the minimal surfaces (the critical points of area) spanning .
These are minimal surfaces H = 0.

@ Soap films spanning a ring are solutions of Plateau’s problem

@ Soap bubbles are not usually solutions of Plateau’s problem. Bubbles are
supported by air pressure, and are CMC surfaces (constant mean curvature
surfaces). They obey H = ¢ = const, so minimal surfaces H =0 are a
special case.
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Nonpositive curvature

Theorem (Gaussian curvature of minimal surfaces)

Minimal surfaces in R® have K¢ < 0.

Proof.
@ If S is a minimal surface then H = 0 at each point of S.
® H =1 (k1 + k2) (k; = principal curvatures).

@ Then k1 and k; have opposite signs at each point, or one of them is zero; so
their product is negative, or zero.

@ Then Kg = k1Kk2 must be negative, or zero.
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No compact minimal surfaces in R3

@ Recall a surface S C R3 is compact if it is bounded so it lies within some
sphere, and complete so Cauchy sequences converge. (Some definitions also
require no boundary, but that follows from our definition of a surface.)

@ A sphere is compact. So is a torus. A punctured sphere (i.e., a sphere minus
a point) is not compact. A plane is not compact.

Theorem

There are no compact minimal surfaces embedded in R3.

Proof.

@ At every point of a minimal surface, 0 = 2H = k1 + k3, so the principal
curvatures have opposite signs or are both zero.

@ Then K¢ = k1k2 < 0 at every point.

@ But every compact surface has at least one point where Kg > 0.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 4/




Example of a minimal surface: A catenoid

Consider the catenoid cosh z = \/x2 + y?2 parametrized by

X(u,v) = (cosh ucosv,cosh usinv, u).

Exercise:

e Compute that F; = cosh? u [ (1)

!

@ Compute that Fj; = -10 )
0 1
1 > -1 0
@ Conclude that W = F; " Fj; = sech” u 0 1l
@ Then k1 = — sech? u, kKp = sech? u.
o H=1(k1+ ko) =0, so this is a minimal surface.
@ Kg = K1ko = —sech4 u<0.
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Minimal surfaces of revolution

Theorem

Any minimal surface that is a surface of revolution is an open subset of a
catenoid or a plane.

@ To begin proof, recall surface of revolution. If necessary, use an isometry so
that surface is revolved around z-axis.

@ Then X = (f(u)cosv, f(u)sinv, g(u)).

@ Choose profile curve to be unit speed: f2(u) + g2(u) = 1.

oWehad]-',:[(l) ;)2]’]__”:[fg6fg f(;]

_[fe-fg o
W= [ 0 g/f ]
@ This is a minimal surface iff 0 = H = fg - fg +g/f.
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Proof continued

Must solve ODE system f2 +g2 =1, fg — fg+g/f =0.
Possibilities:

(1) & = 0 on open interval.
@ 1 =0 on open interval.
© 1 #0, g # 0 except perhaps at isolated points.

Possibility 1: Then g = k = const and f2=1so0 f = +u+ ug, ug = const.
The 1FF is du? + (Fu + ug)?®dv? = 0. Writing r := +u+ up and 6 := v, get
dr? + r?d6?. This is the 1FF of a horizontal plane in polar coordinates.

Possibility 2: f_: 0 on open interval, then f(u) = k = const and g2 = 1.
But then H=fg —fg+g/f =0+0+1/k # 0. No solution.

Possibility 3: Differentiate 2+ g2 =1 to get ff + gg = 0. Use this in H on
next page.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 7



Proof continued

® We have ff+gg=0and 0 =gH = fgg — fg*>+ &2/f.
@ Combining these, then
0= — 27 — g + g2/ = —F (2 §2) + 82/F = —F + &2/f

:—f+?(1—f2>.

o Multiplying by —f, we get 0 = ff + 2 —1 = %j’—; (fz) —
@ Then di;z (f2) =2, s0 f2(u) = v* + au + b.

