
Online lectures for Math 348: Differential geometry of
curves and surfaces

Eric Woolgar

Dept of Mathematical and Statistical Sciences
University of Alberta

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 1 / 25



Lecture 1: What is a curve?
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Examples of curves

1 Line in R2; e.g., y = mx + b.

2 Graph in R2; e.g., y = x2.

3 Level curve of a function in R3:
{(x , y , z)

∣∣x2 + y2 + z2 = 1} ∩ {(x , y , z)
∣∣z = 1

2}

4 Curves of intersection;
e.g.; intersect paraboloid z = x2 + y2

with plane z = 1
2y + 1.

5 Level sets are curves of intersection
of graphical surfaces z = f (x , y) with planes z = k .
The constant k is the level.
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Graphs aren’t everything

Circle x2 + y2 = a2 is not the graph of a function:
It can be “double-valued”.

Inelegant solution:
It’s the union of graphs of two functions:
y =
√
a2 − x2 and y = −

√
a2 − x2, −a ≤ x ≤ a.

Better solution: Parametrize the circle:
x(θ) = a cos θ
y(θ) = a sin θ
θ ∈ [0, 2π)
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Parametrized curves

Definition

A parametrized curve is a map γ : I → Rn, where I is a connected interval of R.

The textbook takes I to be open, because we need to define differentiation. But
sometimes we will need endpoints, and then I should be closed or half-closed (see
the last slide, where θ ∈ [0, 2π)). We won’t impose that I is always open, but will
instead assume that any differentiation applies only in the interior of I , or applies
in a one-sided sense at endpoints.

It’s very easy to parametrize a graph y = f (x).

Just choose x to be the parameter; i.e., write x(t) = t.

Then y(t) = f (t).

Don’t forget to choose domain (e.g., perhaps t ∈ (−∞,∞), perhaps not).
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Examples

The parametrized curve


x(t) = t ,

y(t) =
√
a2 − t2 ,

t ∈ [−a, a] ,

is a semi-circle.

The parametrized curve


x(t) = cos t ,

y(t) = sin t ,

t ∈ [0, 2π) ,

is a circle, traversed once

counter-clockwise.

The parametrized curve


x(t) = cos t ,

y(t) = sin t ,

t ∈ [0, 4π) ,

is a circle, traversed twice

counter-clockwise.

Notice the parametrization carries extra information not available from the
graphical description of a curve.
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Example: The astroid

The parametrized curve γ(t) =
(
cos3 t, sin3 t

)
,

t ∈ [0, 2π), is called an astroid.

Can write it as


x(t) = cos3 t

y(t) = sin3t

t ∈ [0, 2π)

Then x2/3 = cos2 t and y2/3 = sin2 t,
so x2/3 + y2/3 = 1.

Graphical form: y = ±
(
1− x2/3

)3/2
.

Level set form:

Let z = f (x , y) = x2/3 + y2/3.
Then the astroid is the level set
z = f (x , y) = 1.

Graphical and level set forms have less information than parametrized form,
but produce the same image. The image of a curve is called the trace of the
curve (not related to the trace of a matrix).
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Tangent vectors

Recall tangent line to graph y = f (x) at (x0, y0)
is y − y0 = f ′(x0) (x − x0).

Tangent vector: Any (non-zero) vector parallel to tangent line.

Parametrized form of line: Take s ∈ R and
x(s) = x0 + s
y(s) = y0 + f ′(x0)s

Differentiate wrt s: x ′(s) = 1, y ′(s) = f ′(x0).

Tangent vectors to line are the vectors parallel to (1, f ′(x0)).
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Tangent vectors to parametrized curves

Parametrized curve γ : I → Rn is a vector-valued function.

γ(t) = (γ1(t), γx(t), . . . , γn(t)) = (x1(t), x2(t), . . . , xn(t)).

Definition

γ′(t) = γ̇(t) =
dγ

dt
=

(
dγ1

dt
,
dγ2

dt
, . . . ,

dγn
dt

)
= lim

∆t→0

γ(t + ∆t)− γ(t)

∆t

Then γ′(t) is a tangent vector to curve
γ at t provided γ′(t) 6= (0, . . . , 0),

(Generally, we will just write 0 even if we mean the 0-vector (0, 0, . . . , 0).)
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Example

γ(t) = t3e1 + t2e2, t ∈ R,
{e1, e2} = orthonormal basis (ONB).

γ1(t) = t3

γ2(t) = t2

}
=⇒ y = x2/3.

Chain rule:
dy
dt = dy

dx
dx
dt .

=⇒ 2t = dy
dx · 3t

2

=⇒ dy
dx = 2t

3t2 undefined at t = 0.

Definition

A parametrized curve γ : I → Rn is

smooth at t0 ∈ I if all derivatives of all components γi (t) exist at t = t0, and

regular at t0 ∈ I if it is smooth at t0 and dγ
dt (t0) 6= (0, . . . , 0); otherwise t0 is

a singular point.

The above example is smooth but not regular at t = 0.
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The astroid again

γ(t) =
(
cos3 t, sin3 t

)
, and say

t ∈ [0, 2π).

Differentiate: γ′(t) =(
−3 sin t cos2 t, 3 sin2 t cos t

)
,

t ∈ [0, 2π).

Simplify:
γ′(t) = 3 cos t sin t (− cos t, sin t),
t ∈ [0, 2π).

Then γ′(t) = 0⇔ θ = 0, π2 , π,
3π
2 .

Therefore γ is smooth everywhere,
but it is not regular at four points.
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Lecture 2: Arclength and tangent vectors
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Arclength

Recall arclength in R2:

s =
∫
ds =

∫ √
dx2 + dy2 =

∫ √
dγ2

1 + dγ2
2 =

t1∫
t0

√(
dγ1

dt

)2

+
(

dγ2

dt

)2

dt

In Rn: s =
t1∫
t0

√(
dγ1

dt

)2

+ · · ·+
(

dγn
dt

)2

dt =
t1∫
t0

√
dγ
dt ·

dγ
dt dt =

t1∫
t0

∥∥∥ dγ
dt

∥∥∥ dt
Definition

The arclength function of a curve γ : [t0, t1]→ Rn is

s :=
t∫
t0

∥∥∥ dγ(t′)
dt′

∥∥∥ dt ′
for t ∈ [t0, t1].

Fundamental Theorem of Calculus =⇒ ds
dt =

∥∥∥ dγ(t)
dt

∥∥∥ .
This is called the speed of the curve.
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Example: Log spiral

The logarithmic spiral is the curve
γ(t) = et (cos t, sin t).

γ′(t) = et (cos t − sin t, sin t + cos t)

‖γ′‖ = et
√

(cos t − sin t)2 + (sin t + cos t)2 =
√

2et .

s(t) =
t∫
t0

√
2eτdτ =

√
2 (et − et0 ).

t0 → −∞ =⇒ γ(t0)→ (0, 0), s(t)→
√

2et .

γ : (−∞, t]→ R2 has finite arclength,
but no initial endpoint.
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Unit speed curves

If ‖γ̇(t)‖ = 1, γ is unit speed and t is an arclength parameter or unit speed
parameter.

If ‖γ̇(t)‖ = k = const > 0, γ is constant speed and t is an affine parameter.

Fact:

Let v be any unit vector field v · v = ‖v‖2 = 1.
Let γ(t) be a unit speed curve.
d
dt (v · v) = d

dt (1) = 0.

But then d
dt (γ̇ · γ̇) = 0.

Chain rule: γ̇ · γ̈ = 0.
Conclude that γ̇ ⊥ γ̈ along any unit speed curve whenever acceleration
γ̈ 6= 0.
For unit speed curves, write t := γ̇ = unit tangent vector. Note that
‖t‖ =

√
t · t = 1.
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Reparametrization

Say γ : (a, b)→ Rn is a curve, and

Say γ̃ : (ã, b̃)→ Rn is a curve.

Definition

If

there is a smooth map φ : (ã, b̃)→ (a, b)

with smooth inverse φ−1 : (a, b)→ (ã, b̃), such that

γ̃(t̃) = γ(φ(t̃)) = (γ ◦ φ)(t̃) = γ(t) for all t̃ ∈ (a, b),

then γ̃ = γ ◦ φ is a reparametrization of γ.
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Theorem

Theorem

Any reparametrization of a regular curve is also a regular curve.

Proof.

Let t = φ(t̃) and γ̃(t̃) = γ(t).

Then t̃ = φ−1(t) so t = φ(t̃) = φ(φ−1(t)).

Chain rule: dφ
dt̃

d(φ−1)
dt = 1, so dφ

dt̃
6= 0.

d γ̃
dt̃

= d
dt̃

(γ(t)) = dγ
dt

dφ
dt̃

.

Now γ is regular so dγ
dt 6= 0, and dφ

dt̃
6= 0.

Thus d γ̃
dt̃
6= 0.

Works iff reparametrization φ is smooth with smooth inverse.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 6 / 12



The arclength function of a regular curve is smooth

Say γ : I → R2 : t → (x(t), y(t)) is a regular curve.

Then x(t) and y(t) are smooth functions.

The square root function f (w) =
√
w is smooth if w 6= 0.

Since γ is regular, ẋ2 + ẏ2 6= 0.

Thus ds
dt (t) =

√
ẋ2 + ẏ2 is smooth.

Therefore s(t) =
t∫
t0

ds
dt′ (t

′)dt ′ is smooth.
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Regular curve have unit speed parametrizations

Theorem

A parametrized curve has an arclength parametrization iff it is regular.

Proof.

Curve γ̃ : Ĩ → R2 and reparametrization t = φ(t̃), such that γ(t) = γ̃(t̃).

Chain rule: d γ̃
dt̃

= dγ
dt

dt
dt̃

=⇒
∥∥∥ d γ̃

dt̃

∥∥∥ =
∥∥∥ dγ

dt

∥∥∥ ∣∣ dtdt̃ ∣∣.
⇒ If t̃ is arclength, then

∥∥∥ d γ̃
dt̃

∥∥∥ = 1, so dγ
dt is never zero. Then γ(t) is regular.

⇐ If dγ
dt 6= 0, then ds

dt =
∥∥∥ dγ

dt

∥∥∥ 6= 0, so s is smooth and strictly increasing.

Then dγ
dt = d γ̃

ds
ds
dt =⇒

∥∥∥ dγ
dt

∥∥∥ =
∥∥∥ d γ̃

ds

∥∥∥ ∣∣ dsdt ∣∣ =
∥∥∥ d γ̃

ds

∥∥∥ ds
dt .

But s =
∫ ∥∥∥ dγ

dt

∥∥∥ dt =⇒ ds
dt =

∥∥∥ dγ
dt

∥∥∥.

Compare last two lines. Then
∥∥∥ d γ̃

ds

∥∥∥ = 1, so γ̃(s) is unit speed.
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Example

Parametrize curve γ(t) =
(
cos3 t, sin3 t, cos 2t

)
∈ R3, t ∈ [0, π/2] by arclength.

Solution:

γ̇(t) =
(
−3 cos2 t sin t, 3 sin2 t cos t,−2 sin 2t

)
.

‖γ̇‖2 = 9 cos4 t sin2 t + 9 sin4 t cos2 t + 4 sin2 2t

= 9 cos2 t sin2 t + 16 cos2 t sin2 t

= 25 cos2 t sin2 t .

Then ‖γ̇‖ = 5 cos t sin t for t ∈ [0, π/2].

s =
t∫

0

‖γ̇(τ)‖ dτ = 5
t∫

0

cos τ sin τdτ = 5
2 sin2 t.

Then 2s
5 = sin2 t, so 1− 2s

5 = cos2 t, and then

cos 2t = cos2 t − sin2 t = 1− 4s
5 .

γ̃(s) =
((

1− 2s
5

)3/2
,
(

2s
5

)3/2
, 1− 4s

5

)
.
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Regular curve, non-regular parametrization

Parabola y = x2.

Regular parametrization x(t) = t, y(t) = t2, t ∈ R.

Then ẋ = 1, ẏ = 2t, and ẋ2 + ẏ2 = 1 + 4t2 6= 0.

Non-regular parametrization x(t) = t3, y(t) = t6, t ∈ R.

Then ẋ = 3t2, ẏ = 6t5, and ẋ2 + ẏ2 = 9t4 + 36t10, equals 0 when t = 0.

What went wrong: Reparametrization map φ(t) = t3 has inverse
φ−1(t) = t1/3, which is not differentiable at t = 0, so theorem on regular
reparametrizations fails.
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Closed curves

Example:

Ellipse x2

p2 + y2

q2 = 1, p, q > 0 are constants.

Parametrize as γ(t) = (p cos t, q sin t), t ∈ R.

Then γ(t + 2π) = γ(t) for all t ∈ R.

γ is 2π-periodic.

Definition

If γ(t + T ) = γ(t) for all t and for some T > 0, then γ is T-periodic.

If γ(t) = p for all t (where p ∈ Rn is a point), then γ is a constant curve.

If γ is T -periodic and not constant, then γ is a closed curve.
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Examples

Ellipses (including circles) are closed curves.

The curve γ(t) = (t2 − 1, t3 − t), t ∈ R, is not closed.

Curve has γ(−1) = γ(1) = (0, 0).
But γ(t + T ) = γ(t) with T = 2
is only true when t = −1,
not true for all t.
This curve is not closed and not periodic
but it does have a closed loop.
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Lecture 3: Curvature of plane curves
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Curvature

When is a curve ...curved?

Definition

If γ : I → Rn is a unit speed curve, then its curvature is κ := ‖γ̈‖.

Interpretation: Curvature as quadratic coefficient in Taylor’s theorem:

γ(t0 + ∆t) = γ(t0) + γ̇(t0)∆t +
1

2
γ̈(t0)(∆t)2 +O(∆t3).

Can replace γ̇(t0) by unit tangent t(t0) = γ̇(t0).

γ̇(t0) · γ̇(t0) = 1 =⇒ 2γ̇(t0) · γ̈(t0) = 0, so γ̈ ⊥ γ̇ for a unit speed curve (if
γ̈ 6= 0).

Then γ̈ = ±κn where n is unit normal vector (orthogonal to t).

Get γ(t0 + ∆t) = γ(t0) + t(t0)∆t ± 1
2κ(t0)n(t0)(∆t)2 +O(∆t3)

Two choices for n: we choose it so that {t,n} is right-handed.
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Curvature formulas: general parametrization

Say t is a general parameter for γ, and s is an arclength parameter.

Chain rule dγ
dt = dγ

ds
ds
dt =⇒ dγ

ds = dγ/dt
ds/dt .

Chain rule again d2γ
ds2 = d

ds

(
dγ/dt
ds/dt

)
= dt

ds
d
dt

(
dγ/dt
ds/dt

)
= γ̈(t)ṡ(t)−γ̇(t)s̈(t)

(ṡ(t))3 .

Now use κ =
∥∥∥ d2γ

ds2

∥∥∥.

Then κ = ‖γ̈ ṡ−γ̇ s̈‖
|ṡ|3 .

Then κ =
‖γ̈ ṡ2−γ̇ ṡ s̈‖
|ṡ|4 = ‖γ̈(γ̇·γ̇)−γ̇(γ̇·γ̈)‖

(‖γ̇‖2)2 , using that ṡ2 =
(
ds
dt

)2
= ‖γ̇‖2 = γ̇ · γ̇

and therefore ṡ s̈ = γ̇ · γ̈.

Finally, the “BAC-CAB rule” B(A · C)− C(A · B) = A× (B× C) yields

κ = ‖γ̇×(γ̈×γ̇)‖
‖γ̇‖4 .

Notice that γ̇ ⊥ γ̈ × γ̇. Thus ‖γ̇ × (γ̈ × γ̇)‖ = ‖γ̇‖ ‖γ̈ × γ̇‖, so κ = ‖γ̈×γ̇‖
‖γ̇‖3 .
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Example: Circle

Circle in R2: γ(t) = (x0 + a cos t, y0 + a sin t), t ∈ [0, 2π).

γ̇ = a(− sin t, cos t), γ̈ = −a(cos t, sin t).

Use κ = ‖γ̈×γ̇‖
‖γ̇‖3 . Think of R2 as z = 0 plane in R3.

γ̇ × γ̈ =

∣∣∣∣∣∣
e1 e2 e3

−a sin t a cos t 0
−a cos t −a sin t 0

∣∣∣∣∣∣
= e1

∣∣∣∣ a cos t 0
−a sin t 0

∣∣∣∣− e2

∣∣∣∣ −a sin t 0
−a cos t 0

∣∣∣∣+ e3

∣∣∣∣ −a sin t a cos t
−a cos t −a sin t

∣∣∣∣
= e3

(
a2 sin2 t + a2 cos2 t

)
= a2e3.

Also, ‖γ̇‖ =
√
a2 sin2 t + a2 cos2 t = a.

Then κ = a2‖e3‖
a3 = 1

a . Circles have constant curvature = 1/radius.
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Osculating circles

Definition

If a curve γ : I → R2 has curvature κ(t) 6= 0 at point p = γ(t), we define its
radius of curvature at p to be ρ(t) = 1/κ(t).

The osculating circle to γ at p
is the circle that

passes through p,

has the same tangent line as γ at p,

has radius ρ = 1
κ , and

lies on the concave side of γ.
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Signed curvature

Parametrize the curve γ(t) in R2.

The direction of increasing parameter is the orientation.

Define the unit tangent vector t = γ̇/ ‖γ̇‖.

Define the unit normal n by rotating t by π
2 counter-clockwise (also called

the right-handed sense).

Then the signed curvature κS is defined by

γ̈(s) = κSn

where s is an arclength parameter with ds/dt > 0 (i.e., same orientation as
t).

Relation to (ordinary) curvature is κ := |κS |.
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Interpretation: turning angle

Theorem (The turning angle)

There is a unique smooth function φ, called the turning angle, along the regular
curve γ such that φ(s0) = φ0 and t = (cosφ(s), sinφ(s)).

Tangent vector in {e1, e2} basis:
t = γ̇(s) = (cosφ(s), sinφ(s))

Calculate: ṫ = γ̈(s) = φ̇(s) (− sinφ(s), cosφ(s))

Normal vector in {e1, e2} basis:
n =

(
cos
(
φ(s) + π

2

)
, sin

(
φ(s) + π

2

))
= (− sinφ(s), cosφ(s))

Conclude that γ̈(s) = φ̇(s)n.

Compare to γ̈(s) = κSn to get κS(s) = φ̇(s).

The signed curvature is the rate of change of the turning angle wrt arclength.
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Hopf’s Umlaufsatz (rotation rate)

Integrate κS(s) = φ̇(s) over curve γ.

s∫
s0

κS(u)du =
s∫
s0

φ̇(u)du = φ(s)− φ(s0).

Take γ closed, with period T .

s0+T∫
s0

κS(u)du = φ(s0 + T )− φ(s0).

But φ(s0 + T )− φ(s0) = 2πk , k ∈ Z.

In fact, can argue that k = ±1 if curve traversed once; k is the winding
number.