@ A translation of u removes the au term. We choose b = ¢? > 0 so that
2(0) > 0.

® Then f2(u) = >+ 2, so f =

W=

@ Then g = and g(u) = carcsinh £.

~/ 2+c2
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End of proof

We need only do a little rewriting:
o Define i := g(u) = carcsinh ¥, so u = csinh £.
® Then f2(u) = u® + ¢ = c2 (sinh® £ + 1) = 2 cosh® £, so f(u) = ccosh Z.
@ Then
X(u,v) =(f(u)cosv, f(u)sinv, g(u))

i i . ~
= | ccosh —cos v, ccosh —sinv, i | .
c c

@ This is a catenoid.
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The minimal graph equation

@ Graph z = f(x,y).

(1+77) =26 i+ (14£7)

. f, .
@ Mean curvature is H = 57— (text, exercise 8.1.1).
2(1+£2+£2)

@ The equation (1 + fyz) foc — 268, f + (1 + fxz) f,y = 0 is called the minimal
graph equation (or minimal surface equation).

Theorem

Consider solutions of the minimal graph equation of the form
f(x,y) = F(x)+ G(y). Up to isometry, the only solutions are planes and

’ _ cosy _m T T s
Scherk's surface z =In > %, —5 <x< 3, -5 <y < 3.
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Lecture 21: Local Gauss-Bonnet (one patch)
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Gauss Bonnet theorem 1: single patch

Theorem (Gauss Bonnet for a single surface patch)

o Let X : U — R3 be a surface patch covering surface S.

o Let y(s) be a simple closed curve separating S into two regions, the interior
int(7) and the exterior ext(7).

@ Let s be a unit speed parameter for ~y.
@ Let kg be the geodesic curvature of .

@ Let K¢ be the Gauss curvature of S.

Then

/ KcdAx + 7{ kgds = 2.
int(7) v

@ Compare: Hopf's umlaufsatz: f,y kds = 27 for a simple closed curve in R2.

@ Follows from Green's theorem [ . (Q, — P,)dudv = fv Pdu + Qdv.

int(+)
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Orthonormal basis: ONB

Surface S with normal N, patch
X:U—R3.

{Xu, Xy, N} is not an ONB.

Curve 7 in S has tangent +.
@ Choose e1,e; € TS, e; L es.

Then {e1, ez, N} is an ONB along
7.
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~ and «

Take 7(s) to be unit speed.

@ % makes angle 6 with e;.

@ 7y = cosfe; + sinfe,.

@ =—> N x4 = —sinfe; + cosfe;.

@ 7y = cosfe; + sinfé, + 0 (—sin fe; + cos fey).

@ Remark: We have not assumed a “transport law” for the e; along -, except
that they remain tangent to S, orthonormal to each other, and differentiable
wrt the parameter s along 7.

@ rg =7 (N x4)if vis unit speed.

@ Can use this to compute that

tig =0 (sin? 0 + cos? 0) + (cos B&; + sin é,) - (— sin fe; + cos fe,)

=0+sinfcosf (& e, —é1-eq) +cos?é; - ey —sin e, - e;.
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Simplify

@ rg=0+sinfcosh (e e, —é; -eq) + cos?é; - ey —sin® e - ey.
@ Two easy simplifications:
: 1d
°oé e =73%(e-e)=39(1)=0, and
: d
@ e e = E(el-ez)—el-ez = —el-ez.

) Soweget/ig:é—el-éz.

@ Integrate the result around closed curve 7:

fﬁgdSZ %Hﬂs—?{el -éyds
v v Y

:27'(—}{81 -ézds,
Y

using ¢ Ods = 9’3“ =

@ Next: Convert last term on right to area integral of K¢ (use Green's
theorem).
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Dealing with 5,57 e; - exds

@ Chain rule: &, = (9,e2)0 + (d,€2)V.