Theorem (Hopf’s Umlaufsatz)

The total curvature of a closed curve of period T is
s0+T∫
s0

κS(u)du = ±2π.
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Lecture 4: Isometries of Rn
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Isometries of Rn

Definition (Isometry of Rn)

F : Rn → Rn is an isometry of Rn if it preserves the distance between any two
points:

‖F (v)− F (w)‖ = ‖v −w‖

for all v,w ∈ Rn.

Definition (Orthogonal matrix)

An n × n matrix P is orthogonal if its columns (rows) form an orthonormal set of
column (row) vectors. Equivalently, the transpose of P is the inverse: PT = P−1.
We write P ∈ O(n) = the group of orthogonal n × n matrices.

Theorem (All isometries of Rn)

Let F : Rn → Rn be given by F (v) = Pv + a. Here v and a are column vectors
and P is an n × n orthogonal matrix. Then F is an isometry, and all isometries of
Rn can be written this way.
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Proving that F (v) = Pv + a is an isometry

Calculate:

‖F (v)− F (w)‖2 = (F (v)− F (w)) · (F (v)− F (w))

= [Pv − Pw]T [Pv − Pw]

= [v −w]T PTP [v −w]

= [v −w]T [v −w]

= (v −w) · (v −w)

= ‖v −w‖2

This proves that F (v) = Pv + a preserves the distance, so F is an isometry.

Fact: F−1(w) = PTw − PTa is also an isometry.
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Proving all isometries can be written as F (v) = Pv + a

Orthonormal basis {ei} and vectors wi := F (ei )− F (0), i = 1, . . . , n.

The wi are unit vectors

‖wi‖ = ‖F (ei )− F (0)‖ = ‖ei − 0‖ = ‖ei‖ = 1 since F is an isometry.

Then ‖wi −wj‖2 = wi ·wi + wj ·wj − 2wi ·wj = 2− 2wi ·wj .

But ‖wi −wj‖2 = ‖F (ei )− F (ej)‖2 = ‖ei − ej‖2 = (ei − ej) · (ei − ej)

= ei · ei + ej · ej − 2ei · ej =

{
2 i 6= j

0 i = j
.

Compare last two lines to conclude that wi ⊥ wj if i 6= j .

Thus {wi} is an orthonormal basis too, and so wi = Pei for some P ∈ O(n).

Endgame: Using wi := F (ei )− F (0) then F (ei ) = wi + F (0) = Pei + a, for
some P ∈ O(n) and for a = F (0).

Finally, if F (ei ) = Pei + a for basis {ei}, then F (v) = Pv + a for all v .
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Direct isometries

P ∈ O(n) =⇒ P−1 = PT =⇒ PTP = In.

Then det(PTP) = (detP)2 = det I = 1, so detP = ±1.

If detP = 1 the corresponding isometry F is a direct isometry.

Preserves orientations of basis sets.
Includes rotations about the origin F (v) = Pv, and say P ∈ SO(n) =
special orthogonal group.
Includes translations F (v) = v + a.
Every direct isometry in R2 is a composition of a rotation about the
origin and a translation.
Every direct isometry in R3 is a composition of a rotation about an axis
through the origin and a translation.

If detP = −1 the corresponding isometry F is an opposite isometry.

Reverses orientations of bases.
Includes reflections in planes in R3.
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Fundamental theorem of plane curves

Theorem

Let k : (α, β)→ R be any smooth function.

There is a unit speed curve γ : (α, β)→ R2 whose signed curvature is
κS = k.

If γ̃ : (α, β)→ R2 is another unit speed curve with the same domain and if
its signed curvature also equals k, then there is a direct isometry
M : R2 → R2 such that

γ̃(s) = M(γ(s)) = (M ◦ γ)(s) for all s ∈ (α, β).
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Proof of part 1

Fix s0 ∈ (α, β). Given function k , define ϕ(s) =
s∫
s0

k(u)du and notice that

ϕ̇ = k(s) by Fundamental Theorem of Calculus (FTC).

Define curve γ(s) =

(
s∫
s0

cos(ϕ(u))du,
s∫
s0

sin(ϕ(u))du

)
.

Compute: γ̇(s) = (cos(ϕ(s)), sin(ϕ(s))) by FTC.

Clearly ‖γ̇‖ =
√

cos2 ϕ+ sin2 ϕ = 1 for γ is unit speed.

Also, clearly ϕ is the turning angle for our curve γ, so we know that
κS = ϕ̇(s).

But ϕ̇(s) = k(s), so κS(s) = k(s) which proves part 1.
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Proof of part 2

Two unit speed curves γ, γ̃(α, β)→ R2:

γ̇ = (cosϕ(s), sinϕ(s)), and say ϕ(s0) = 0.

˙̃γ = (cos ϕ̃(s), sin ϕ̃(s)), and say ϕ(s0) = ϕ̃0.

Then γ̃(s) =

(
s∫
s0

cos ϕ̃(u)du,
s∫
s0

sin ϕ̃(u)du

)
+ γ̃(0).

And k(s) = ˙̃ϕ(s) = ϕ̇(s), so ϕ̃(s) =
s∫
s0

k(u)du + ϕ̃(s0) = ϕ(s) + ϕ̃0.

Then γ̃(s) =

(
s∫
s0

cos (ϕ(u) + ϕ̃0) du,
s∫
s0

sin (ϕ(u) + ϕ̃0) du

)
+ γ̃(0).

Use cos(A + B) = cosA cosB − sinA sinB,
sin(A + B) = sinA cosB + cosA sinB.
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Proof of part 2 continued

=⇒

γ̃(s) =

cos ϕ̃0

s∫
s0

cosϕ(u)du − sin ϕ̃0

s∫
s0

sinϕ(u)du,

sin ϕ̃0

s∫
s0

cosϕ(u)du + cos ϕ̃0

s∫
s0

sinϕ(u)du

+ γ̃(0)

= (γ1(s) cos ϕ̃0 − γ2(s) sin ϕ̃0, γ1(s) sin ϕ̃0 + γ2(s) cos ϕ̃0)

using γ(s) = (γ1(s), γ2(s)) =

(
s∫
s0

cosϕ(u)du,
s∫
s0

sinϕ(u)du

)
.

Matrix form:[
γ̃1(s)
γ̃2(s)

]
=

[
cos ϕ̃0 − sin ϕ̃0

sin ϕ̃0 cos ϕ̃0

] [
γ1(s)
γ2(s)

]
+

[
γ̃1(s0)
γ̃2(s0)

]
=⇒

[
γ̃(s)

]
= [P(ϕ̃0)] [γ(s)] + [γ̃0] .
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Proof of part 2 continued

Last slide:
[
γ̃(s)

]
= [P(ϕ̃0)] [γ(s)] + [γ̃0], and

[P(ϕ̃0)] =

[
cos ϕ̃0 − sin ϕ̃0

sin ϕ̃0 cos ϕ̃0

]
. This is a rotation matrix.

Then γ̃ is obtained by applying a rotation P(ϕ̃0) through angle ϕ̃0 and a
translation T (|bfa), a = γ̃0, to γ.

Since the composition of a rotation and a translation is an isometry of R2,
this proves part 2.

Consequence: Every unit speed curve in R2 is completely determined by

choosing one point on the curve,

choosing the direction of t at that point, and

specifying the curvature function k(s).

and any smooth function is the curvature function of some curve.
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Example

Theorem

Any regular curve γ : (a, b)→ R2 with constant curvature κ = c > 0 is (isometric
to) a part of a circle.

Proof:

κ = c so the signed curvature is either κS(s) = c for all s or κS(s) = −c for
all s.

The circle γc+(s) = 1
c (cos(cs), sin(cs)) is unit speed; easy to check that it

has κS = c .

The circle γc−(s) = 1
c (cos(cs),− sin(cs)) is unit speed; easy to check that

it has κS = −c .

By the theorem of the previous slides, the curve γ must be isometric to one
of these two circles, with domain restricted to (a, b).
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Lecture 5: Space curves
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Cross-product: quick review

Recall A× B:

Orthonormal basis (ONB) {e1, e2, e3}.
Let A = (A1,A2,A3) = A1e1 + A2e2 + A3e3.

Let B = (B1,B2,B3) = B1e1 + B2e2 + B3e3.

Then the cross-product A× B is the vector

A× B =

∣∣∣∣∣∣
e1 e2 e3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
= e1

∣∣∣∣ A2 A3

B2 B3

∣∣∣∣− e2

∣∣∣∣ A1 A3

B1 B3

∣∣∣∣+ e3

∣∣∣∣ A1 A2

B1 B2

∣∣∣∣
= (A2B3 − A3B2) e1 + (A3B1 − A1B3) e2 + (A1B2 − A2B1) e3

Recall: A× B = −B× A, and so A× A = 0.

A× B ⊥ A and A× B ⊥ B.

‖A× B‖ = ‖A‖ ‖B‖ | sin θ|, for θ then angle between A and B.
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Space curves

Space curve γ : I → R3.

Assume γ to be unit speed: ‖γ̇(s)‖ =
√
γ̇2

1 + γ̇2
2 + γ̇2

3 = 1.

Then s is an arclength parameter.

Unit tangent vector T(s) = γ̇(s).

Curvature κ(s) = ‖γ̈(s)‖ =
∥∥∥Ṫ∥∥∥.

Principal unit normal N(s) = 1
κ(s) γ̈(s).

T ⊥ N if κ 6= 0. Proof:

T ·T = 1 =⇒ 2T · Ṫ = 0, so T ⊥ Ṫ (note that Ṫ = γ̈ 6= 0 iff κ 6= 0).
Since Ṫ = κN then T ⊥ N

Define binormal vector B = T×N.

{T,N,B} is an ONB for R3 at each point of γ, called the Frenet frame.
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Frenet frame

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 4 / 12



Frenet frame

For unit speed curves γ(s) we have

Unit tangent vector T = γ̇(s).

Principal unit normal vector N = 1
κ Ṫ = 1

κ(s) γ̈(s).

Unit binormal vector B = T×N.

Since Frenet frame {T,N,B} is an ONB, must have (up to a sign)

B = T×N

T = N× B

N = B× T

With these sign choices, the Frenet frame is a right-handed ONB.
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Torsion

For a unit speed curve, we have Ṫ = κN. What about Ḃ and Ṅ?

Differentiate B = T×N. Get Ḃ = Ṫ×N + T× Ṅ.

But Ṫ×N = κN×N = 0.

Then Ḃ = T× Ṅ.

Then Ḃ ⊥ T.

But also Ḃ ⊥ B (since 0 = d
ds (B · B) = 2B · Ḃ).

Conclude that Ḃ is parallel to N and write

Ḃ(s) =: −τ(s)N(s).

This equation defines the torsion τ(s).
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Formula for torsion

Unit speed curves γ(s):

Last slide: Ḃ = T× Ṅ and Ḃ =: −τN.

=⇒ −τN = T× Ṅ.

Then τ = −N ·
(
T× Ṅ

)
= N ·

(
Ṅ× T

)
.

Curves with arbitrary parametrization γ(t):

In above formula, replace N by N(s) = 1
κ(s) Ṫ(s) = 1

κ(s) γ̈(s).

Use chain rule to write dγ
dt = dγ

ds
ds
dt = dγ

ds ‖γ̇(t)‖, and use formula for κ.

Tedious calculation (text Prop 2.3.1) gives

τ(t) =
(γ̇ × γ̈) · ...

γ

‖γ̇ × γ̈‖2 .

Important point: When defining τ , needed to use N = 1
κ Ṫ.

=⇒When κ = 0, cannot unambiguously define τ or even the Frenet frame.
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Meaning of torsion

Curve γ with κ 6= 0 so {T,N,B} and τ defined.

Suppose τ(s) = 0 for all s along γ.

Then Ḃ = −τN =⇒ Ḃ = 0, so B is a constant vector.

Then d
ds (γ · B) = dγ

ds · B = T · B = 0 since T ⊥ B.

=⇒ γ · B = d = const all along γ.

But this is the equation of a plane
with normal vector B! To see this,
if γ = (x(s), y(s), z(s)) and B = (a, b, c),
then γ · B = d becomes ax + by + cz = d .

Theorem

If a space curve γ : I → R3 has τ(s) = 0 for all s ∈ I , then it lies in a plane. The
binormal B to γ is normal to the plane.

Note: If κ = 0 for all s ∈ I , γ is a line and lies in a plane; indeed many planes.
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The converse

Theorem

If a space curve γ : I → R3 with nonzero κ lies in a plane, it has τ(s) = 0 for all
s ∈ I .

Proof:

Say plane has normal (a, b, c). Then γ obeys (a, b, c) · γ = d .

Differentiate. Get (a, b, c) · γ̇ = (a, b, c) · T = 0, so (a, b, c) ⊥ T.

Differentiate again: (a, b, c) · Ṫ = (a, b, c) · (κN) = 0. Since κ 6= 0, then
(a, b, c) ⊥ N.

Hence (a, b, c) is parallel to B, and so B has constant direction. But B also
has constant norm, so it’s a constant vector; indeed,
B = ±(a, b, c)/

√
a2 + b2 + c2.

Then Ḃ = 0. But Ḃ = −τN. Therefore τ = 0.

Note: By continuity, these theorems also hold if κ = 0 at isolated points along γ.
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What is Ṅ?

For a unit speed curve γ(s) with κ 6= 0:

Ṫ = κN, and

Ḃ = −τN.

Now N = B× T so

Ṅ = Ḃ× T + B× Ṫ

= − τN× T + κB×N = τT×N− κN× B

= τB− κT.

The Frenet-Serret equations are:

Ṫ =κN

Ṅ = − κT + τB

Ḃ = − τN

Matrix form:

d

ds

 T
N
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B


Notice the square matrix is skew
symmetric (i.e., anti-symmetric).
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Circles again

Theorem

If a unit speed space curve γ : I → R3 has τ = 0 and κ = const 6= 0 for all t ∈ I ,
then γ is part of a circle of radius 1/κ.

Proof:

τ = 0 implies that γ lies in a plane Π.

B is a constant vector field along γ normal to Π.

Ṅ = −κT + τB = −κT so T + 1
κ Ṅ = 0.

Since κ = const, can write last formula as d
ds

(
γ + 1

κN
)

= 0.

Integrate: γ + 1
κN = p for p = (a, b, c) ∈ Π ⊂ R3.

=⇒ ‖γ(s)− p‖ = 1
κ = const.

That’s the equation of a sphere of radius 1/κ about centre p.

The curve is a great circle: intersection of the sphere with plane Π that
contains the sphere’s centre p.
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Fundamental theorem for space curves

Theorem

Let γ : I → R3 and γ̃ : I → R3 be two unit speed curves with the same domain I ,
same curvature κ(s), and same torsion τ(s) for all s ∈ I .
Then there is a direct isometry M : R3 → R3 such that

γ̃(s) = M(γ(s)) = (M ◦ γ)(s) for all s ∈ I .

Furthermore, if k : I → R is a smooth positive function and if t : I → R is a
smooth function, then there is a unit speed curve γ : I → R3 whose curvature is k
and whose torsion is t.

Proof.

See text, pp 52–53.

Something to think about: What might the fundamental theorem of curves look
like in R4? in Rn? in Minkowski spacetime (for those studying general relativity)?
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Lecture 6: Isoperimetric inequality
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Jordan curve theorem

Simple closed curves, also called Jordan curves, are closed plane curves that do
not self-intersect.

Theorem (Jordan curve theorem)

Every simple closed curve separates R2 into two disjoint regions,
called the interior and exterior regions.
The interior region is bounded (contained within a circle).
The exterior region is unbounded.

Simple statement, surprisingly difficult to prove:
see graduate level algebraic topology texts for proof.
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The isoperimetric inequality

Theorem

Let γ : I → R2 be a simple closed curve of length L(γ), enclosing a region of area
A(γ). Then

A(γ) ≤ 1

4π
(L(γ))2

.

Equality holds iff γ is a circle.

This simple theorem has motivated a great many proofs and almost as many
profound ideas. The most common proof uses

Theorem (Wirtinger’s inequality)

Let F : [0, π]→ R be a smooth function with F (0) = F (π) = 0. Then

π∫
0

(
dF

dt

)2

dt ≥
π∫

0

(F (t))2 dt,

and equality holds iff F (t) = C sin t, C = const.
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Proof of isoperimetric inequality

Unit speed closed curve γ, arclength L, positioned so that γ(0) = 0.

Reparametrize by t = πs
L . Then t ∈ [0, π], speed is ‖γ̇(t)‖ = L

π = const.

Polar coordinates: γ(t) = (r(t), θ(t)). Then

L2 = π2 ‖γ̇(t)‖2 = π

π∫
0

‖γ̇(t)‖2 dt = π

π∫
0

(
ṙ2 + r2θ̇2

)
dt. (1)

From Calculus, area enclosed by a polar curve is

A =
1

2

π∫
0

(xẏ − ẋy) dt =
1

2

π∫
0

r2(t)θ̇(t)dt. (2)

Combine (1) and (2):

L2

4π
− A =

1

4

π∫
0

(
ṙ2 + r2θ̇2 − 2r2θ̇

)
dt =

1

4

π∫
0

[
ṙ2 + r2

(
θ̇2 − 2θ̇

)]
dt.
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Isoperimetric inequality continued

Complete the square:

L2

4π
− A =

1

4

π∫
0

[
ṙ2 − r2 + r2

(
θ̇ − 1

)2
]
dt

≥ 1

4

π∫
0

[
ṙ2 − r2

]
dt

≥ 0

(3)

by Wirtinger’s inequality, which we recall says that
π∫
0

ṙ2dt ≥
π∫
0

r2dt for any

smooth function r(t) such that r(0) = r(π) = 0.

This proves the inequality.
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Case of equality

We still have to show that L2

4π = A iff γ is a circle.

If γ is a circle, then L = 2πr so L2

4π = πr2.

But if γ is a circle, then A = πr2. Hence L2

4π = A.

Must prove converse: that if L2

4π = A then γ is a circle.

Use L2

4π − A = 0 in first line of (3):

0 =
L2

4π
− A =

1

4

π∫
0

[
ṙ2 − r2 + r2

(
θ̇ − 1

)2
]
dt

=
1

4

π∫
0

[
ṙ2 − r2

]
dt +

1

4

π∫
0

r2
(
θ̇ − 1

)2

dt
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Equality case continued

Last slide: 0 = 1
4

π∫
0

[
ṙ2 − r2

]
dt + 1

4

π∫
0

r2
(
θ̇ − 1

)2

dt.

By Wirtinger, first integral on right is nonnegative. Second integral on right
is obviously nonnegative. Thus, each integral must vanish:

π∫
0

[
ṙ2 − r2

]
dt = 0 and

π∫
0

r2
(
θ̇ − 1

)2

dt = 0.

But
π∫
0

r2
(
θ̇ − 1

)2

dt = 0 =⇒ θ̇ = 1 =⇒ θ = t + θ0 for θ0 = const.

Simplify: Rotate axes to get θ0 = 0, then θ = t.

And 1
4

π∫
0

[
ṙ2 − r2

]
dt = 0 =⇒ r = C sin t by the equality case of Wirtinger.

So r = C sin θ, which is polar equation of circle that passes through the

origin. (Exercise: Obtain the Cartesian form x2 +
(
y − C

2

)2
= C 2

4 .)
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Addendum: Sketch of proof of Wirtinger’s inequality

Set-up:

Define G (t) = F (t)/ sin t, t ∈ (0, π).

limt→0+ G (t) = limt→0+
F (t)
sin t = limt→0+

F ′(t)
cos t = limt→0+ F ′(t). Exists

because F is smooth. Likewise, limt→π− G (t) exists. So define G (0), G (π)
by continuity (i.e., G (0) := limt→0+ G (t)).

Then G : [0, π]→ R is smooth.

Then F (t) = G (t) sin t, so Ḟ (t) = Ġ (t) sin t + G (t) cos t.

Use this an integration by parts (details: text p 61) to compute

π∫
0

(
Ḟ 2(t)− F 2(t)

)
dt =

π∫
0

Ġ 2(t) sin2 tdt ≥ 0.

This proves the inequality.
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Addendum: Sketch of equality case

Last slide:
π∫
0

(
Ḟ 2(t)− F 2(t)

)
dt =

π∫
0

Ġ 2(t) sin2 tdt ≥ 0.

From this, if
π∫
0

(
Ḟ 2(t)− F 2(t)

)
dt = 0, then necessarily

π∫
0

Ġ 2(t) sin2 tdt = 0.

Because the integrand is nonnegative, the integral is zero only if
Ġ (t) sin t = 0 for all t ∈ [0, π].

Then Ġ (t) = 0, so G (t) = C = const.

Since G (t) = F (t)/ sin t, we have F (t) = C sin t, as required.
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Lecture 7: What is a surface?
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Review some basic concepts

Definition

An open set in Rn is a set S that contains a neighbourhood of each of its points.
That is, if p ∈ S , then there is an ε > 0 such that q ∈ S whenever ‖p − q‖ < ε.

The ball of radius a > 0,
{
p ∈ R2

∣∣‖p‖ < a
}

, is open.

The closed ball of radius a > 0,
{
p ∈ R2

∣∣‖p‖ ≤ a
}

, is not open.

Definition

Let X ⊂ Rm, Y ⊂ Rn. The function f : X → Y
is continuous at x0 if, given that f (x0) = y0,
then points near x0 are mapped to points near y0.
That is, f is continuous at x0 if, for any ε > 0,
we can make |f (x)− f (x0)| < ε
whenever |x − x0| < δ for some δ > 0.
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Homeomorphism

Definition (Equivalent definition of continuity)

f : X → Rn with X ⊂ Rm is continuous if and only if for every open set V ⊂ Rn

there is an open set U ⊂ Rm such that U ∩ X = {x ∈ X |f (x) ∈ V }.

Definition

If f : X → Y is continuous and bijective (injective and surjective; in other words,
one-to-one and onto) and if f −1 : Y → X is continuous, then f is called a
homeomorphism, and we say that X and Y are homeomorphic.
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Definition of a surface

Definition

A subset S ⊂ R3 is a surface if for every point p ∈ S there are open sets U ⊂ R2

and W ⊂ R3 with p ∈W such that S ∩W is homeomorphic to U.

A homeomorphism X : U → S ∩W
is called a surface patch or a
parametrization of S ∩W .

For (u, v) ∈ U ⊂ R2, X (u, v) is a
parametrized surface.

A collection of surface patches
whose union covers S is an atlas for
S .

Notation: Text uses
σ : U → S ∩W where I used
X : U → S ∩W .
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Example: Planes

Every plane Π in R3 is a surface
with an atlas consisting of just one
patch.

Let (u, v) ∈ R2.

Let p ⊥ q be vectors tangent to Π.

Let a be a fixed point in Π.

Then X (u, v) = x = a + up + vq.

Inverse mapping: X−1(x) =
(u, v) = ((b− a) · p, (b− a) · q)
since p ⊥ q.
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Smooth surfaces

Definition

A function f : U → Rn from an open set U ⊂ Rm is smooth if each component fi
of f is continuous in each argument and has continuous partial derivatives at all
orders at every u = (u1, . . . , um) ∈ U. If f is smooth, we sometimes write
f ∈ C∞(Rn) or simply f ∈ C∞.

A surface patch X : U → R3

may or may not be smooth.

Example: the single-napped cone
X (u, v) = (u, v ,

√
u2 + v2) has no smooth

patches containing origin (u, v) = (0, 0).
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Regular patch

Definition

A surface patch X : U → R3, U ⊂ R2, is regular if it is smooth and the vectors

Xu =
∂X

∂u
=

(
∂X1

∂u
,
∂X2

∂u
,
∂X3

∂u

)
Xv =

∂X

∂v
=

(
∂X1

∂v
,
∂X2

∂v
,
∂X3

∂v

)
are linearly independent; equivalently, if Xu × Xv 6= 0 for all (u, v) ∈ U.

When this condition holds, the set {Xu,Xv} is a basis set for the tangent plane to
the surface at the point X (u, v).
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Allowable patches and atlases

Definition

If X : U → R3 is a regular surface patch and if X is a homeomorphism from U to
an open subset of S then X : U → R3 is an allowable surface patch.

Definition

A smooth surface is a surface S such that, for each p ∈ S , there is an allowable
surface patch X : U → R3 with p ∈ X (U).

Definition

A collection of allowable surface patches for a surface S such that each p ∈ S
belongs to at least one patch is an atlas for S . A maximal atlas for a smooth
surface S is one that contains every allowable surface patch for S .
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Example: Stereographic projection

Project S2 → R2

S2 = {(x , y , z)|x2 + y2 + z2 = 1}.

P = {(x , y , z)|z = 0}

Draw line from north pole N, meets
q ∈ S2 and t ∈ P.

This patch, call it σN , maps t to q,

Patch covers every point of S2

except N.

A similar patch σS covers every
point of S2 except the south pole
S .
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Patches for stereographic projection

Projection from N = (0, 0, 1) gives the patch

σN(u, v) = (x , y , z) ∈ S2 ⊂ R3 where (u, v) ∈ P ⊂ R2

=

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
Projection from S = (0, 0,−1) gives the patch

σS(ũ, ṽ) = (x , y , z) ∈ S2 ⊂ R3 where (u, v) ∈ P ⊂ R2

=

(
2ũ

ũ2 + ṽ2 + 1
,

2ṽ

ũ2 + ṽ2 + 1
,

1− ũ2 − ṽ2

ũ2 + ṽ2 + 1

)
Together, both patches cover S2. They form an atlas for S2.

The patches overlap: every point of S2 except N = (0, 0, 1) and
S = (0, 0,−1) lies in both patches.
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Transition maps

Definition

If two coordinate patches X : U → R3 and X̃ : Ũ → R3 overlap on a region
V ⊂ R3, we can define transition maps

Φ :=X−1 ◦ X̃ : Ũ → U

X̃ (ũ, ṽ) =X (u, v) = X (Φ(ũ, ṽ)) = (X ◦ Φ)(ũ, ṽ).

Theorem

The transition maps of a smooth surface are smooth maps.

The proof of this theorem is in Chapter 5 of the text.

Transition maps are sometimes called coordinate transformations.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 11 / 16



Jacobian determinants

Assume X : U → R3 is a regular surface patch, U ∈ R2 is open, Φ : Ũ → U
is a smooth bijection.

Then X̃ = σ ◦ Φ is smooth. We have X̃ (ũ, ṽ) = X (u, v) = X ◦ Φ(ũ, ṽ).

Chain rule: X̃ũ = ∂X̃
∂ũ = ∂X

∂u
∂u
∂ũ + ∂X

∂v
∂v
∂ũ = ∂u

∂ũXu + ∂v
∂ũXv .

Likewise: X̃ṽ = ∂X̃
∂ṽ = ∂X

∂u
∂u
∂ṽ + ∂X

∂v
∂v
∂ṽ = ∂u

∂ṽXu + ∂v
∂ṽXv .

Matrix form:

[
X̃ũ

X̃ṽ

]
=

[
∂u
∂ũ

∂v
∂ũ

∂u
∂ṽ

∂v
∂ṽ

] [
Xu

Xv

]
= [J(Φ)]

[
Xu

Xv

]
(Note:[

Xu

Xv

]
and

[
X̃ũ

X̃ṽ

]
are 2× 3 matrices, not column vectors.)

The Jacobian matrix is [J(Φ)] =

[
∂u
∂ũ

∂v
∂ũ

∂u
∂ṽ

∂v
∂ṽ

]
. Its determinant is the

Jacobian determinant or simply the Jacobian of Φ.
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Jacobian determinants continued

From last slide:

X̃ũ =
∂u

∂ũ
Xu +

∂v

∂ũ
Xv

X̃ṽ =
∂u

∂ṽ
Xu +

∂v

∂ṽ
Xv

Then

X̃ũ × X̃ṽ =

(
∂u

∂ũ

∂v

∂ṽ
− ∂u

∂ṽ

∂v

∂ũ

)
Xu × Xv

= (det J(Φ))Xu × Xv .

The formula
X̃ũ × X̃ṽ = (det J(Φ))Xu × Xv

will be important later.
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Properties of Jacobians

Three overlapping patches X , X̃ = X ◦ Φ, and X̂ = X̃ ◦ Φ̃, so that

X̂ = X̃ ◦ Φ̃ = (X ◦ Φ) ◦ Φ̃ = X ◦ (Φ ◦ Φ̃).

Then [J(Φ ◦ Φ̃)] = [J(Φ)][J(Φ̃)] (proof: use chain rule).

Special case: Φ̃ = Φ−1. Then [J(Φ ◦ Φ−1)] = [J(Φ)][J(Φ−1)].

But Φ ◦ Φ−1 = id = identity map id(u, v) = (u, v), so

[J(Φ ◦ Φ−1)] = [J(id)] = I =

[
1 0
0 1

]
=⇒ [J(Φ)][J(Φ−1)] = I.

Conclude that [J(Φ)] is invertible, so det[J(Φ)] 6= 0.

Indeed, [J(Φ)]−1 = [J(Φ−1)].

If X is regular, then Xu × Xv 6= 0. Since X̃ũ × X̃ṽ = (det J(Φ))Xu × Xv and
now det[J(Φ)] 6= 0, then X̃ is regular too.

Theorem: Let U, Ũ ⊂ R2 be open and let X : U → R3 be a regular surface
patch. Let Φ : U → Ũ be a smooth bijection with smooth inverse. Then
X̃ = X ◦ Φ : Ũ → R3 is a regular surface patch.
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Smooth maps between smooth surfaces

Smooth surfaces S1, S2.

Patch X1 : U1 → R3 covers S1

Patch X2 : U2 → R3 covers S2.

Map f := S1 → S2 is smooth if the
map X−1

2 ◦ f ◦ X1 from U1 to U2 is
smooth.

Well-defined: If f is smooth using
patches X1, X2, it is smooth using
any other smooth patches.
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Diffeomorphisms

Definition

If f : S1 → S2 is smooth and bijective and f −1 : S2 → S1 is smooth, then f is a
diffeomorphism and we say that S1 and S2 are diffeomorphic.

Theorem

If f : S1 → S2 is a diffeomorphism and X1 : U → S1 is an allowable surface patch
for S1, then X2 := f ◦ X1 : U → S2 is an allowable surface patch for S2.

Proof: text p 83.

Definition

If f : S1 → S2 is smooth, say that about
each p ∈ S1 there’s an open set Op 3 p such that
f (Op) is open in S2, and say that
f |Op : Op → f (Op) is a diffeomorphism.
Then we say that f is a local diffeomorphism.
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Lecture 8: Tangents, normals, orientations
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Tangents

Say γ : I → R3 is a smooth space curve, with image in surface S .

Then tangent vector γ̇(t0) to γ at p = γ(t0) is tangent to S at p.

The set of all tangents vectors to to curves in S through p is the tangent
space (or tangent plane) TpS to S at p.

Theorem

Let X : U → R3 be a regular
surface patch for surface S.
Let p ∈ S. Let (u, v) ∈ U.
Then TpS is the subspace of R3

spanned by the vectors {Xu,Xv}.
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Proof

Curve (u(t), v(t)) ∈ U ⊂ R2.

Use X to lift to curve γ(t) = X (u(t), v(t)) in S .

Let p = γ(t0) = X (u0, v0).

γ̇(t) = ∂X
∂u

du
dt + ∂X

∂v
dv
dt = Xu u̇ + Xv v̇ .

Hence tangent vector γ̇(t0) at p
belongs to Span{Xu(t0),Xv (t0)}.

Conversely, any vector w ∈ Span{Xu(u0, v0),Xv (u0, v0)}
can be written as w = aXu(t0) + bXv (t0).

Define curve γ(t) = X (u0 + a(t − t0), v0 + b(t − t0)).

Then γ(t0) = X (u0, v0) and γ̇(t0) = aXu(u0, v0) + bXv (u0, v0) = w.

Hence any w ∈ Span{Xu(u0, v0),Xv (u0, v0)} is tangent to a curve in S
through p, and so is in TpS .
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Dimension and basis

Last theorem: for regular patch X : U → R3 : (u, v) 7→ p, then {Xu,Xv}
spans TpS .

X is a regular patch so Xu × Xv 6= 0.

Then {Xu,Xv} is a linearly independent set.

A linearly independent spanning set is a basis set.

{Xu,Xv} is a basis for TpS .

Then TpS is 2-dimensional.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 4 / 10



Parameter curves

Let u0, v0 ∈ R be constants and (u0, v0) ∈ U.

Let X : U → R3 be a surface patch for surface S .

The map u 7→ X (u, v0) is a curve (i.e., γ(u) = (u, v0)).

The map v 7→ X (u0, v) is a curve.

These maps are called parameter curves
or coordinate curves.

Their tangents are Xu(u, v0) and Xv (u0, v) respectively.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 5 / 10



Pushforwards

f : S → S̃ is a smooth map
between surfaces (or possibly from
S to itself).

p ∈ S , w ∈ TpS , where w = γ̇(t0)
is tangent to some curve γ at
γ(t0) = p.

Let γ̃ be the curve f ◦ γ through
p̃ = f (p), and let w̃ = ˙̃γ(t0) be
tangent to γ̃ at f (p).

We call w̃ the pushforward of w.
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Derivative of a diffeomorphism

Recall linear approximation in Calculus: ∆y = f ′(x0)∆x .

Derivatives convert “tangent vectors” ∆x
∆t along curves x(t) to “tangent

vectors” ∆y
∆t along curves y(t) where y = f (x).

Definition (Derivative of a diffeomorphism)

The derivative of f at p ∈ S is the linear map Dpf : TpS → Tf (p)S̃ defined
such that Dpf (w) = w̃ for any w ∈ TpS .

In a patch X : U → R3 with p = X (u0, v0), the components of Dpf are the
partial derivatives of f ◦ X along the parameter curves:

(Dpf )(Xu) =
d

du

∣∣
u=u0

f (X (u, v0)) , (Dpf )(Xv ) =
d

dv

∣∣
v=v0

f (X (u0, v)) .

Infinitely many curves through p with tangent w.

Definition of derivative does not depend on which such curve we use: text p
87.
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Normals and orientability

Every plane P in R3 has

infinitely many normals (if N is normal to P, so is kN for any k 6= 0),
but
two unit normals ±N, where N is normal to P and ‖N‖ = 1.

If X : U → R3 is a regular patch for surface S and if p = X (u0, v0) ∈ S ,
then {Xu(u0, v0),Xv (u0, v0)} is a basis for TpS . This gives a unique choice
of normal:

NX :=
Xu × Xv

‖Xu × Xv‖
at p = X (u0, v0).

This choice is called the standard unit normal for the patch X .
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Orientations

If X̃ : Ũ → R3 is another regular patch then X̃ũ × X̃ṽ = (det J(Φ))Xu × Xv ,
J=Jacobian, Φ : Ũ → U is the transition map.

Then ÑX̃ = X̃ũ×X̃ṽ

‖X̃ũ×X̃ṽ‖ = det J
| det J|

Xu×Xv

‖Xu×Xv‖ = det J
| det J|NX =

{
NX , det J > 0,

−NX , det J < 0.

Definition

A surface S is orientable if there exists an atlas A for S such that, if Φ is the
transition map between any two surface patches in A, then det(J(Φ)) > 0
wherever Φ is defined.
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Final points

Theorem

If S is an orientable surface with an atlas A as in the definition, then there is a
smooth choice of unit normal at every point of S.

Proof: Take the standard unit normal in each patch in A. By the above
calculation, ÑX̃ = NX whenever patches overlap.

Definition (Orientation)

Such a choice of smooth unit normal at every point of S is called an orientation
for S , and then S is said to be oriented.

To state the obvious, any oriented surface is orientable.

Examples (see handwritten PDF notes):

The Möbius band (not orientable).

The 2-dimensional torus (orientable).
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Lecture 9: The first fundamental form 1FF
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The first fundamental form (1FF) of a surface

Definition (First fundamental form)

The 1FF of a surface S at p is the restriction of the inner product in R3 (i.e., the
dot product) to vectors in TpS :

〈u, v〉p,S = u · v , u, v ∈ TpS ⊂ R3.

Usually just write 〈u, v〉 (omit subscripts p, S when no confusion can occur).

Older books sometimes use a roman I , as in I (u, v) = 〈u, v〉. We will use FI .

In Riemannian geometry, the 1FF is called the induced metric on S .

Can consider the 1FF to be the map that associates to each p ∈ S an inner
product 〈·, ·〉p on TpS at p ∈ S .
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The 1FF on a single surface patch

The 1FF 〈·, ·〉p,S is a symmetric bilinear form.

Surface patch X : U → R3 containing p.

Basis {Xu,Xv} for TpS , so v ∈ TpS =⇒ v = αXu + βXv .

〈v, v〉X = α2〈Xu,Xu〉+ 2αβ〈Xu,Xv 〉+ β2〈Xv ,Xv 〉.

Notation: When expressed in the above basis, we write 〈·, ·〉p,X .

Write

E = 〈Xu,Xu〉 = ‖Xu‖2
,

F = 〈Xu,Xv 〉 = Xu · Xv , =⇒ 〈v, v〉 = Eα2 + 2Fαβ + Gβ2

G = 〈Xv ,Xv 〉 = ‖Xv‖2
,

Define the linear maps du and dv (scalar projection) by

du(v) = α
dv(v) = β
Then 〈v, v〉X = E du(v) du(v) + 2F du(v) dv(v) + G dv(v) dv(v).
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Explicit form for the 1FF on a patch

Patch X : U → R3, U ⊂ R2.

From last slide, can write the 1FF as

〈v, v〉X = E du(v) du(v) + 2F du(v) dv(v) + G dv(v) dv(v).

Often write 〈v, v〉 = (E du du + 2F du dv + G dv dv) (v, v) or simply

ds2 = Edu2 + 2Fdudv + Gdv2.