@ Then fw e - eyds = fv [e1 - (Oue2)i + e1 - (Dye2)V] ds.

@ Line integral form: ﬁy e; - e)ds = fv(el -Oyez)du + (e1 - O,e3)dv.
@ Use Green’s theorem: 3?7 Pdu + Qdv = fint(»y)(Qu — P,)dudv.

o Get fw e; - eds = fintm [0, (e1 - D,e2) — O, (e1 - D,e2)] dudv.

@ Expand/simplify: f,y e - eds = fint(,y) [(Dye1 - Dver) — (Dye1 - Dyer)] dudv.

@ So now we have

f gds = 27 — / [(Duer - Dves) — (Byer - Dyen)] dudv.
¥ int()
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The final lemma
Last slide: fy Kgds = 2w — fintm [(Dye1 - Dver) — (Oye1 - Oyer)] dudv.

Lemma

o Let the IFF of the patch X : U — R3 be Edu® + 2Fdudv + Gdv?.
@ Let the 2FF of the patch X : U — R3 be Ldu? + 2Mdudv + Ndv?.

Then Oye1 - 0ve; — D@1 Oyer = M, — Ko \/EG — F2 = Kg/det 7.

We must prove this, but first:

Corollary (Gauss-Bonnet for one patch X)
f'y kgds = 21 — fintm Kg+/det Fidudv = 21 — fint(,y) KgdAx.

Proof.
Plug the result of the theorem into the equation at the top of the slide.
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Proof of the lemma

Idea: Write 0,e;, 0,€; in the {e;, e;, N} orthonormal basis.

Simplification: e;-e; =1, s0 8u(e1 -el) =2e;-0,e; = 0.

Likewise e - &,el = 0, e '8,,92 =0, ey - aveg =0.

Then 9,€; and 9, €; have no e; component, so:
e J,e; = ae; + cN,
e O,e; = be, + dN,
e J,e0 = —fe; + gN,
) a,ez = —he; + kN,

for coefficients a, ..., k (the minus signs are for later convenience).

Then we get

auel . &,ez — 8Ve1 . 8ue2
= (aey + cN) - (—he; + kN) — (—fe; + gN) - (be, + dN)
=ck — dg.
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Proof of lemma continued...

@ N =e; x ey (since {e1, ey, N} is right-handed ONB).

@ Then (N, x N,)-N= (N, x N,)-(e1 x ep).

@ — (N, xN,)-N= (N, -e)(N, e)— (N, e)(N, - e;) (identity).

¢ — (N,xN,)-N=(N-9,e1)(N-09,e2) — (N-9,e)(N-9,e;) (Leibniz).

@ Use from last slide that:

e J,e; = ae, + cN,
e O0,e; = be, + dN,
e J,ep = —fe; + gN,
° &,eg = —he; + kN,
e — (N, xN,)-N=ck—dg.
@ Inserting this into (1) from the last slide, we have

8,,81 . 8ve2 — 8ve1 . 8[,62 = (Nu X NV) -N. (2)
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End of proof

Last slide: d,e; - 0,2 — d,e1 - 9,2 = (N, x N,) - N.
Chapter 8 (Lecture 15): N, x N, = Kg X, x X,.

Then (N, x Ny) - N = Kg(X, x X,) - N = K(X, x X,) - 16254
= (N, x N,)-N = Kg/det 77 = Kg| X, x X, || = Ke VEG — F2.

@ Then we conclude that

Oyer - 0,e — 0yer - 0,60 = KV EG — F2 = Kgv/ det Fj,

which proves the lemma, and Gauss-Bonnet follows as a corollary.
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A consequence of fintm KeodAx + 3% Kgds = 2.

Lemma

Let S be a surface covered by a single patch and bounded by a closed geodesic ~y.
Then S cannot have everywhere nonpositive Gauss curvature.

v

Proof.