This notation is sometimes called the line element form of the 1FF.

Matrix for 〈·, ·〉p,X in {Xu,Xv} basis:

[FI ] =

[
E F
F G

]
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Arclength and line element form

The 1FF can be used to find the arclength of a space curve γ lying on
surface S .

Say γ : [a, b]→ R3 lies within one patch X : U → R3 of S , so
γ(t) = X (u(t), v(t)).

Then γ̇ = ∂X
∂u

du
dt + ∂X

∂v
dv
dt = u̇Xu + v̇Xv .

〈γ̇, γ̇〉 = Eu̇2 + 2F u̇v̇ + Gv̇2 where E , F , G are evaluated at γ(t).

Arclength

s =

∫
ds =

b∫
a

ds

dt
dt =

b∫
a

‖γ̇(t)‖ dt =

b∫
a

〈γ̇, γ̇〉1/2dt

=

b∫
a

√
E (γ(t))u̇2 + 2F (γ(t))u̇v̇ + G (γ(t))v̇2dt.
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Why are the projections called du, dv?

Two overlapping patches X : U → R3 and X̃ : Ũ → R3 for S .

v = αXu + βXv = α̃X̃ũ + β̃X̃ṽ with X (u, v) = X̃ (ũ, ṽ).

X̃ũ = ∂X̃
∂ũ = ∂X

∂u
∂u
∂ũ + ∂X

∂v
∂v
∂ũ = Xu

∂u
∂ũ + Xv

∂v
∂ũ .

X̃ṽ = ∂X̃
∂ṽ = ∂X

∂u
∂u
∂ṽ + ∂X

∂v
∂v
∂ṽ = Xu

∂u
∂ṽ + Xv

∂v
∂ṽ .

So v = αXu + βXv = α̃X̃ũ + β̃X̃ṽ =
(
α̃∂u∂ũ + β̃ ∂u∂ṽ

)
Xu +

(
α̃∂v∂ũ + β̃ ∂v∂ṽ

)
Xv .

Xu-component: α = du(v) = α̃∂u∂ũ + β̃ ∂u∂ṽ = ∂u
∂ũdũ(v) + ∂u

∂ṽ dṽ(v).

Xv -component: β = dv(v) = α̃∂v∂ũ + β̃ ∂v∂ṽ = ∂v
∂ũdũ(v) + ∂v

∂ṽ dṽ(v).

This gives an easy mnemonic for the transformation rules
(u, v) 7→ (ũ, ṽ) = Φ−1(u, v); compare to chain rule for differentials, which
gives:

du =
∂u

∂ũ
dũ +

∂u

∂ṽ
d ṽ and dv =

∂v

∂ũ
dũ +

∂v

∂ṽ
d ṽ .
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Example: Surfaces of revolution

γ(u) = (f (u), 0, g(u)), f (u) ≥ 0, is called the profile curve.

Unit speed if ḟ 2(u) + ġ2(u) = 1.

Surface X (u, v) = (f (u) cos v , f (u) sin v , g(u)).
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1FF of a surface of revolution

Surface X (u, v) = (f (u) cos v , f (u) sin v , g(u)).

Basis for TpS :

Xu =
(
ḟ (u) cos v , ḟ (u) sin v , ġ(u)

)
, Xv = (−f (u) sin v , f (u) cos v , 0).

E = ‖Xu‖2 = ḟ 2(u) + ġ2(u) = 1 if profile curve is unit speed.

F = Xu · Xv = −f ḟ cos v sin v + f ḟ sin v cos v = 0.

G = ‖Xv‖2 = f 2(u).

1FF is ds2 = du2 + f 2(u)dv2 or in matrix form [FI ] =

[
1 0
0 f 2(u)

]
.
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Example: a sphere

Profile curve: semi-circle x =
√
a2 − z2, a > 0.

Unit speed parametrization: γ(u) =
(
a sin u

a , 0, a cos u
a

)
, u ∈ [0, aπ].

Surface of revolution X (u, v) = a
(
sin u

a cos v , sin u
a sin v , cos u

a

)
, u ∈ [0, aπ],

v ∈ [0, 2π), is a sphere of radius a.

Then f (u) = a sin u
a , g(u) = a cos u

a .

1FF is ds2 = du2 + f 2(u)dv2 = du2 + a2 sin2 u
adv

2.

Looks more familiar if we let φ = u
a ∈ [0, π], θ = v ∈ [0, 2π):

ds2 = a2
(
dφ2 + sin2 φdθ2

)
.
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Pullbacks

Say p ∈ S1 and v,w ∈ TpS .

Let ṽ = Dpf (v), w̃ = Dpf (w) be push-forwards.

Let 〈·, ·〉q,S2 be the 1FF on S2, q = f (p).

Definition (pullback metric)

We define an inner product f ∗〈·, ·〉p,S1 , called the pullback of 〈·, ·〉q,S2 by f , by

f ∗〈v,w〉p,S1 = 〈ṽ, w̃〉f (p),S2
= 〈Dpf v,Dpfw〉f (p),S2

.

Notation: When comparing 1FFs on two surfaces, say S1 and S2, we will
sometimes use parentheses rather than angle brackets to distinguish them; e.g.,
〈·, ·〉S1 and (·, ·)S2

.
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Local isometry and pullbacks

Definition (Local isometry)

Let f : S1 → S2 be a smooth map between surfaces. If for every curve γ : I → R3

in S1, its image γ̃ = f ◦ γ : I → R3 in S2 has the same arclength, then f is a local
isometry, and we say that S1 and S2 are locally isometric.

Let 〈·, ·〉p,S1 be the 1FF on S1.

Let (·, ·)q,S2 be the 1FF on S2, q = f (p), for some smooth map f : S1 → S2.

Theorem

Say that f ∗(·, ·)p,S1 = 〈·, ·〉p,S1 for all p ∈ S1. If γ : I → R3 is a curve in S1 with
arclength s and γ̃ = f ◦ γ : I → R3 is its image curve in S2 with arclength s̃, then
s = s̃ and so f is a local isometry.
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Proof

Arclength of γ : [t0, t1]→ R3 in S1:

s =

t1∫
t0

〈γ̇, γ̇〉1/2
γ(t),S1

dt.

Arclength of γ̃ = f ◦ γ : [t0, t1]→ R3 in S2:

s̃ =

t1∫
t0

(Df (γ̇),Df (γ̇))
1/2
γ̃(t),S2

dt =

t1∫
t0

√
f ∗ (γ̇, γ̇)γ(t),S1

dt.

But if f ∗ (·, ·)p,S1
= 〈·, ·〉p,S1 for all p ∈ S1, these two expressions are clearly

equal.

The converse is also true, but harder to prove so we’ll skip the proof:

Theorem

If s = s̃ for all curves γ is S1 and their images γ̃ = f ◦ γ in S2, then
〈γ̇, γ̇〉p = f ∗ (γ̇, γ̇)p for all p ∈ S1.
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Moreover...

Theorem

〈v, v〉 = f ∗(v, v) for all v ∈ TpS iff 〈v,w〉 = f ∗(v,w) for all v,w ∈ TpS.

Proof.

If 〈v, v〉 = f ∗(v, v) for all v ∈ TpS , then compute

〈v + w, v + w〉 = f ∗(v + w, v + w)

=⇒ 〈v, v〉+ 2〈v,w〉+ 〈w,w〉 = f ∗(v, v) + 2f ∗(v,w) + f ∗(w,w)

=⇒ 2〈v,w〉 = 2f ∗(v,w)

and we are done. This is an example of the polarization identity.

Theorem

A smooth map f : S1 → S2 is a local isometry if and only if the symmetric
bilinear forms 〈·, ·〉p and f ∗(·, ·)p on TpS1 are equal for all p ∈ S1.
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Local isometries and the 1FF

If our smooth map f is a diffeomorphism (i.e., if it has a smooth inverse), then

Corollary

A local diffeomorphism f : S1 → S2 is a local isometry if and only if, for any
surface patch X for S1, the patches X and X̃ = f ◦ X of S2 have the same 1FF:

〈·, ·〉X = f ∗(·, ·)X̃ ,p.

In other words, if f is a local diffeomorphism from S1 to S2, the geometry
encoded in the 1FF is the same about p ∈ S1 as it is f (p) ∈ S2.
Proof: See text p 128.
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Lecture 10: Equiareal maps
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Area of a surface

Surface S , parameters (u, v) ∈ U.

Surface patch X : U → R3.

Basis {Xu,Xv} for TpS .

Small parallelogram of area ∆u∆v
in U.

Image has sides Xu∆u, Xv∆v in S
and area ∆A = ‖Xu × Xv‖∆u∆v .

Let R be a region in U and
R = X (R) be its image in S . The
area of R is

AX (R) =

∫
R

dA =

∫
U

‖Xu × Xv‖ dudv .
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Area “well-defined”

Theorem

AX (R) does not depend on the choice of regular coordinate patch X : U → R3

In consequence, we can simply write A(R), without a subscript

Proof.

If X̃ : Ũ → R3 is another regular coordinate patch covering R and φ : Ũ → U is
smooth, we already know that

X̃ũ × X̃ṽ = (det J(Φ))Xu × Xv

=⇒
∥∥∥X̃ũ × X̃ṽ

∥∥∥ = |(det J(Φ))| ‖Xu × Xv‖

=⇒ AX̃ =

∫
Ũ

∥∥∥X̃ũ × X̃ṽ

∥∥∥ dũdṽ =

∫
Ũ

‖Xu × Xv‖ |(det J(Φ))| dũdṽ

=

∫
U

‖Xu × Xv‖ dudv by the change of variables formula

= AX .
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Local form of area element

Theorem

In a patch X the area element dA = dAX = ‖Xu × Xv‖ dudv can be written as
dA =

√
det (FI )dudv, where FI is the matrix for the 1FF.

Proof.

‖Xu × Xv‖2 = (Xu × Xv ) · (Xu × Xv )

= (Xu · Xu) (Xv · Xv )− (Xu · Xv )2 by a standard identity

=EG − F 2 = det (FI ) .

Area of surface region R covered by a single patch X : U → R3:

A(R) =

∫
R

dA =

∫
U

√
det (FI )dudv .
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Equiareal maps

Definition

A local diffeomorphism f : S1 → S2 is equiareal if it takes each region R1 ⊂ S1 to
a region R2 = f (R1) ⊆ S2 of the same area.

Theorem

f : S1 → S2 is equiareal iff for any surface patch X : U → R3 on S1, the 1FFs

E1du
2 + 2F1dudv + G1dv

2 if the patch X on S1 and

E2du
2 + 2F2dudv + G2dv

2 if the patch f ◦ X on S2

satisfy E1G1 − F 2
1 = E2G2 − F 2

2 .

Proof.

E1G1 − F 2
1 = det

(
FIS1

)
and E2G2 − F 2

2 = det
(
FIS2

)
and by the previous theorem,

the area elements equal iff these determinants are equal.
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Archimedes’s equiareal map

Unit sphere x2 + y2 + z2 = 1
(denoted S2

1 ) and unit vertical
cylinder x2 + y2 = 1.

Let p and q lie on horizontal radial
line, with p on the sphere and q on
the cylinder.

This defines a map f taking
p ∈ S2

1 , except the poles, to some
q on the cylinder.

If p = (x , y , z) then

q = f (p) =

(
x√

x2+y2
, y√

x2+y2
, z

)
.

Archimedes’s theorem: f is an
equiareal diffeomorphism.
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Proof of Archimedes’s theorem

Need an atlas for S2
1 minus the poles.

Take X (θ, ϕ) := (cos θ cosϕ, cos θ sinϕ, sin θ), defined on two open sets:
U1 =

{
−π2 < θ < π

2 , 0 < ϕ < 2π
}

and U2 =
{
−π2 < θ < π

2 ,−π < ϕ < π
}

.

Two patches, same formula for X : U1 → R3 and X : U2 → R3.

Basis for tangent space: Xθ = (− sin θ cosϕ,− sin θ sinϕ, cos θ),
Xϕ = (− cos θ sinϕ, cos θ cosϕ, 0).

Then E1 = ‖Xθ‖2 = 1, F1 = Xθ · Xϕ = 0, G1 = ‖Xϕ‖2 = cos2 θ.

Then the determinant of the 1FF is

∣∣∣∣ 1 0
0 cos2 θ

∣∣∣∣ = cos2 θ.
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Proof of Archimedes’s theorem continued

Since f (x , y , z) =

(
x√

x2+y2
, y√

x2+y2
, z

)
and

X (θ, φ) = (x , y , z) = (cos θ cosϕ, cos θ sinϕ, sin θ), then

(f ◦ X )(θ, φ) =

(
cos θ cosϕ

cos θ
,

cos θ sinϕ

cos θ
, sin θ

)
= (cosϕ, sinϕ, sin θ)

Then (f ◦ X )θ = (0, 0, cos θ) and (f ◦ X )ϕ = (− sinϕ, cosϕ, 0).

Then E2 = ‖(f ◦ X )θ‖2 = cos2 θ, F2 = (f ◦ X )θ · (f ◦ X )ϕ = 0,

G2 = ‖(f ◦ X )ϕ‖2 = 1.

Then the determinant of the 1FF is

∣∣∣∣ cos2 θ 0
0 1

∣∣∣∣ = cos2 θ.

This determinant equals the one on the last slide. This completes the proof.
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Corollary: spherical triangles

Consider a 2-dimensional unit sphere S2 defined by x2 + y2 + z2 = 1.

A great circle is the curve of intersection of this sphere with a plane that
contains (0, 0, 0).

A spherical triangle is a triangle on S2 whose sides are segments of great
circles that meet at 3 vertices.

Theorem

If a spherical triangle on the unit sphere S has interior angles α, β, and γ, then
the area of the spherical triangle is α + β + γ − π.

Proof.

See text pp 145–147. Uses Archimedes’s theorem.
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Lecture 11: The second fundamental form 2FF
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Curvature of surfaces

Plane:

N·(X (u + ∆u, v + ∆v)− X (u, v)) = 0

Sphere:

N·(X (u + ∆u, v + ∆v)− X (u, v)) 6= 0
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Taylor’s theorem:

X (u + ∆u, v + ∆v) =X (u, v) + Xu(u, v)∆u + Xv (u, v)∆v

+
1

2

[
Xuu(∆u)2 + 2Xuv∆u∆v + Xvv (∆v)2

]
+ . . .

so

N · (X (u + ∆u, v + ∆v)− X (u, v)) =
1

2

[
N · Xuu(∆u)2 + 2N · Xuv∆u∆v

+N · Xvv (∆v)2
]

+ . . .

We define: L := N · Xuu, M = N · Xuv , N := N · Xvv . The above equation is

N·(X (u + ∆u, v + ∆v)− X (u, v)) =
1

2

[
L(∆u)2 + 2M∆u∆v + N(∆v)2

]
+. . .

Compare to unit speed curve γ(t) in R2:

γ(t + ∆t) = γ(t) + γ̇(t)∆t +
1

2
γ̈(t)(∆t)2 + . . .

=⇒ N · (γ(t + ∆t)− γ(t)) =
1

2
κS(∆t)2 + . . .

So L(∆u)2 + 2M∆u∆v + N(∆v)2 is a “surface version” of κS(∆t)2.
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The Second Fundamental Form (2FF)

Definition (Second Fundamental Form of a surface patch)

The 2FF of a surface patch X : U → R3 is the map 〈〈·, ·〉〉X : TpS × TpS → R
defined in line element form to be

Ldu2 + Mdudv + Mdvdu + Ndv2,

so that

〈〈v,w〉〉X = Ldu(v)du(w) + Mdu(v)dv(w) + Mdv(v)du(w) + Ndv(v)dv(w).

We also write the (symmetric) matrix form as [FII ] where

〈〈v,w〉〉X = [v]T [FII ] [w] = [v]T
[

L M
M N

]
[w] .

The 2FF is also called the extrinsic curvature.
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Transformation law

Patches X : U → R3 and X̃ : Ũ → R3 with X (u, v) = X̃ (ũ, ṽ).

Chain rule X̃ũ = Xu
∂u
∂ũ + Xv

∂v
∂ũ .

Then X̃ũũ = Xuu

(
∂u
∂ũ

)2
+Xuv

∂v
∂ũ

∂u
∂ũ +Xu

∂2u
∂ũ2 +Xvu

∂u
∂ũ

∂v
∂ũ +Xvv

(
∂v
∂ũ

)2
+Xv

∂2v
∂ũ2 .

Then (using Ñ = ±N = det(J)
| det J|N) we get

L̃ = Ñ · X̃ũũ = ±N ·
[
Xuu

(
∂u

∂ũ

)2

+ Xuv
∂v

∂ũ

∂u

∂ũ
+ Xu

∂2u

∂ũ2
+ Xvu

∂u

∂ũ

∂v

∂ũ
+ Xvv

(
∂v

∂ũ

)2

+ Xv
∂2v

∂ũ2

]

= ±
[
L

(
∂u

∂ũ

)2

+ M
∂v

∂ũ

∂u

∂ũ
+ 0 + M

∂u

∂ũ

∂v

∂ũ
+ N

(
∂v

∂ũ

)2

+ 0

]

In the last line, we used that N ⊥ TpS = Span{Xu,Xv}.
This is one component of the matrix equation[

L̃ M̃

M̃ Ñ

]
= ±

[
∂u
∂ũ

∂v
∂ũ

∂u
∂ṽ

∂v
∂ṽ

] [
L M
M N

] [
∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

]
= ±[J]T [FII ][J].

Transformation law for 2FF:
[
F̃II

]
= det(J)
| det J| [J]T [FII ] [J].
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Gauss and Weingarten maps

Definition

The Gauss map G of an oriented surface S maps each p ∈ S to the unit normal
N at p.

The set of all unit vectors based at the origin in R3 is a unit sphere S2 = S2
1 .

Therefore we may regard the Gauss map as a smooth map G : S → S2.

The image of the Gauss map of a plane is a single point in S2.

The image of the Gauss map of a graph is contained in the upper
hemisphere.

The image of the Gauss map of a sphere is contains every point of S2.

Exercise: What does the gauss map of a torus look like? (Answer: it covers
S2 twice.)
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The Derivative of G

Diffeomorphism G : S → S2.

Derivative at p ∈ S is
DpG : TpS → TG(p)S2.

Measures the change in N as
p = X (u, v) ∈ S changes.

∆N = (DpG )(∆X ).

Since ‖N‖ = 1, then
DpG (∆X ) ⊥ G (p) = Np. So
DpG (∆X ) ∈ TpS .

Therefore, DpG : TpS → TpS .
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The Weingarten map

Definition (Weingarten map)

We define the Weingarten map Wp,S : TpS → TpS of the surface S at p ∈ S to
be the linear map Wp,S = −DpG .

We note that Wp,S is an operator or endomorphism since it maps TpS to itself.
Therefore Wp,S can have eigenvalues/eigenvectors.

Definition (2FF of a surface)

The second fundamental form of a surface S at p ∈ S is the bilinear form
〈〈·, ·〉〉p,S : TpS × TpS → R such that

〈〈v,w〉〉p,S = 〈Wp,S(v),w〉, v,w ∈ TpS .
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How to compute the 2FF of a surface

Theorem

1 〈〈·, ·〉〉p,S is bilinear.

2 〈〈·, ·〉〉p,S is symmetric: 〈〈v,w〉〉p,S = 〈〈w, v〉〉p,S .
3 On a surface patch X : U → R3, 〈〈·, ·〉〉p,S = 〈〈·, ·〉〉p,X .

The first line above means that for a, b ∈ R and u, v,w ∈ TpS , then

〈〈au + bv,w〉〉p,S = a〈〈u,w〉〉p,S + b〈〈v,w〉〉p,S and
〈〈w, au + bv〉〉p,S = a〈〈w,u〉〉p,S + b〈〈w, v〉〉p,S .

This follows form the linearity of DpG .

If the third line is true, then the second line follows from the symmetry of[
L M
M N

]
.

So we must prove the third statement.
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But first, interpret statement 2 of theorem

By the definition of the 2FF of a surface we have 〈〈u, v〉〉p,S = 〈W (u), v〉p,S .

We can also write 〈〈v,u〉〉p,S = 〈W (v),u〉p,S .

Since the 1FF is symmetric, the last line gives 〈〈v,u〉〉p,S = 〈u,W (v)〉p,S .

Therefore, the left-hand sides of the first and third lines equal if and only if
their right-hand sides equal:

〈〈u, v〉〉p,S = 〈〈v,u〉〉p,S ⇔ 〈W (u), v〉p,S = 〈u,W (v)〉p,S

The left-hand equation expresses the symmetry of the 2FF. The right-hand
side expresses the self-adjointness of W with respect to the inner product
that is the 1FF.

The eigenvalues of a self-adjoint operator are always real numbers.
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Proving part 3

Step 1: Rewrite the surface patch 2FF Ldu2 + 2Mdudv + Ndv2.

Patch X : U → R3 with standard normal N = Xu×Xv

‖Xu×Xv‖ .

Then N · Xu = 0 and N · Xv = 0.

Differentiate: Nu · Xu + N · Xuu = 0 = Nv · Xu + N · Xuv .

And Nu · Xv + N · Xvu = 0 = Nv · Xv + N · Xvv .

Using L = N · Xuu, M = N · Xuv , and N = N · Xvv , we now get

L = −Nu · Xu,

M = −Nu · Xv = −Nv · Xu,

N = −Nv · Xv .

Because Nu,Nv ,Xu,Xv ∈ TpS , can replace dot product by 〈·, ·〉 in these
expressions.
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Step 2: Rewrite the surface 2FF 〈〈v,w〉〉p,S = 〈Wp,S(v),w〉, Wp,S = −DpG ,
v,w ∈ TpS .

Choose a patch X containing p = X (u0, v0). Then:

Wp,S(Xu) = − DpG (Xu) = − d

du

∣∣
u=u0

G (X (u, v0))

= − d

du

∣∣
u=u0

N(u, v0) = −Nu(u0, v0)

=⇒ 〈Wp,S(Xu),Xu〉 = − 〈Nu,Xu〉 = L

=⇒ L = 〈Wp,S(Xu),Xu〉.

Similar calculations give M = 〈Wp,S(Xv ),Xu〉 = 〈Wp,S(Xu),Xv 〉 and
N = 〈Wp,S(Xv ),Xv 〉.

We conclude that when 〈〈v,w〉〉p,S is restricted to a patch X and its
components are computed, they equal the components of the surface patch
2FF 〈〈v,w〉〉p,X .
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Lecture 12: Normal and geodesic curvatures
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Curves on surfaces

γ a unit speed curve.

γ̇ · γ̇ = 1.

γ̇ · γ̈ = 0.

Then γ̈ ∈ Span {N,N× γ̇}

Note: N× γ̇ is a unit vector.

γ̈ = κNN + κgN× γ̇ where κN and
κg are coefficients in this linear
combination.
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The components κN and κg of γ̈

γ is a unit speed curve in surface S .

γ̈ = κNN + κgN× γ̇.

Then κN = γ̈ ·N is called the normal curvature of γ. It is due to the
bending of the surface S .

κg = γ̈ · (N× γ̇) is called the geodesic curvature of γ, due to bending (i.e.,
acceleration) of curve within S .

Since N and N× γ̇ are unit vectors and are perpendicular to each other, then

‖γ̈‖2 = (κNN + κgN× γ̇) · (κNN + κgN× γ̇) = κ2
N + κ2

g .

But γ is a space curve, so if has curvature κ given by ‖γ̈‖ = κ. Then we
have the relation between curvature, geodesic curvature, and normal
curvature:

κ2 = κ2
N + κ2

g .
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The Frenet frame again

Recall principal normal n to unit speed curve γ.

n =
1

κ
γ̈.

Principal normal might not lie in TpS , where γ lies in S .

Let N be normal to surface S .

Define ψ to be angle between n and N, so n ·N = cosψ.

Then

κn = γ̈ = κNN + κgN× γ̇
=⇒ κn ·N =κNN ·N + κg (N× γ̇) ·N

=⇒ κ cosψ =κN .

Then κN = κ cosψ and κg = κ sinψ (since κ2 = κ2
N + κ2

g ).
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κN is a property of the surface, not the curve

Normal to S at p is N = G (p) (Gauss map).

Curve γ(t) in S passes through p = γ(0).

Ṅ = d
dt

∣∣
t=0

G = (DpG )(γ̇) = −W (γ̇).

Now we can compute
κN = N · γ̈ = d

dt (N · γ̇)− Ṅ · γ̇ = −Ṅ · γ̇ = W (γ̇) · γ̇ = 〈W (γ̇), γ̇〉.
Finally, recall the definition of the 2FF: 〈〈v,w〉〉 = 〈W (v),w〉.
Then κN = 〈〈γ̇, γ̇〉〉.
Surface patch form: If γ(t) = X (u(t), v(t)) where (u(t), v(t)) is a curve in
U ⊂ R2 then

κN = [γ̇]T
[

L M
M N

]
[γ̇] = Lu̇2 + 2Mu̇v̇ + Nv̇2.

Theorem (Meusnier’s theorem)

Any two curves that lie in a surface S and have a common tangent at some p ∈ S
have the same normal curvature at p.
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Normal sections of a surface

Definition

A curve γ : I → R3 in a surface S is a
normal section if it is the curve of
intersection of S with a plane Π
perpendicular to Tγ(t)S for every t ∈ I .

γ is in both S and Π.

dkγ
dtk
∈ Π for all k = 1, 2, . . . .

Then γ̇, γ̈ ∈ Π.

Unit speed: γ̇ ⊥ γ̈.

Then γ̈ is parallel to N.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 6 / 7



Normal sections continued

Let γ(t) be a unit speed normal section of S with κ 6= 0.

Let n be the principal normal to the curve: n = 1
κ γ̈.

Recall κN = κ cosψ, κg = κ sinψ, where ψ = ∠Nn.

Since γ̈ is parallel to N, then the principal normal n to the curve is parallel
to N (the normal to S), so ψ = 0.

Therefore, κg = 0 and κN = ±κ for a normal section with nonzero
curvature. We may write its curvature as κ = |κN | = |〈〈γ̇, γ̇〉〉|.

By Meusnier, all curves in S tangent to a normal section at p ∈ S have the
same κN at p.
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Lecture 13: Parallel transport

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 14 / 25



Covariant derivative

What can “parallel” mean on an arbitrary surface?

Vector field v in R3.

Curve γ on a surface S in R3.

v̇ is the derivative of v along γ.

N is a unit normal field for S .

v̇ − (v̇ ·N)N is the component of v̇ tangent to S .

Definition (Covariant derivative along a curve)

Given the above, we write ∇γv := v̇ − (v̇ ·N)N and call it the covariant
derivative (sometimes called the directional covariant derivative, sometimes
written ∇γ̇v) of v in the direction of γ̇. It is the projection of v̇ into Tγ(t)S .

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 2 / 14



Parallel transport

Definition

If ∇γv = 0 along γ, we say that v is parallel (in physics: parallel-transported or
covariantly constant) along γ.

Theorem

v is parallel along γ if and only if v̇ ⊥ Tγ(t)S for all t in the domain of γ.

Proof.

∇γv := v̇ − (v̇ ·N)N = 0 if and only if v̇ = (v̇ ·N)N.
Then v̇‖N. But v̇‖N if and only if v̇ ⊥ Tγ(t)S .
Conversely, if v̇ ⊥ Tγ(t)S for all t then v̇‖N, and then necessarily v̇ = (v̇ ·N)N,
so ∇γv := v̇ − (v̇ ·N)N = 0.

Remark: If a vector field in a plane Π ⊂ R3 is parallel along a curve in Π, it is
parallel in the usual sense of a translation isometry in the plane.
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Christoffel symbols

Definition (Christoffel symbols)

Let X : U → R3 be a coordinate patch and let FI =

[
E F
F G

]
be the 1FF of

this patch. Note that detFI = EG − F 2. The Christoffel symbols of the 1FF of
this patch are

Γ1
11 =

GEu − 2FFu + FEv

2(EG − F 2)
Γ2

11 =
2EFu − EEv − FEu

2(EG − F 2)

Γ1
12 = Γ1

21 =
GEv − FGu

2(EG − F 2)
Γ2

12 = Γ2
21 =

EGu − FEv

2(EG − F 2)

Γ1
22 =

2GFv − GGu − FGv

2(EG − F 2)
Γ2

22 =
EGv − 2FFv + FGu

2(EG − F 2)

Note: Christoffel symbols depend only on the 1FF, not the 2FF, on a surface
patch.
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When can tangent vector fields be parallel?

Surface patch X : U → R3. Then {Xu,Xv} is a basis for TpS .

If N is normal to S at p then {Xu,Xv ,N} is a basis for R3.

Express Xuu, Xuv , Xvv in this basis:

Xuu = a1Xu + a2Xv + a3N

Xuv =Xvu = b1Xu + b2Xv + b3N

Xvv = c1Xu + c2Xv + c3N.

for coefficients a1, . . . , c3 which we will now find.

To start, take dot products with N:

N · Xuu = a3, but L := N · Xuu, so a3 = L.

N · Xuv = b3, but M := N · Xuv , so b3 = M.

N · Xvv = c3, but N := N · Xvv , so c3 = N.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 5 / 14



...continued

So now we have

Xuu = a1Xu + a2Xv + LN

Xuv =Xvu = b1Xu + b2Xv + MN

Xvv = c1Xu + c2Xv + NN.

Now take dot products with Xu:

Xu · Xuu = a1Xu · Xu + a2Xu · Xv = a1E + a2F

Xu · Xuv = b1Xu · Xu + b2Xu · Xv = b1E + b2F

Xu · Xvv = c1Xu · Xu + c2Xu · Xv = c1E + c2F .

Taking dot products with Xv yields

Xv · Xuu = a1Xv · Xu + a2Xv · Xv = a1F + a2G

Xv · Xuv = b1Xv · Xu + b2Xv · Xv = b1F + b2G

Xv · Xvv = c1Xv · Xu + c2Xv · Xv = c1F + c2G .

Need to simplify the left-hand sides.
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...continued

Consider the equation Xu · Xuu = a1E + a2F .

Now Xu · Xuu = 1
2
∂
∂u (‖Xu‖2) = 1

2Eu.
The above equation becomes 1

2Eu = a1E + a2F .

Consider the equation Xv · Xuu = a1F + a2G .

Xv · Xuu = ∂
∂u (Xv · Xu)− 1

2
∂
∂v (Xu · Xu) = Fu − 1

2Ev .
The above equation becomes Fu − 1

2Ev = a1F + a2G .

Solve for a1 = EuG+EvF−2FFu

2(EG−F 2) , a2 = 2EFu−EEv−FEu

2(EG−F 2) .

But these are two of the Christoffel symbols: a1 = Γ1
11, a2 = Γ2

11.

Continuing, we obtain that all the a1, · · · , c3 are Christoffel symbols, and:

Xuu = a1Xu + a2Xv + LN = Γ1
11Xu + Γ2

11Xv + LN,

Xuv =Xvu = b1Xu + b2Xv + MN = Γ1
12Xu + Γ2

12Xv + MN,

Xvv = c1Xu + c2Xv + NN = Γ1
22Xu + Γ2

22Xv + NN.
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Gauss equations (first version)

Definition

The equations we just obtained are sometimes called the Gauss equations:

Xuu = Γ1
11Xu + Γ2

11Xv + LN,

Xuv = Γ1
12Xu + Γ2

12Xv + MN,

Xvv = Γ1
22Xu + Γ2

22Xv + NN.

They provide a link between the 1FF (through the Christoffel symbols), the 2FF
(last terms on right), and transport of vector fields (the basis vectors appearing
on the left-hand sides).
We will use these to obtain related equations, also named for Gauss (and Codazzi
and Mainardi) a few lectures from now.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 8 / 14



Return to issue of parallel tangent fields

Curve γ(t) = X (u(t), v(t)) in S , field v(t) along γ, tangent to S .

v(t) =α(t)Xu + β(t)Xv ∈ Tγ(t)S

∇γv = α̇Xu + β̇Xv + αẊ⊥u + βẊ⊥v where Ẋ⊥u := Ẋu −
(
Ẋu ·N

)
N

= α̇Xu + β̇Xv + α (Xuu u̇ + Xuv v̇)⊥ + β (Xvu u̇ + Xvv v̇)⊥

= α̇Xu + β̇Xv + αu̇
(
Γ1

11Xu + Γ2
11Xv

)
+ (αv̇ + βu̇)

(
Γ1

12Xu + Γ2
11Xv

)
+ βv̇

(
Γ1

22Xu + Γ2
22Xv

)
,

using the Gauss equations in the last line.

If v is parallel along γ, then v̇‖N, so coefficients of Xu and Xv above must
both vanish.

0 = α̇ + αu̇Γ1
11 + (αv̇ + βu̇) Γ1

12 + βv̇Γ1
22

0 = β̇ + αu̇Γ2
11 + (αv̇ + βu̇) Γ2

11 + βv̇Γ2
22.

These are the equations of parallel transport.
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Equations of parallel transport

We have proved that if a vector field v = α(t)Xu + β(t)Xv tangent to S is
parallel along a curve γ, then necessarily

0 = α̇ + αu̇Γ1
11 + (αv̇ + βu̇) Γ1

12 + βv̇Γ1
22

0 = β̇ + αu̇Γ2
11 + (αv̇ + βu̇) Γ2

11 + βv̇Γ2
22.

Conversely, this system of equations has form

α̇(t) = f (α, β, t)

β̇(t) = g(α, β, t).

for smooth functions f , g . From ODE theory, there is always a unique
solution (α(t), β(t)) (from which we can then construct v) on some open
interval containing t0, given initial values α0 = α(t0), β0 = β(t0). This
proves:

Theorem

Let γ be a curve on S. Let v0 ∈ TpS, where p = γ(t0). Then there is exactly one
vector field in Tγ(t)S that is parallel along γ and equal to v0 at p.
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The parallel transport map

Let p, q ∈ S be two points along curve γ in S , where γ(t0) = p and
γ(t1) = q.

Define a map Πp,q
γ : TpS → TqS as follows:

Given v0 ∈ TpS , say v(t) is the unique parallel vector field along
γ : [t0, t1]→ R3 with v(t0) = v0.
Then Πp,q

γ v0 := v1 where v1 := v(t1).

Theorem

Πp,q
γ is linear.

Πp,q
γ is an isometry:

〈v0,w0〉p = 〈v1,w1〉q for v1 = Πp,q
γ v0,w1 = Πp,q

γ w0.

Proof: text pp 175–176.
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Example: Sphere (minus the poles)

θ = latitude, ϕ = azimuth (longitude).

First patch U1 =
{
−π2 < θ < π

2 , 0 < ϕ < 2π
}

.

Second patch U2 =
{
−π2 < θ < π

2 ,−π < ϕ < π
}

.

X (θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ) for both patches.

FI = dθ2 + cos2 θdϕ2 =

[
1 0
0 cos2 θ

]
.

Γ1
11 = Γ2

11 = Γ2
22 = Γ1

12 = Γ1
21 = 0, Γ2

12 = Γ2
21 = − tan θ, Γ1

22 = − sin θ cos θ.

Along any constant-latitude circle θ = θ0, ϕ = t, a parallel vector field v
obeys

v =αXθ + βXϕ

α̇ = − β sin θ0 cos θ0

β̇ =α tan θ0

Equator: θ0 = 0, so α(ϕ) = α0, β(ϕ) = β0, v(ϕ) = α0Xθ + β0Xϕ.
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Sphere example continued

Last page: v = αXθ + βXϕ, where α̇ = −β sin θ0 cos θ0 and β̇ = α tan θ0.

If θ0 6= 0, differentiate middle equation again and use bottom equation:

=⇒ α̈ = −α sin2 θ0

=⇒ α̈ + (sin2 θ0)α = 0

=⇒ α(ϕ) = A cos(ϕ sin θ0) + B sin(ϕ sin θ0).

Then β(ϕ) = A sin(ϕ sin θ0)
cos θ0

− B cos(ϕ sin θ0)
cos θ0

.

Special case: v(0) = Xϕ so α(0) = 0 and β(0) = 1. Then A = 0,
B = cos θ0, so α(ϕ) = −(cos θ0) sin(ϕ sin θ0) and β(ϕ) = cos(ϕ sin θ0).

=⇒ v(ϕ) = −(cos θ0) sin(ϕ sin θ0)Xθ + cos(ϕ sin θ0)Xϕ.

Parallel vector field initially tangent to γ cannot remain so. (What happens
after one complete cycle around γ?)
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Parallel vector field on sphere
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Lecture 14: Gaussian and mean curvatures
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Self-adjointness of W

Definition (Adjoint)

Say A and B are operators on a vector space V and 〈·, ·〉 is an inner product for
V . If 〈v,A(w)〉 = 〈B(v),w〉 for all v,w ∈ V then we say that B is the adjoint of
A with respect to the inner product 〈·, ·〉.

Recall: The 2FF can be written as a symmetric matirx, so the Weingarten
map is self-adjoint wrt the inner product defined by the 1FF:

〈W (v),w〉 = 〈〈v,w〉〉 = 〈〈w, v〉〉 = 〈W (w), v〉 = 〈v,W (w)〉.

W = Wp,S : TpS → TpS is a linear operator.

Self-adjoint linear operators have real eigenvalues, so

W (t1) =κ1t1,

W (t2) =κ2t2,

with κ1, κ2 ∈ R and ‖t1‖ 6= 0, ‖t2‖ 6= 0.
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Eigenvectors of self-adjoint operators produce orthonormal
bases

Last slide: W (t1) = κ1t1, W (t2) = κ2t2, κ1, κ2 ∈ R.