Geodesics have kg =0, so |.

int(v) KedAx = 2w, so Kg > 0 somewhere on S. [

v

Recall we already had a similar result for compact surfaces without boundary.
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Lecture 22: Gauss-Bonnet for curvilinear polygons
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Curvilinear polygons

@ A curvilinear polygon is a region in ///j\

R? bounded by edges that meet at Y
= XeTT (&)
corners.
@ We denote the boundary curve by KX
n(t).

@ One surface patch X : U — R3, for
simplicity only.

@ Use X to lift it up to a region in
surface S, bounded by curve
vy=Xoll
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Curvilinear polygon definition

Definition
A curvilinear polygon is a continuous map I : R — R? such that, for some T € R
and a partition 0 =ty < t; < --- < t, = T, we have the following:
(i) (Boundary curve is closed:) M(t) =M(t') if and only if t — ¢’ is an integer
multiple of T.
(i) (Boundary curve is smooth between finitely many corners:) T is smooth at
any t € (t,',l,f;), i=1,...,n

(iii) (Corners form well-defined angles:) The one-sided derivatives

: nee) — N(t; : . M) — M-
() = tim PO gy gy MO = 00)
t 't t—t; t\(ti—1 t—ti_1
exist for each i =1,... n.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec 3/

10



Rounding off corners

@ ~(t) a unit speed curve.

o {ej, ez} an ONB.

@ 7 = cosfe; + sinfe;.

@ Plane curves: kg = ks = 0. /\ /\

@ Curve in diagram smooths out
corner with angle a. ;

1

T >\ —ew
@ Along the smooth curve: f \, 2

— 5

b,
J 0ds =0(b) —0(a) =7 — «a. J ew
a a
@ We will consider when « € [0, 27) x=zm-[T-6w+6Wh)]
is an interior angle in polygon. = n-(6)-6)
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Gauss-Bonnet for curvilinear polygons

/ KgdAX+Z/ ﬁgds+2(7r—a;):27r,
int(v)

=17 i=1
where

@ v is a simple, closed, unit speed curve bounding a curvilinear polygon in a
patch X of surface S,

@ + is a union of n smooth segments ~y; which meet at n vertices (t;),
i=1,...,n, and

@ «; € [0,27) is the interior angle at the i*® vertex.

We can also write this formula as

/ KcdAx —l—/ﬁgds => aj—(n-2)m,
int(v) ol i=1

n
where f7 means .X;f%‘
=

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential gec



Gauss-Bonnet illustrated

/ KGdAx-i-Z/HgdS:ZOz;—(n—Q)ﬂ'.
int() i=1

i=1 77
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|
Jint() KedAX + Z:l S, tgds = Z:l i —(n—2)m

Special case:

@ If ~ consists of geodesic segments ~; then
n
/ KedAx => aj—(n—2)r .
int() i=1

Corollary

@ The total curvature of a hemisphere of any radius is | KgdA = 2.

@ The total curvature of a sphere of any radius is [ KcdA = 4.

Proof.

@ Hemisphere: Boundary curve 7y is the equator, which is a geodesic.

@ Sphere: Add two hemispheres.
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Triangulations of a surface S

Definition
A triangulation of S is a collection of
curvilinear polygons such that

(i) every point of S is in at least one
polygon,

(i) any two polygons are either disjoint
or intersect at a common vertex or
along a common edge, and

(i) each edge is an edge of exactly two
polygons.

Theorem

Every compact surface can be
triangulated by finitely many curvilinear

polygons.