If κ1 6= κ2 then

〈W (t1), t2〉 = 〈t1,W (t2)〉 since W is self-adjoint

=⇒ κ1 〈t1, t2〉 = κ2 〈t1, t2〉
=⇒ (κ2 − κ1) 〈t1, t2〉 = 0.

and since κ2 6= κ1 then we must have t1 ⊥ t2.

Eigenvectors belonging to distinct eigenvalues are orthogonal; normalize
them to obtain an orthonormal basis (ONB) {t1, t2} for R2.

If κ1 = κ2, the eigenspace is 2-dimensional, and from it we can choose
eigenvectors that form an ONB {t1, t2}.

We will always label eigenvectors so that {t1, t2} is right-handed.
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Principal curvatures

Definition (Principal curvatures)

The eigenvalues κ1 and κ2 of W are the principal curvatures of surface S . The
corresponding eigenvectors are the principal vectors or principal directions.

We can always find an orthonormal basis for TpS whose elements are
principal vectors.

Points at which κ1 = κ2 are called umbilics. At umbilics, the eigenspace is
2-dimensional, so it’s all of TpS , and then:

Wp,S(t) = κt

for all t ∈ Tp,S , where we write κ = κ1 = κ2.

Therefore at umbilics W = κ id (id is the identity map id(t) = t).
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Mean and Gauss curvatures

In an eigenvector basis, the matrix W for the Weingarten map is

W =

[
κ1 0
0 κ2

]

Definition (Mean curvature)

The mean curvature H of a surface is one-half the trace of W:

H :=
1

2
tr(W) =

1

2
(κ1 + κ2) .

Definition (Gauss curvature)

The Gauss curvature K = KG is the determinant of W:

K = KG = det(W) = κ1κ2.
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Interpretation

Say {t1, t2} is an ONB for Tp at
p ∈ S , consisting of eigenvectors of
W .

Say Π is a plane through p and
containing the normal N to S at p.

Then the (unit speed) curve of
intersection γ of Π and S is a
normal section.

Say γ̇ makes angle θ with t1, so
γ̇ = cos θt1 + sin θt2.
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Interpretation continued

Since γ is a normal section, κ = κN = 〈〈γ̇, γ̇〉〉p,S .

From last slide, γ̇ = cos θt1 + sin θt2.

Then κN = cos2 θ〈〈t1, t1〉〉+ 2 cos θ sin θ〈〈t1, t2〉〉+ sin2 θ〈〈t2, t2〉〉.

Moreover, 〈〈ti , tj〉〉 = 〈W (ti ), tj〉 = κi 〈ti , tj〉 =

{
κi , i = j ,

0, i 6= j .

Combine last two lines:

κN = κ1 cos2 θ + κ2 sin2 θ.

Any curve tangent to γ at p will have same κN .
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Theorem

Theorem

κ1 and κ2 are the extreme values of the normal curvature κN among all curves at
p. The max and min values occur for normal sections in orthogonal planes.

Proof:

Meusnier’s theorem: two curves through p have same κN if they have same
tangent at p, so it suffices to extremize over unit speed normal section
curves.

From last slide, for these curves κN = κ1 cos2 θ + κ2 sin2 θ.

If κ1 = κ2, then κN = κ1

(
cos2 θ + sin2 θ

)
= κ1 = κ2 and κN is constant

with respect to θ, hence constant over all curves through p.

If κ1 6= κ2, then extremize:

0 = d
dθκN = 2 (κ2 − κ1) sin θ cos θ = (κ2 − κ1) sin(2θ), so

θ = 0, π2 , π,
3π
2 , 2π at extrema.

If θ = 0, π, 2π, then κN = κ1. If θ = π
2 ,

3π
2 , then κN = κ2.
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The matrix of Wp,X

Coordinate patch X : U → R3 for S 3 p, (u, v) ∈ U.

Basis {Xu,Xv}.

Matrix for 1FF: FI =

[
E F
F G

]
.

Matrix for 2FF: FII =

[
L M
M N

]
.

Write matrix for W as W =

[
a c
b d

]
for unknowns a, b, c , d .

Use 〈W (Xu),Xu〉 = 〈〈Xu,Xu〉〉. In matrix form, this is([
a c
b d

] [
1
0

])T [
E F
F G

] [
1
0

]
=
[

1 0
] [ L M

M N

] [
1
0

]
=⇒

[
a b

] [ E
F

]
= L

=⇒ aE + bF = L.
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Matrix for Wp,X continued

Last slide: We used 〈W (Xu),Xu〉 = 〈〈Xu,Xu〉〉 to get aE + bF = L.

Next use 〈W (Xu),Xv 〉 = 〈〈Xu,Xv 〉〉:([
a c
b d

] [
1
0

])T [
E F
F G

] [
0
1

]
=
[

1 0
] [ L M

M N

] [
0
1

]
=⇒

[
a b

] [ F
G

]
= M

=⇒ aF + bG = M.

Likewise 〈W (Xv ),Xu〉 = 〈〈Xv ,Xu〉〉 yields cE + dF = M.

〈W (Xv ),Xv 〉 = 〈〈Xv ,Xv 〉〉 yields cF + dG = N.
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Matrix for Wp,X ... endgame

For the unknown elements a, b, c , d of W we have aE + bF = L,
aF + bG = M, cE + dF = M, cF + dG = N. Can write these four as the
matrix equation [

E F
F G

] [
a c
b d

]
=

[
L M
M N

]
.

This is FIW = FII .

Then for the matrix of Wp,X we get

W = F−1
I FII =

1

(EG − F 2)

[
G −F
−F E

] [
L M
M N

]
=

1

(EG − F 2)

[
GL− FM GM − FN
EM − FL EN − FM

]
.

Mean curvature: H = 1
2 trW = GL+EN−2FM

2(EG−F 2) .

Gauss curvature: KG = detW = detFII

detFI
= LN−M2

EG−F 2 .

Can also extract formulas for κ1, κ2 in terms of E , . . . ,N.
Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 11 / 15



Example: Surface of revolution

Unit speed profile curve in xz-plane: x = f (u), y = 0, z = g(u),
ḟ 2(u) + ġ2(u) = 1.

X (u, v) = (f (u) cos v , f (u) sin v , g(u)), f (u) ≥ 0, ġ(u) 6= 0.

Xu =
(
ḟ (u) cos v , ḟ (u) sin v , ġ(u)

)
.

Xv = (−f (u) sin v , f (u) cos v , 0).

FI =

[
‖Xu‖2 Xu · Xv

Xu · Xv ‖Xv‖2

]
=

[
1 0
0 f 2(u)

]
.
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Surface of revolution continued

Xu × Xv =
(
−f (u)ġ(u) cos v ,−f (u)ġ(u) sin v , f (u)ḟ (u)

)
.

‖Xu × Xv‖ =
√
f 2(u)ġ2(u) + f 2(u)ḟ 2(u) = f (u).

N = Xu×Xv

‖Xu×Xv‖ =
(
−ġ(u) cos v ,−ġ(u) sin v , ḟ (u)

)
.

Xuu =
(
f̈ (u) cos v , f̈ (u) sin v , g̈(u)

)
.

Xuv = Xvu =
(
−ḟ (u) sin v , ḟ (u) cos v , 0

)
.

Xvv = (−f (u) cos v ,−f (u) sin v , 0).

FII =

[
N · Xuu N · Xuv

N · Xvu N · Xvv

]
=

[
ḟ g̈ − f̈ ġ 0

0 f ġ

]
.
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Surface of revolution continued

W = F−1
I FII =

[
1 0
0 1/f 2

] [
ḟ g̈ − f̈ ġ 0

0 f ġ

]
=

[
ḟ g̈ − f̈ ġ 0

0 ġ/f

]
.

H = 1
2 trW = 1

2

[
ḟ g̈ − f̈ ġ + ġ

f

]
.

KG = detW = ġ
f

[
ḟ g̈ − f̈ ġ

]
.

Special case: Sphere of radius a > 0:

Unit speed profile curve γ(u) =
(
a cos u

a , 0, a sin u
a

)
.

surface X (u, v) =
(
a cos u

a cos v , a cos u
a sin v , a sin u

a

)
.

f (u) = a cos u
a =⇒ ḟ (u) = − sin u

a =⇒ f̈ (u) = − 1
a cos u

a .
g(u) = a sin u

a =⇒ ġ(u) = cos u
a =⇒ g̈(u) = − 1

a sin u
a .

Then ḟ g̈ − f̈ ġ = 1
a sin2 u

a + 1
a cos2 u

a = 1
a and ġ

f = 1
a .

Then H = 1
2

(
1
a + 1

a

)
= 1

a .

And KG = 1
a2 .

Important: Notice the dimensions. H (and κ1, κ2) have dimension
[distance]−1. K has dimension [distance]−2.
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Standard tori

Definition (Standard torus in R3)

A standard torus in R3 is any torus in the family of surfaces of revolution
obtained by revolving the profile curves

γ(u) =
(
a + b cos

u

b
, 0, b sin

u

b

)
, a ≥ b, u ∈ [0, 2π),

about the z-axis (the vertical axis).

Exercise: For a standard torus T :

Find κ1, κ2, H, KG .

Compute the Willmore energy W (a/b) =
∫
T H2dA.

The Willmore energy of a standard torus is W (z) is a function of the single
variable z = a/b. Find z such that W (z) is a minimum. Standard tori with
a/b given by this value are called Willmore tori.

For more information, google “Willmore conjecture”.
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Lecture 15: Principal curvatures
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Surface area and Gauss curvature

Gauss map: S : S → S2 : p 7→ Np.

Disk: U = {u2 + v2 ≤ δ2} ⊂ R2.

Image of disk: R = X (U) ⊂ S .

Area of R:
A(R) =

∫
U
‖Xu × Xv‖ dudv , where

{Xu,Xv} is a basis for TpS .

G ◦ X : U → S2.

(G ◦ X )(u, v) = Np.

Area of G (R) is∫
U
‖(G ◦ X )u × (G ◦ X )v‖ dudv .
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Compare areas

Compare A(R) and A(G (R)).

AG◦X (G (R))

AX (R)
=

∫
U
‖(G ◦ X )u × (G ◦ X )v‖ dudv∫

U
‖Xu × Xv‖ dudv

To begin, recall (Ch 7)

W (Xu)(u0, v0) = − d

du

∣∣
u=u0

G (X (u, v0)) = −Nu(u0, v0)

W (Xv )(u0, v0) = − d

dv

∣∣
v=v0

G (X (u0, v)) = −Nv (u0, v0)

=⇒ Nu ×Nv =W (Xu)×W (Xv ) = (aXu + cXv )× (bXu + dXv )

using W =

[
a c
b d

]
in {Xu,Xv} basis. Then

(G ◦ X )u × (G ◦ X )v = (ad − bc)Xu × Xv = (detW)Xu × Xv = KGXu × Xv .
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Compare areas...continued

Then

AG◦X (G (R))

AX (R)
=

∫
U
‖(G ◦ X )u × (G ◦ X )v‖ dudv∫

U
‖Xu × Xv‖ dudv

=

∫
U
|KG | ‖Xu × Xv‖ dudv∫
U
‖Xu × Xv‖ dudv

=

∫
U
|KG | dAX∫
U
dAX

.

Take radius δ of disk U to be arbitrarily small. Then
KG → KG (u0, v0) = K0 = const and so

AG◦X (G (R))

AX (R)
=

∫
U
|KG | dAX∫
U
dAX

→ |K0| .
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Simple Gauss curvature calculations

Plane: Normals are parallel in R3

so KG = 0.

Sphere S2
a of radius a > 0. Then

N = G = r
‖r‖ = r

a . Then

G (S2
a) = S2

1, so

A(G (S2
a))

A(S2
a)

=
A(S2

1)

A(S2
a)

=
4π

4πa2
=

1

a2

=⇒ |KG | = 1/a2.
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Umbilics

Theorem

If every point of surface S is an umbilic, then S is an open subset of a plane or a
sphere.

Proof:

Umbilics are points p with κ1 = κ2 =: κ. Then W (t) = κt for every t ∈ Tp.

At an umbilic then W (Xu) = κXu, W (Xv ) = κXv .

But W (Xu) = − d
du

∣∣
u=u0

G (X (u, v0)) = −Nu. Likewise,W (Xv ) = −Nv .

Conclude that κXu = −Nu, κXv = −Nv at umbilic.

If every point of S is umbilic, these equations hold everywhere. Hence we
can differentiate them.

Then (κXu)v = −Nuv and (κXv )u = −Nvu.

These equations have same right-hand side, so the left-hand sides equal.
Expanding and simplifying, then

κvXu = κuXv

.Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 6 / 13



Proof continued

Since {Xu,Xv} is a linearly independent set, κvXu = κuXv can hold only if
κu = 0 = κv everywhere.

Thus κ is constant.

Say κ = 0.

We had κXu = −Nu, κXv = −Nv , so Nu = 0 = Nv .
Then N is constant, and S must be (an open subset of) a plane.

Say κ is a nonzero constant.

We still have κXu = −Nu and κXv = −Nv .
Then κX = −N + a, for a constant vector a.
Then − 1

κN = X − 1
κa. Because ‖N‖ = 1 then

1

κ2
=

∥∥∥∥X − 1

κ
a

∥∥∥∥2

.

This says that 1
κ2 = (x − x0)2 + (y − y0)2 + (z − z0)2, where

a
κ = (x0, y0, z0). It’s the equation of a sphere.
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The 2FF of a graph

z = f (x , y) defines a graphical surface S ⊂ R3.

Parametrize: x = u, y = v , z = f (u, v).

One patch covers a graph: X : U → R3 : (u, v) 7→ (u, v , f (u, v)).

Basis vectors for TpS : Xu = (1, 0, fu), Xv = (0, 1, fv ).

1FF: FI =

[
‖Xu‖2 Xu · Xv

Xu · Xv ‖Xv‖2

]
=

[
1 + f 2

u fufv
fufv 1 + f 2

v

]
.

Xu × Xv =

∣∣∣∣∣∣
e1 e2 e3
1 0 fu
0 1 fv

∣∣∣∣∣∣ = (−fu,−fv , 1).

N = Xu×Xv

‖Xu×Xv‖ = (−fu,−fv ,1)√
1+f 2

u +f 2
v

.
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The 2FF of a graph continued

Xuu = (0, 0, fuu), Xuv = Xvu = (0, 0, fuv ), Xvv = (0, 0, fvv ).

From last slide: N = (−fu,−fv ,1)√
1+f 2

u +f 2
v

= (−fu,−fv ,1)√
1+|∇f |2

.

2FF: FII =

[
N · Xuu N · Xuv

N · Xvu N · Xvv

]
= 1√

1+|∇f |2

[
fuu fuv
fvu fvv

]
.

Special case of z = f (x , y) = au2 + bv2:

FII = 2√
1+4a2u2+4b2v2

[
a 0
0 b

]
.

At a critical point ∇f = (2au, 2bv) = (0, 0) then FII = 2

[
a 0
0 b

]
and FI =

[
1 0
0 1

]
, so W = F−1

I FII = 2

[
a 0
0 b

]
at the critical

point (0, 0) of f (x , y) = au2 + bv2.
So z = f (u, v) = 1

2

(
κ̂1u

2 + κ̂2v
2
)
, for κ̂1, κ̂2 the principal curvatures

at (0, 0), and H(0, 0) = a + b = κ̂1 + κ̂2 and KG (0, 0) = 4ab = 4κ̂1κ̂2.
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z = f (u, v) = 1
2

(
κ̂1u

2 + κ̂2v
2
)

1 Elliptic point: KG > 0, and either
κ1, κ2 both positive, or both
negative. S resembles elliptic
parabola.

2 Hyperbolic point: KG < 0, and
κ1, κ2 have opposite signs. S
resembles hyperboloid.

3 Parabolic point: KG = 0 but only
one of κ1, κ2 is zero. S resembles
parabolic cylinder.

4 Planar point: KG = 0,
κ1 = κ2 = 0. S doesn’t necessarily
resemble a plane (see text p 194).
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Compact KG ≤ 0 surfaces do not embed in R3

The following obstruction prevents flat tori and compact hyperbolic surfaces from
globally isometrically embedding in R3.

Theorem

If S ∈ R3 is a compact surface it has a point where KG > 0.

Proof:

Define F : R3 → R : v 7→ F (v) = ‖v‖2.

Let S = compact surface, O = origin of R3.

Let f (P) = F ( ~OP) for ~OP the vector from O to P ∈ S .

Maximum principle: Every continuous function with compact domain has a
maximum.

Then f has a maximum. Call the maximum a2, where P is the furthest
point on S from O and a = ‖ ~OP‖
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Proof continued

Let γ be a unit speed curve on S passing through P, with γ(0) = P.

Then f (γ(t)) has a maximum f (γ(0)) = f (P) = a2 at t = 0.

Therefore d
dt

∣∣
t=0

f (γ(t)) = 0.

Second derivative test: d2

dt2

∣∣
t=0

f (γ(t)) ≤ 0.

From d
dt

∣∣
t=0

f (γ(t)) = 0 and f (γ(t)) = ‖γ(t)‖2, we have

0 = 2γ(0) · γ̇(0) (1)

(so γ(0) = ~OP ⊥ TPS ; therefore γ(0) = ~OP‖N).

From d2

dt2

∣∣
t=0

f (γ(t)) ≤ 0 and f (γ(t)) = ‖γ(t)‖2, we have

0 ≥ 2γ(0) · γ̈(0) + 2γ̇(0) · γ̇(0) = 2 (γ(0) · γ̈(0) + 1) . (2)
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Proof continued

From (1) on last slide, γ(0) ⊥ γ̇(0). Thus ~OP = γ(0) ⊥ TPS , so

N =
~OP

‖ ~OP‖ = 1
a
~OP is normal to S at P.

Recall: For any unit speed curve in S : γ̈ = κNN + κgN× γ̇.

Then κN(0) = N · γ̈(0) = 1
a
~OP · γ̈(0) = 1

aγ(0) · γ̈(0) ≤ − 1
a by (2) of last

slide.

Then κN(0) ≤ −1/a.

This must hold for all unit speed curves in S through P, so the maximum of
κN over all such curves at P is ≤ −1/a.

Since the maximum and minimum of κN through a fixed point are principal
curvatures, we have κ1 ≤ −1/a and κ2 ≤ −1/a.

Therefore KG = κ1κ2 ≥ 1/a2 > 0 at P ∈ S . QED.
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Lecture 16: Geodesics on surfaces
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Geodesics and minimal curves

Definition

A geodesic in S is a curve γ such that γ̈ is perpendicular to the tangent plane
Tγ(t)S (including possibly γ̈ = 0) for each t.

If γ is a geodesic in S and N is normal to S , then γ̈‖N (including possibly γ̈ = 0).

Properties:

Geodesics have constant speed.
Proof: d

dt (γ̇ · γ̇) = 2γ̇ · γ̈ = 0 since γ̈ ⊥ Tγ(t)S , so γ̇ · γ̇ = const.

A unit speed curve γ is geodesic if and only if it has zero geodesic curvature
κg = 0.
Proof: Recall κg := γ̈ · (N× γ̇). First, if γ is geodesic then either γ̈ = 0 or
γ̈‖N; either way we see that κg = 0. Conversely, if κg = 0 then either γ̈ = 0
of γ̈ ⊥ N× γ̇, and then γ̈ ∈ Span{N, γ̇}. Since γ̇ · γ̈ = 0, then γ̈‖N. But
then γ is geodesic.
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Properties continued

Recall a vector v is parallel along γ iff v̇ ⊥ Tγ(t)S . Letting v = γ̇ then:

Geodesics in S parallel-transport their own tangent vectors.

∇γ γ̇ = γ̈ − (γ̈ ·N)N = 0

If a (segment of a) straight line in R3 lies on a surface S , it’s a geodesic of S .
Proof: Can parametrize line as γ(t) = at + b (unit speed: ‖a‖ = 1). Then
γ̈(t) = 0.

Any normal section of S , parametrized by arclength, is a geodesic. (Recall
that normal sections are curves of intersection of S with a plane that
contains the normal to S . As a special case, great circles are geodesics.)
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The geodesic equations: set-up

Patch X : U → R3 : (u, v) 7→ X (u, v).

Let (u(t), v(t)) be a curve in U.

Then γ(t) = X (u(t), v(t)) is a curve in S , unit speed (reparametrize if
necessary).

Tangent: γ̇(t) = ∂X
∂u

du
dt + ∂X

∂v
dv
dt = Xu u̇(t) + Xv v̇(t).

γ is geodesic, so γ̈‖N for N normal to S .

Then γ̈ · Xu = 0, γ̈ · Xv = 0.

Equivalently, γ̈ − (γ̈ ·N)N = 0.

In other words, ∇γ γ̇ = 0.
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If γ̈‖N then γ̈ · Xu = 0, γ̈ · Xv = 0.

Consider the equation γ̈ · Xu = 0:

0 = γ̈ · Xu =
d

dt
(γ̇ · Xu)− γ̇ · Ẋu where γ̇(t) = Xu u̇(t) + Xv v̇(t)

=
d

dt
(Eu̇ + F v̇)− (Xu u̇ + Xv v̇) · (Xuu u̇ + Xuv v̇)

=
d

dt
(Eu̇ + F v̇)− (Xu · Xuu)u̇2 − (Xu · Xuv + XvXuu) u̇v̇ − Xv · Xuv v̇

2,

where we used that γ̇ · Xu = ‖Xu‖2u̇ + Xu · Xv v̇ = Eu̇ + F v̇ .

Now Xu · Xuu = 1
2
∂
∂u (Xu · Xu) = 1

2Eu. Similarly,

Xu · Xuv + Xv · Xuu = ∂
∂u (Xu · Xv ) = Fu, and

Xv · Xuv = 1
2
∂
∂u (Xv · Xv ) = 1

2Gu. Use these to simplify the above equation.

Get 0 = d
dt (Eu̇ + F v̇)− 1

2

[
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
]
.

Likewise, our other equation, γ̈ · Xv = 0, yields
0 = d

dt (F u̇ + Gv̇)− 1
2

[
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
]
.
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The geodesic equations

The geodesic equations are any of the following three equivalent sets of equations
along a curve γ(t) on S :

Vector form: ∇γ γ̇ = 0.

Component form:

0 =
d

dt
(Eu̇ + F v̇)− 1

2

[
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
]

0 =
d

dt
(F u̇ + Gv̇)− 1

2

[
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
]

Component form written using Christoffel symbols:

0 = ü + Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2

0 = v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2

We’ve proved equivalence of the first two forms above. Equivalence of these
with the third form is Proposition 7.4.5 of the text.
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Existence and uniqueness of geodesics

Theorem

For each p ∈ S and each v ∈ TpS there is a unique maximal geodesic γ defined
on an open interval I 3 t0 such that γ(t0) = p, γ̇(t0) = v.

Proof:

The equations

0 = ü + Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2

0 = v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2

have the form

ü = f (u, v , u̇, v̇),

v̈ = g(u, v , u̇, v̇),

for smooth functions f , g : Ω→ R, Ω ⊂ R4.

ODE theory: There is a unique solution of this system on an open interval I
containing t0, obeying initial conditions u(t0) = a, v(t0) = b, u̇(t0) = c ,
v̇(t0) = d .
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Proof continued

Write γ(t) = X (u(t), v(t)).

Then γ̇(t) = Xu u̇ + Xv v̇ .

Initial data γ(t0) = p = X (u(t0), u(t0)) = X (a, b) give u(t0) = a, v(t0) = b.

Initial data γ̇(t0) = v = cXu + dXv give u̇(t0) = c , v̇(t0) = d .

Now all the conditions of the ODE existence and uniqueness theorem are
satisfied. QED.
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Example: Unit cylinder

Patch X (u, v) = (cos u, sin u, v).

Xu = (− sin u, cos u, 0), Xv = (0, 0, 1).

Then E = ‖Xu‖2 = 1, F = Xu · Xv = 0, G = ‖Xv‖2 = 1

Geodesic equations:

d

dt
(Eu̇ + F v̇)− 1

2

[
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
]

= ü = 0,

d

dt
(F u̇ + Gv̇)− 1

2

[
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
]

= v̈ = 0.

Solutions: u(t) = At + B, v(t) = Ct + D, for A,B,C ,D ∈ R.

γ(t) = X (u(t), v(t)) = (cos(At + B), sin(At + B),Ct + D).
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γ(t) = (cos(At + B), sin(At + B),Ct + D)

For A = 0, get
γ(t) = (cosB, sinB,Ct + D).
These are vertical lines.

For A 6= 0 and C 6= 0, get
γ(t) = (cos τ, sin τ, kτ + D ′) where
τ := At +B, k = C

A , D ′ = D − BC
A .

This is a circular helix.

A 6= 0 but C = 0, get
γ(t) = (cos τ, sin τ,D), where
τ = At + B
These are circles.
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Lecture 17: Minimizing the arclength
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The geodesic equations: from last lecture

The geodesic equations are any of the following three equivalent sets of equations
along a curve γ(t) on S :

Vector form: ∇γ γ̇ = 0.

Component form:

0 =
d

dt
(Eu̇ + F v̇)− 1

2

[
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
]

0 =
d

dt
(F u̇ + Gv̇)− 1

2

[
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
]

Component form written using Christoffel symbols:

0 = ü + Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2

0 = v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2
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First integral

Define g := Eu̇2 + 2F u̇v̇ + Gv̇2.

Differentiate and use geodesic equations. Get ġ = 0.

Then g = const along any geodesic.

Therefore ‖γ̇(t)‖ is constant along any geodesic γ.

For later convenience, multiply geodesic equations by 1/
√
g , which can now

be moved inside the t-derivative.

0 =
d

dt

(
Eu̇ + F v̇
√
g

)
− 1

2
√
g

[
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
]

0 =
d

dt

(
F u̇ + Gv̇
√
g

)
− 1

2
√
g

[
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
]
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Minimizing curves

Definition

Say δ > 0, ε > 0. Consider a function α : (−δ, δ)× (−ε, ε)→ R3 with image
contained in a single patch X : U → R3 of surface S .

For each λ ∈ (−δ, δ) then γλ(t) = α(λ, t) is a curve.

Say there is an a and a b with −ε < a < b < ε and points p, q ∈ S such
that α(λ, a) = p, α(λ, b) = q for all λ ∈ (−δ, δ).

Say that γ0(t) =: γ(t) is a geodesic from p = γ(a) to q = γ(b).

Then α is a one parameter variation of the geodesic γ(t).
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Arclength

The arclength of the curve γλ(t) = α(λ, t), t ∈ [a, b], is

L(λ) =

b∫
a

∥∥γ̇λ(t)
∥∥ dt =

b∫
a

∥∥∥∥∂α∂t (λ, t)

∥∥∥∥ dt.
Minimize this function. The condition for the curve γ(t) = γ0(t) to be a
critical point of L is

0 =
dL

dλ

∣∣
λ=0

=

b∫
a

∂

∂λ

∣∣
λ=0

(∥∥∥∥∂α∂t (λ, t)

∥∥∥∥) dt

=

b∫
a

1

2
√
g

∂g

∂λ

∣∣
λ=0

dt

(1)

where

g(λ, t) :=

∥∥∥∥∂α∂t (λ, t)

∥∥∥∥2

=
∥∥γ̇λ(t)

∥∥2
= E

(
u̇λ
)2

+ 2F
(
u̇λ
) (

v̇λ
)

+ G
(
v̇λ
)2
.
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Differentiating g

Last slide: We used the coordinate patch X : UR3 to describe the curve γλ

using the curve (uλ(t), vλ(t)) in U, where X (uλ(t), vλ(t)) = γλ(t).

We wrote g(λ, t) =
∥∥γ̇λ(t)

∥∥2
= E

(
u̇λ
)2

+ 2F
(
u̇λ
) (

v̇λ
)

+ G
(
v̇λ
)2
.

Now differentiate g (for simplicity, write u = uλ, v = vλ):

∂g

∂λ
=

∂

∂λ

[
E (u̇)2 + 2F (u̇) (v̇) + G (v̇)2

]
=

(
Eu
∂u

∂λ
+ Ev

∂v

∂λ

)
(u̇)2 + 2Eu̇

∂2u

∂λ∂t
+ . . .

=
(
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
) ∂u
∂λ

+
(
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
) ∂v
∂λ

+ 2 (Eu̇ + F v̇)
∂2u

∂λ∂t
+ 2 (F u̇ + Gv̇)

∂2v

∂λ∂t
.

(2)

Plug this into equation (1) of previous slide.
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...continued

Plugging equation (2) into equation (1) produces

0 =
dL

dλ

∣∣
λ=0

=

b∫
a

1

2
√
g

[(
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
) ∂u
∂λ

+
(
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
) ∂v
∂λ

]
dt

+

b∫
a

1
√
g

[
(Eu̇ + F v̇)

∂2u

∂λ∂t
+ (F u̇ + Gv̇)

∂2v

∂λ∂t

]
dt

The integral in the final line can be integrated by parts. It becomes

−
b∫

a

[
∂

∂t

(
Eu̇ + F v̇
√
g

)
∂u

∂λ
+

∂

∂t

(
F u̇ + Gv̇
√
g

)
∂v

∂λ

]
dt

+
1
√
g

[
(Eu̇ + F v̇)

∂u

∂λ
+ (F u̇ + Gv̇)

∂v

∂λ

]b
a
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...continued

We have 1√
g

[
(Eu̇ + F v̇) ∂u∂λ + (F u̇ + Gv̇) ∂v∂λ

]b
a

= 0 because
∂u
∂λ (a) = ∂v

∂λ (a) = ∂u
∂λ (b) = ∂v

∂λ (b) = 0.

Putting everything else together, we can write

0 = L′(0) = dL
dλ

∣∣
λ=0

=
b∫
a

[
U ∂u
∂λ + V ∂v

∂λ

]
dt where

U =
1

2
√
g

(
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
)
− ∂

∂t

(
Eu̇ + F v̇
√
g

)
V =

1

2
√
g

(
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
)
− ∂

∂t

(
F u̇ + Gv̇
√
g

)
.

(3)

Key point: We require 0 = L′(0) =
b∫
a

[
U ∂u
∂λ + V ∂v

∂λ

]
dt for all ∂u∂λ and ∂v

∂λ .

This can only happen if U = 0 and V = 0 (for a proof, see text).
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The equations U = 0, V = 0

From equations (3), the equations U = 0 and V = 0 are

0 =
1

2
√
g

(
Eu u̇

2 + 2Fu u̇v̇ + Gu v̇
2
)
− ∂

∂t

(
Eu̇ + F v̇
√
g

)
0 =

1

2
√
g

(
Ev u̇

2 + 2Fv u̇v̇ + Gv v̇
2
)
− ∂

∂t

(
F u̇ + Gv̇
√
g

)
.

(4)

But these are the geodesic equations!

Theorem

For all smooth curves γ from p to q in S, the arclength functions L[γ] is a
stationary point with respect to any one-parameter family of variations of γ on S
if and only if γ is a geodesic of S.
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Final remarks

We worked on one patch X : U → R3 with smooth curves. Simple to
generalize to finitely many patches and to variations that can include
piecewise smooth curves. The critical points are still (smooth) geodesics.

Geodesics are critical points of arclength but not all geodesics are absolute
of even local minima. Example:

Segments of great circles on spheres (intersections of the sphere with
any plane through the origin) are geodesics.
No segment of a great circle that begins at the north pole and extends
past the south pole can be a minimum, nor even a local minimum, of
arclength.

A geodesic is a minimizing curve or minimizing geodesic if it is a local
minimum. Minimizing geodesics don’t always exist in general, but will
always exist if the surface is Cauchy complete.

The idea of a geodesic can be extended beyond surfaces to Riemannian
manifolds and to metric spaces.
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Lecture 18: Gauss-Codazzi-Mainardi equations, Theorema Egregium
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Gauss-Codazzi-Mainardi equations

Reminder:

Surface S with surface patch X : U → R3. (u, v) ∈ U.

1FF of patch is E (u, v)du2 + 2F (u, v)dudv + G (u, v)dv2.

2FF of patch is L(u, v)du2 + 2M(u, v)dudv + N(u, v)dv2.

Let N be the unit normal to the surface S .

Gauss equations:

Xuu = Γ1
11Xu + Γ2

11Xv + LN

Xuv = Γ1
12Xu + Γ2

12Xv + MN

Xvv = Γ1
22Xu + Γ2

22Xv + NN

The Christoffel symbols depend only on the 1FF; e.g., Γ1
11 = GEu−2FFu+FEv

2(EG−F 2) ,
etc.
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A tedious calculation

Differentiating the Gauss equations, compute (Xuu)v and (Xuv )u.

But partial derivatives commute, so (Xuu)v = (Xuv )u.

In resulting equation, replace Xuu, Xuv , Xvv using Gauss equations again.
Simplify. Get:

0 =

(
∂Γ1

11

∂v
− ∂Γ1

12

∂u
+ Γ1

22Γ2
11 − Γ1

12Γ2
12

)
Xu

+

(
∂Γ2

11

∂v
− ∂Γ2

12

∂u
+ Γ1

11Γ2
12 − Γ1

12Γ2
11 − Γ2

12Γ2
12 + Γ2

11Γ2
22

)
Xv

+
(
Lv −Mu − Γ1

12L + Γ1
11M − Γ2

12M + Γ2
11N

)
N

+ LNv −MNu

(1)

Use N · Xu = N · Xv = 0, N ·Nu = 1
2 (N ·N)u = 0, N ·Nv = 1

2 (N ·N)v = 0.
Then

Lv −Mu − Γ1
12L + Γ1

11M − Γ2
12M + Γ2

11N = 0. (2)
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Codazzi-Mainardi equations

Last slide:
Lv −Mu − Γ1

12L + Γ1
11M − Γ2

12M + Γ2
11N = 0.

Can repeat the procedure, starting instead by computing (Xvu)v and (Xvv )u
and subtracting them to get zero. Get

Mv − Nu − Γ1
22L + Γ1

12M − Γ2
22M + Γ2

12N = 0.

The two equations above are named for Codazzi and Mainardi.

But can also subtract the equation at the top (equation (2) from last slide)
from equation (1) of the last slide. Get (1) with its third line removed:

0 =

(
∂Γ1

11

∂v
− ∂Γ1

12

∂u
+ Γ1

22Γ2
11 − Γ1

12Γ2
12

)
Xu

+

(
∂Γ2

11

∂v
− ∂Γ2

12

∂u
+ Γ1

11Γ2
12 − Γ1

12Γ2
11 − Γ2

12Γ2
12 + Γ2

11Γ2
22

)
Xv

+ LNv −MNu.

(3)
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Simplify LNv −MNu

When we introduced Weingarten map (Lecture 11), we had
W (Xu) = −DG (Xu) = −Nu where G = N = Gauss map.

Similarly, W (Xv ) = −DG (Xu) = −Nv .

Can express this using E , . . . ,N since in matrix notation W = F−1
I FII .

After some calculation, get

LNv −MNu = (NL−M2)
(EG−F 2) [FXu − EXv ] = KG [FXu − EXv ].

Use this to substitute for LNv −MNu in (3) (last slide).

Resulting equation has Xu-component:

∂Γ1
11

∂v
− ∂Γ1

12

∂u
+ Γ1

22Γ2
11 − Γ1

12Γ2
12 + FKG = 0.

The Xv -component is

∂Γ2
11

∂v
− ∂Γ2

12

∂u
+ Γ1

11Γ2
12 − Γ1

12Γ2
11 − Γ2

12Γ2
12 + Γ2

11Γ2
22 − EKG = 0.
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Gauss curvature equations

Last two equations were derived from (Xuu)v − (Xuv )u = 0. Get two more
equations from (Xvu)v − (Xvv )u = 0.

All four such equations are called the Gauss equations (we derived them by
starting from another set of equations called Gauss equations).

We can write the Gauss equations by isolating KG :

EKG =
(
Γ2

11

)
v
−
(
Γ2

12

)
u

+ Γ1
11Γ2

12 + Γ2
11Γ2

22 − Γ1
12Γ2

11 − Γ2
12Γ2

12,

FKG =
(
Γ1

12

)
u
−

(
Γ1

11

)
v

+ Γ1
12Γ2

12 − Γ1
22Γ2

11,

FKG =
(
Γ2

12

)
v
−
(
Γ2

22

)
u

+ Γ1
12Γ2

12 − Γ1
22Γ2

11,

GKG =
(
Γ1

22

)
u
−
(
Γ1

12

)
v

+ Γ1
11Γ1

22 + Γ2
22Γ1

12 − Γ1
12Γ1

12 − Γ2
12Γ1

22.

And recall Codazzi-Mainardi:

Lv −Mu = Γ1
12L− Γ1

11M + Γ2
12M − Γ2

11N,

Mv − Nu = Γ1
22L− Γ1

12M + Γ2
22M − Γ2

12N.
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Ugly equations, beautiful results

Four different equations for KG . Therefore, there are identities amongst the
right-hand sides, showing that they are all equal (these are called Bianchi
identities).

Combining the four Gauss equations, we get a determinant formula for KG :

KG =

∣∣∣∣∣∣
− 1

2Evv + Fuv − 1
2Guu

1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣∣∣∣∣∣∣∣∣∣ E F
F G

∣∣∣∣2
KG = detW = detFII

detFI
= κ1κ2 only depends on the first fundamental form of

the surface! This statement is often called the Theorema Egregium
(remarkable theorem) of Gauss, though we will use the name for a corollary.
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Relations between the 1FF and 2FF?

KG = detW = detFII

detFI
, so we now have a relation between the 1FF and 2FF.

The Codazzi-Mainardi equations also relate the 1FF and 2FF.

These are the only such relations. (If the 1FF completely determined the
2FF, one of the assumptions of the following theorem would be redundant.)

Theorem

If X : U → R3 and X̃ : U → R3 are two surface patches with the same 1FF and
2FF, there is a direct isometry Φ of R3 such that X̃ = Φ ◦ X.