Mot Allowed AVl owed

< &

Sphere teiongulote]
by i#ts octonts

o

3 A(»rxces (Oc.*o«k)
12 ed&xs
6§ uverhceg

>
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Euler number (Euler characteristic)

@ Curvilinear polygons have (i) faces, J 3
(ii) edges, and (iii) vertices. & E"'a"

Vukx

@ A triangulation will have (ii) F

faces, (ii) E edges, and (iii) V Spheve teianguloted
vertices. by its octorts
Definition

The Euler number (or Euler
characteristic) of a triangulation of a
surface S is

x=F—-—E+V. 8 Laces (octants)
12 eo@gxs
e.g., Sphere triangulated by its octants 6 verhices
has y =8—-12+6=2. F-ExV=8-12t6=2
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Gauss-Bonnet theorem for compact surfaces

Theorem
For any compact surface S we have

27TX=/KGdA.
S

@ Corollary: x depends only
on the surface S, not on
the triangulation.

o We write x = x(5),

@ For any sphere, we have

x(8%) =2.
@ For any torus, we have
X(T?) = 0.
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Lecture 23 Gauss-Bonnet for compact surfaces
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Proof of Gauss-Bonnet theorem for compact surfaces

Theorem

For any compact surface S we have 2ny = fs KgdA.

Proof:

@ Consider a triangulation with
o faces f;, i=1,...,F,
o edges e, j=1,...,E, and
o vertices vx, k=1,..., V.
@ Choose the faces f; small enough so each “triangle” (i.e., curvilinear
polygon) fits in one patch X; : U; — R.
@ Say face f; is a polygon with p; edges e;,, and p; vertices vj,,
m,n=1,...,p;. Let a;j, be the interior angle of vertex v;,. Then

F F i i
/K(;dA:Z/K(;dAXi:Z{—i/ ngds—i(ﬂ—a;n)+27r} .
s i=1 7 fi i=1 m=1" €m

n=1
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Proof continued

Js KedA = — ZZ[ ngds—ZZ(w—a,n)+227r

i=1 m=1 i=1n=

F

® Last term: ) 2w = 27F.
i=1

@ Middle term:

F pi

® > > aijp is the sum over every face of every interior angle in that face.
i=1n=1

e Same as sum over every vertex of every interior angle at that vertex,

which is therefore 27V
Fpi F pi F  pi
o Also, —=>> > m=—7m>, > 1,and Y > 1 equals twice the number

i=1n=1 i=1n=1 i=1n=1 . .
of edges, since each edge belongs to two faces and so is counted twice.
F pi
o Then — > > (7 — ajp) = —271E + 27 V.
i=1n=1

o Collect results: [ KgdA = — Z Z J.. tgds +2m(—E+V +F).

i=1 m=
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Proof continued

Js KedA = — ZZ] kgds +2m(—E + V + F).

i=1 m=1

@ But Z Z J.. tgds = 0 because, AN

i=1m=1 N
when summing over faces, each
edge e;, is counted twice, once for

each face to which is belongs, but
with opposite orientations.

ka:?-(/v/w)
@ k, =7-(N x %), so Fonman
g =7 ( 7) i»—)%:rdw—ka

S U= —§ => Kgr+ —Hg.

Hence [ KcdA = 2n(—E + V + F) = 2mx(S). QED.
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A corollary

Theorem

Any two diffeomorphic compact surfaces have the same Euler number and
(therefore) the same total curvature [ KgdA.

Proof:

@ Diffeomorphisms map curves to curves, intersections of curves to
intersections of curves, etc.

@ Therefore they map triangulations by curvilinear polygons to triangulations

by curvilinear polygons, preserving the number of faces, edges, and vertices.
QED.

Remark:
@ Fj detects curvature of a surface S.

@ But Kg :=detW = ‘:iztt];’,’ depends only on Fj.

@ For S compact, then fs KgdA doesn’t even depend on local geometry
encoded in F;. It depends only on the topology of S.
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A further corollary

Theorem

Define the genus g of an orientable X(s)=2-29

compact surface S to be the “number of

holes”. Then /. SF)\%L @ g 14 %('5427: >
x(S)=2-2g.

2. Ttsrus g 3:' %(Tz):o
@ Proof by induction.

@ We've proved g=0and g =1 3. Deahla g== K(Z)==

Totus
cases.
Ml - (o 02 (= ): 2-29
@ Must prove: If true for g, it's true . Torus C:\/\/ O Y J
for g + 1.
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The induction hypothesis

@ >, triangulated n-gons by V fRumS AR
vertices, E edges, F faces, with prERARFS @_
X(E)=F-E+V=2-2g J Gan

@ T? triangulated by n-gons V' 2 Teiamgulate:

vertices, E’ edges, F' faces, with m m
x(T?) =0.

hales -

An n- cmOé hola.
@ Select one n-gon from each, and & {-nwzulo.{"w

lue them together.
glue them together EeEnrasseis w-ﬁws

@ Get V" =V + V' — n vertices

E" = E+ E — n edges, m

F" = F + F' — 2 faces. cluq\? Jons rewover

@s 2dgee , 2 tacxe
© X(Xgt1)=(F+F -2)—(E+E' - ‘ 4
n)+g(+V+V’_n):(F—E—|—V)+ v D*') X(E )z tnen
(F’_E/+V’)_2:X(Zg)—2. —2-29-2=2- 2(8+‘>'
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Corollary

Corollary
@ No surface diffeomorphic to S? has K¢ < 0 everywhere.

@ No surface diffeomorphic to a multi-torus has Kg > 0 everywhere.

Note: We already know that no compact surface in R3 has Kg < 0 everywhere.

Proof.
° sz KgdA = 2mx(S?) = 47 > 0, so Kg > 0 somewhere. This proves part 1.
° f):g KcdA =2mx(Xg) =2 —2g <0 for g > 1 so Kg < 0 somewhere. This
proves part 2.

@ Remark: Since K¢ > 0 somewhere on every compact surface embedded in
R3, and [, KgdA = 2mx(T?) = 0, this also proves that Kz < 0 somewhere

on T? c R3.
O

v
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Lecture 24: Combing hair on compact surfaces
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Stationary points of a vector field

Definition
A stationary point of a vector field V is an isolated zero of V. The index (or
multiplicity) of a stationary point p is defined as follows:

@ Enclose p within a simple closed unit speed curve ~, traversed
counterclockwise.

@ Choose any smooth vector field £ which doesn’t vanish on or inside ~.
@ Let 1) be the angle from & to V at each point of ~.

Then the multiplicity p(p) of V at p is

1 [dy
M(P)—ﬂfygds-

To understand the definition, note that 5- fv %ds = 1(b) — 1(a) where

v : [a, b] — R? is a closed curve, and 9)(b) = t(a) modulo an integer multiple of
2.
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Examples

\# I /’1 ?
= )
\'\‘[4, Yot LRz
Ly T 205~
7N 7\
2 —— 3
1. V=(x,y) has u(p) = 1. ] "_:‘LI [V’(B*"‘) I =
2. V:(y7_x) has u(p):]_ e (=5
3 V:(Xa_)/)has,uz:—l. ;

/N V=(7<,-3)//!\/
;_/s \:_n_?’_, — ¥ —

K\Z//
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Compute u(p) for V.= (x, —y)

Pick £ to have no zero: £ = (1,0) = e; will do nicely.
= V& __ x
Compute cos ¥ TVITTET ol
T / ign!
Also, sin e (careful of the sign!).
Encircle p with a simple, closed, unit speed curve traversed counterclockwise,

say v(s) = (cos s,sin s) (taking coordinates so that p is the origin).
Then cosy) =

x _ cos s
VX2 +y? \/cos? s+sin? s

= Cos s,

. _ y _ 1 _ .
siny = — e _\/coss;:j—sinzs = —sins along 7.
Read off that ¢(s) = 27 — s.
27

s

Then 22 = —1 and p(p) = 5= [(~1)ds = —1.
0

(N.B. Second-last bullet point also gives ¥(27) — ¥(0) = —27 so

2w

pu(p) = 5 {(—l)ds = 2L (y(27) — (0)) = —1 without finding %2.)
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Can you comb the hair on a sphere?

Theorem

If V is a smooth vector field on a compact surface S with n stationary points
(i.e., n isolated zeroes) p1, ..., p,, then

_Z u(pi) = x(S).

Corollary:

@ On a genus g compact surface X, we have x(Xz) =2 —2g. From the
theorem any smooth vector field V on Xz must have at least one stationary
point unless X, is a torus (so g = 1).

@ To answer the title question, “Not without a bald spot.”

@ For spheres this generalizes, and is true for all even dimensional spheres S?”
(subsets xZ + -+ x2,; =a%* a>0,in R"™ 3 (xq,...,x11)). However,
you can comb the hair on any odd-dimensional sphere smoothly, without any
bald spots (stationary points of the vector field).
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The proof

@ Surface S, vector field V,
stationary points ps, ..., pp.

@ Encircle the p; with (disjoint) unit
speed simple closed curves ;.

@ Let S’ be the closure of the region
of S outside the v; (closure means
that the ~; are included in §).

@ Triangulate S’ with curvilinear
polygons I';. V has no stationary
points in S’.

n

Z/ KgdA
int(7y;)

i=1

2w@:L&M:L&M+
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The exterior region S’

o Pick ONB {ey,e;} in S, with e; = V/||V]].

@ From a previous proof (of the “local” Gauss-Bonnet formula) for a region X
bounded by curves (;, we have

/KgdA:f e1~é2ds,
pa

for &, the derivative of e; along f;.

@ Now let ¥ be S’ and 3; be —v;. The minus sign is because
“counterclockwise about p; € int;" is clockwise about a point in S’.
(Notation: —+ is used to indicate reverse orientation, so % — —%, not the
negative of the components of v.)

@ Then

n

/, KgdA = —Z]f e; - éyds. (1)

j=1 i
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The disks int~; containing stationary points p;

@ Pick an orthonormal basis {E;, Es}.

/ KGdA:f E; - Eyds.
int y; Vi

i

@ As before, get

@ Combine (1) and (2):

n

27x(S) = /SK(;dA:/ KgdA+Z/ KedA

i—1 7 int(vi)

= —ij{ el-ézds+zn:?{ E; - Exds
i=1 7% i=1 "7
n

- 27TX(5) = Z% (E1~E2—e1-é2)ds.
i=1 /i
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N
Put the pieces together

@ Use result from “local
Gauss-Bonnet” proof. Let x, be ! 2
the geodesic curvature of ~;, let 0 Tn S : 7
be the angle from e; to 4, and let A5 6
© be the angle from E; to 4.

oThenel-ézzé—/@g. 5:'4—3“3—‘-9"7‘
® Also E; - Ey = ¢ — kg
o — E1-E2—e1-é2:¢—9.

@ Equation (3) on the last slide
becomes \/

n E-E=9¢-K
L

27x(S) = 3 ?{ (¢(5) ~ (s)) o. VTR

i=17i
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Finish the proof

n

20x(5) = Y § 5 ((s) ~ 0(9) o

=17

@ 0 is angle from e to 7.
@ ¢ is angle from E; to 4.
@ Then ¢ — 0 is angle from E; to e;.

° Butelzﬁsow—ﬁzw:anglefrom
E; to V.

@ But then ¢ 4 (p(s) —0(s)) ds =
§, Geds = 2mp(p;).

We conclude that 27x(S) = 27 Xn: wu(pi), so x(S) = Xn: u(pi). QED.
= i=1

i=1
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Post-mortem
Theorem

If V is a smooth vector field on a compact surface S with n stationary points
(i.e., n isolated zeroes) ps, ..., p,, then

_Z u(pi) = x(S).

@ Left-hand side is a statement about vector fields.

@ Right-hand side is a topological quantity.

@ No local geometry (1FF, 2FF) at all.

@ But we needed the tools of local differential geometry to prove this.

@ The real power of differential geometry, and its modern incarnation in the
form called geometric analysis, is its applicability to related but distinct
fields.
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