This is an analogue for surfaces of the fundamental theorem for plane curves.
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KG for a surface of revolution

KG =

∣∣∣∣∣∣
− 1

2Evv − 1
2Guu

1
2Eu − 1

2Ev

− 1
2Gu E 0

1
2Gv 0 G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2Ev

1
2Gu

1
2Ev E 0
1
2Gu 0 G

∣∣∣∣∣∣∣∣∣∣ E 0
0 G

∣∣∣∣2
= − 1

2
√
EG

[
∂

∂u

(
Gu√
EG

)
+

∂

∂v

(
Ev√
EG

)]
=

1√
detFI

div

(
− (Gu,Ev )

2
√

detFI

)

Recall the divergence of a vector field V = (V 1,V 2) on U:

divV = ∂V 1

∂u + ∂V 2

∂v .

If F = 0 and also E = 1, get KG = − 1
2
√
G

∂
∂u

(
Gu√
G

)
= − 1√

G
∂2
√
G

∂u2 .

Surface of revolution has 1FF du2 + f 2(u)dv2 (so E = 1, G = f 2(u)). Then
KG = −f̈ (u)/f (u).
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Theorema Egregium

Theorem (Theorema Egregium)

The Gauss curvature is preserved by local isometries.

Proof.

f : S1 → S2 is a local isometry if it is a local diffeomorphism that maps any
curve in S1 to a curve of the same length in S2.

A local diffeo is a local isometry iff surface patches X1 : U → R3 for S1 and
X2 = f ◦ X1 : U → R3 for S2 have same 1FF [text, Corollary 6.3.2].

But KG is completely determined by the 1FF.

Meaning: Gives a necessary condition for two surfaces to have the same
“local intrinsic geometry” (the 1FF); e.g., If two surfaces have different
values of, say, supKG , they cannot be isometric.

Naive question: Is it a sufficient condition? In what sense?
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Consequence for map making

Theorem

Any geographic map of the Earth’s surface must distort distances.

Proof.

Geographic maps are regions of planes. Planes have WII =

[
0 0
0 0

]
, so

KG = detW = 0.

The Earth is (approximately) a round sphere, so WII =

[
1 0
0 1

]
, so

KG = detW = 1.

0 6= 1.

When we study the Gauss-Bonnet theorem, we will see that this argument does
not require the Earth to be perfectly or approximately round.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 11 / 11



Lecture 19: Minimal surfaces 1
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Minimal surfaces

Definition

Consider a surface S .

If the 2FF of S vanishes everywhere, S is totally geodesic.

If KG vanishes everywhere (so detW = 0), S is Gauss flat or intrinsically flat.

If the mean curvature vanishes everywhere H = 0, S is a minimal surface.

A surface that minimizes area is a least area surface.

Just as geodesics are extrema of the arclength, compact minimal surfaces
are extrema of the area.

Every least area surface is a minimal surface, but not every minimal surface
is a least area surface.

Minimal surfaces always minimize area compared to other surfaces which
differ only in a “sufficiently small region”.
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A few examples

Planes ax + by + cz = d .

Catenoid
X (u, v) = (x(u, v), y(u, v), z(u, v))
x = cosh(u) cos(v)
y = cosh(u) sin(v)
z = u

Enneper’s surface
X (u, v) = (x(u, v), y(u, v), z(u, v))

x(u, v) = u
3

(
1− u2

3 + v2
)

y(u, v) = v
3

(
1− v2

3 + u2
)

z(u, v) = 1
3

(
u2 − v2

)
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Variation of area

Family of surface patches
X (τ) : U → R3

τ ∈ (−δ, δ) for δ > 0.

Require map (u, v , τ) 7→ X (τ)(u, v)
to be smooth.

Define the variation vector field
Φ := d

dτ

∣∣
τ=0

X (τ)(u, v) =

Ẋ (τ)big |τ=0.

γ is a simple closed curve
containing interior region int(γ).

Area of int(γ) is
A(τ) =

∫
int γ

dAX (τ) .
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Variation of area: set-up

X (τ)(u, v) = X (τ, u, v).

The boundary curve doesn’t vary: Φ(u, v) = 0 if X (τ, u, v) = γ.

For each X (τ, u, v), we have the basis {Xu,Xv ,N}.

Then Φ = a(τ, u, v)N + b(τ, u, v)Xu + c(τ, u, v)Xv .

Area A(τ) =
∫

int(γ)
‖Xu × Xv‖ dudv =

∫
int(γ)

N · (Xu × Xv ) dudv .

Ȧ(τ) = dA
dτ =

∫
int(γ)

∂
∂τ (N · (Xu × Xv )) dudv .

N is a unit vector, so Ṅ ⊥ N. Therefore Ṅ ⊥ Xu ×Xv , so Ṅ · (Xu × Xv ) = 0.

Then Ȧ(τ) = dA
dτ =

∫
int(γ)

N · ∂∂τ (Xu × Xv ) dudv .

Then Ȧ(τ) = dA
dτ =

∫
int(γ)

N ·
(
Ẋu × Xv + Xu × Ẋv

)
dudv , where Ẋ = ∂X

∂τ .
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First variation of area

Last slide: Ȧ(τ) = dA
dτ =

∫
int(γ)

N ·
(
Ẋu × Xv + Xu × Ẋv

)
dudv , where

Ẋ = ∂X
∂τ .

Calculation in text p 310 then gives dA
dτ

∣∣
τ=0

=∫
int(γ)

[(
b
√
EG − F 2

)
u

+
(
c
√
EG − F 2

)
v
− 2a

(
EG − F 2

)
H
]
dudv ,

where H = LG−2MF+NE
2(EG−F 2) .

Use Green’s theorem
∫

int(γ)

(
∂g
∂u −

∂f
∂v

)
dudv =

∫
γ

(fdu + gdv).

Get dA
dτ

∣∣
τ=0

=
∫
γ

√
EG − F 2(bdv − cdu)− 2

∫
int(γ)

aH
(
EG − F 2

)
dudv

Φ = 0 along γ, so b = c = 0 in line integral along γ.

First variation of area formula:
dA
dτ

∣∣
τ=0

= −2
∫

int(γ)
aH
(
EG − F 2

)
dudv = −2

∫
int(γ)

aH
√

detFIdudv .
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Lecture 20: Plateau’s problem, minimal surfaces 2
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Plateau’s problem

First variation of area: dA
dτ

∣∣
τ=0

= −2
∫

int(γ)
aH
√

detFIdudv .

a = a(0, u, v) is the normal component of the variation vector field
Φ = aN + bXu + cXv (last lecture).

Stationary points: dA
dτ

∣∣
τ=0

= 0 for all a iff H ≡ 0 on int(γ).

Plateau’s problem: Given a simple closed curve γ : [α, β]→ R3, find a least
area surface whose boundary is γ.

Step 1: Find the minimal surfaces (the critical points of area) spanning γ.
These are minimal surfaces H = 0.

Soap films spanning a ring are solutions of Plateau’s problem

Soap bubbles are not usually solutions of Plateau’s problem. Bubbles are
supported by air pressure, and are CMC surfaces (constant mean curvature
surfaces). They obey H = c = const, so minimal surfaces H = 0 are a
special case.
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Nonpositive curvature

Theorem (Gaussian curvature of minimal surfaces)

Minimal surfaces in R3 have KG ≤ 0.

Proof.

If S is a minimal surface then H = 0 at each point of S .

H = 1
2 (κ1 + κ2) (κi = principal curvatures).

Then κ1 and κ2 have opposite signs at each point, or one of them is zero; so
their product is negative, or zero.

Then KG = κ1κ2 must be negative, or zero.
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No compact minimal surfaces in R3

Recall a surface S ⊂ R3 is compact if it is bounded so it lies within some
sphere, and complete so Cauchy sequences converge. (Some definitions also
require no boundary, but that follows from our definition of a surface.)

A sphere is compact. So is a torus. A punctured sphere (i.e., a sphere minus
a point) is not compact. A plane is not compact.

Theorem

There are no compact minimal surfaces embedded in R3.

Proof.

At every point of a minimal surface, 0 = 2H = κ1 + κ2, so the principal
curvatures have opposite signs or are both zero.

Then KG = κ1κ2 ≤ 0 at every point.

But every compact surface has at least one point where KG > 0.
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Example of a minimal surface: A catenoid

Consider the catenoid cosh z =
√
x2 + y2 parametrized by

X (u, v) = (cosh u cos v , cosh u sin v , u) .

Exercise:

Compute that FI = cosh2 u

[
1 0
0 1

]
.

Compute that FII =

[
−1 0
0 1

]
.

Conclude that W = F−1
I FII = sech2 u

[
−1 0
0 1

]
.

Then κ1 = − sech2 u, κ2 = sech2 u.

H = 1
2 (κ1 + κ2) = 0, so this is a minimal surface.

KG = κ1κ2 = − sech4 u < 0.
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Minimal surfaces of revolution

Theorem

Any minimal surface that is a surface of revolution is an open subset of a
catenoid or a plane.

To begin proof, recall surface of revolution. If necessary, use an isometry so
that surface is revolved around z-axis.

Then X = (f (u) cos v , f (u) sin v , g(u)).

Choose profile curve to be unit speed: ḟ 2(u) + ġ2(u) = 1.

We had FI =

[
1 0
0 f 2

]
, FII =

[
ḟ g̈ − f̈ ġ 0

0 f ġ

]
,

W =

[
ḟ g̈ − f̈ ġ 0

0 ġ/f

]
.

This is a minimal surface iff 0 = H = ḟ g̈ − f̈ ġ + ġ/f .
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Proof continued

Must solve ODE system ḟ 2 + ġ2 = 1, ḟ g̈ − f̈ ġ + ġ/f = 0.

Possibilities:

1 ġ = 0 on open interval.
2 ḟ = 0 on open interval.
3 ḟ 6= 0, ġ 6= 0 except perhaps at isolated points.

Possibility 1: Then g = k = const and ḟ 2 = 1 so f = ±u + u0, u0 = const.
The 1FF is du2 + (±u + u0)2dv2 = 0. Writing r := ±u + u0 and θ := v , get
dr2 + r2dθ2. This is the 1FF of a horizontal plane in polar coordinates.

Possibility 2: ḟ = 0 on open interval, then f (u) = k = const and ġ2 = 1.
But then H = ḟ g̈ − f̈ ġ + ġ/f = 0 + 0 + 1/k 6= 0. No solution.

Possibility 3: Differentiate ḟ 2 + ġ2 = 1 to get ḟ f̈ + ġ g̈ = 0. Use this in H on
next page.
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Proof continued

We have ḟ f̈ + ġ g̈ = 0 and 0 = ġH = ḟ ġ g̈ − f̈ ġ2 + ġ2/f .

Combining these, then

0 = − ḟ 2 f̈ − f̈ ġ2 + ġ2/f = −f̈
(
ḟ 2 + ġ2

)
+ ġ2/f = −f̈ + ġ2/f

= − f̈ +
1

f

(
1− ḟ 2

)
.

Multiplying by −f , we get 0 = f f̈ + ḟ 2 − 1 = 1
2

d2

du2

(
f 2
)
− 1.

Then d2

du2

(
f 2
)

= 2, so f 2(u) = u2 + au + b.

A translation of u removes the au term. We choose b = c2 > 0 so that
f 2(0) > 0.

Then f 2(u) = u2 + c2, so ḟ = u√
u2+c2

.

Then ġ = c√
u2+c2

and g(u) = c arcsinh u
c .
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End of proof

We need only do a little rewriting:

Define ũ := g(u) = c arcsinh u
c , so u = c sinh ũ

c .

Then f 2(u) = u2 + c2 = c2
(
sinh2 ũ

c + 1
)

= c2 cosh2 ũ
c , so f (u) = c cosh ũ

c .

Then

X (u, v) = (f (u) cos v , f (u) sin v , g(u))

=

(
c cosh

ũ

c
cos v , c cosh

ũ

c
sin v , ũ

)
.

This is a catenoid.
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The minimal graph equation

Graph z = f (x , y).

Mean curvature is H =
(1+f 2

y )fxx−2fx fy fxy+(1+f 2
x )fyy

2(1+f 2
x +f 2

y )3/2 (text, exercise 8.1.1).

The equation
(
1 + f 2

y

)
fxx − 2fx fy fxy +

(
1 + f 2

x

)
fyy = 0 is called the minimal

graph equation (or minimal surface equation).

Theorem

Consider solutions of the minimal graph equation of the form
f (x , y) = F (x) + G (y). Up to isometry, the only solutions are planes and
Scherk’s surface z = ln cos y

cos x , −
π
2 < x < π

2 , −
π
2 < y < π

2 .
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Lecture 21: Local Gauss-Bonnet (one patch)
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Gauss Bonnet theorem 1: single patch

Theorem (Gauss Bonnet for a single surface patch)

Let X : U → R3 be a surface patch covering surface S.

Let γ(s) be a simple closed curve separating S into two regions, the interior
int(γ) and the exterior ext(γ).

Let s be a unit speed parameter for γ.

Let κg be the geodesic curvature of γ.

Let KG be the Gauss curvature of S.

Then ∫
int(γ)

KGdAX +

∮
γ

κgds = 2π.

Compare: Hopf’s umlaufsatz:
∮
γ
κds = 2π for a simple closed curve in R2.

Follows from Green’s theorem
∫

int(γ)
(Qu − Pv )dudv =

∮
γ
Pdu + Qdv .
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Orthonormal basis: ONB

Surface S with normal N, patch
X : U → R3.

{Xu,Xv ,N} is not an ONB.

Curve γ in S has tangent γ̇.

Choose e1, e2 ∈ Tγ(t)S , e1 ⊥ e2.

Then {e1, e2,N} is an ONB along
γ.
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γ̇ and γ̈

Take γ(s) to be unit speed.

γ̇ makes angle θ with e1.

γ̇ = cos θe1 + sin θe2.

=⇒ N× γ̇ = − sin θe1 + cos θe2.

γ̈ = cos θė1 + sin θė2 + θ̇ (− sin θe1 + cos θe2).

Remark: We have not assumed a “transport law” for the ei along γ, except
that they remain tangent to S , orthonormal to each other, and differentiable
wrt the parameter s along γ.

κg = γ̈ · (N× γ̇) if γ is unit speed.

Can use this to compute that

κg = θ̇
(
sin2 θ + cos2 θ

)
+ (cos θė1 + sin θė2) · (− sin θe1 + cos θe2)

= θ̇ + sin θ cos θ (ė2 · e2 − ė1 · e1) + cos2 ė1 · e2 − sin2 θė2 · e1.
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Simplify

κg = θ̇ + sin θ cos θ (ė2 · e2 − ė1 · e1) + cos2 ė1 · e2 − sin2 θė2 · e1.

Two easy simplifications:

ėi · ei = 1
2

d
ds (ei · ei ) = 1

2
d
ds (1) = 0, and

ė1 · e2 = d
ds (e1 · e2)− e1 · ė2 = −e1 · ė2.

So we get κg = θ̇ − e1 · ė2.

Integrate the result around closed curve γ:∮
γ

κgds =

∮
γ

θ̇ds −
∮
γ

e1 · ė2ds

= 2π −
∮
γ

e1 · ė2ds,

using
∮
γ
θ̇ds = θ

∣∣2π
0

= 2π.

Next: Convert last term on right to area integral of KG (use Green’s
theorem).

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 5 / 11



Dealing with
∮
γ e1 · ė2ds

Chain rule: ė2 = (∂ue2)u̇ + (∂ve2)v̇ .

Then
∮
γ
e1 · ė2ds =

∮
γ

[e1 · (∂ue2)u̇ + e1 · (∂ve2)v̇ ] ds.

Line integral form:
∮
γ
e1 · ė2ds =

∮
γ

(e1 · ∂ue2)du + (e1 · ∂ve2)dv .

Use Green’s theorem:
∮
γ
Pdu + Qdv =

∫
int(γ)

(Qu − Pv )dudv .

Get
∮
γ
e1 · ė2ds =

∫
int(γ)

[∂u (e1 · ∂ve2)− ∂v (e1 · ∂ue2)] dudv .

Expand/simplify:
∮
γ
e1 · ė2ds =

∫
int(γ)

[(∂ue1 · ∂ve2)− (∂ve1 · ∂ue2)] dudv .

So now we have∮
γ

κgds = 2π −
∫

int(γ)

[(∂ue1 · ∂ve2)− (∂ve1 · ∂ue2)] dudv .
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The final lemma

Last slide:
∮
γ
κgds = 2π −

∫
int(γ)

[(∂ue1 · ∂ve2)− (∂ve1 · ∂ue2)] dudv .

Lemma

Let the 1FF of the patch X : U → R3 be Edu2 + 2Fdudv + Gdv2.

Let the 2FF of the patch X : U → R3 be Ldu2 + 2Mdudv + Ndv2.

Then ∂ue1 · ∂ve2 − ∂ve1 · ∂ue2 = LN−M2
√
EG−F 2

= KG

√
EG − F 2 = KG

√
detFI .

We must prove this, but first:

Corollary (Gauss-Bonnet for one patch X )∮
γ
κgds = 2π −

∫
int(γ)

KG

√
detFIdudv = 2π −

∫
int(γ)

KGdAX .

Proof.

Plug the result of the theorem into the equation at the top of the slide.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 7 / 11



Proof of the lemma

Idea: Write ∂uei , ∂vei in the {e1, e2,N} orthonormal basis.

Simplification: e1 · e1 = 1, so ∂u(e1 · e1) = 2e1 · ∂ue1 = 0.

Likewise e1 · ∂ve1 = 0, e2 · ∂ue2 = 0, e2 · ∂ve2 = 0.

Then ∂uei and ∂vei have no ei component, so:

∂ue1 = ae2 + cN,
∂ve1 = be2 + dN,
∂ue2 = −f e1 + gN,
∂ve2 = −he1 + kN,

for coefficients a, . . . , k (the minus signs are for later convenience).

Then we get

∂ue1 · ∂ve2 − ∂ve1 · ∂ue2

= (ae2 + cN) · (−he1 + kN)− (−f e1 + gN) · (be2 + dN)

= ck − dg .

(1)
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Proof of lemma continued...

N = e1 × e2 (since {e1, e2,N} is right-handed ONB).

Then (Nu ×Nv ) ·N = (Nu ×Nv ) · (e1 × e2).

=⇒ (Nu ×Nv ) ·N = (Nu · e1)(Nv · e2)− (Nu · e2)(Nv · e1) (identity).

=⇒ (Nu ×Nv ) ·N = (N · ∂ue1)(N · ∂ve2)− (N · ∂ue2)(N · ∂ve1) (Leibniz).

Use from last slide that:

∂ue1 = ae2 + cN,
∂ve1 = be2 + dN,
∂ue2 = −f e1 + gN,
∂ve2 = −he1 + kN,

=⇒ (Nu ×Nv ) ·N = ck − dg .

Inserting this into (1) from the last slide, we have

∂ue1 · ∂ve2 − ∂ve1 · ∂ue2 = (Nu ×Nv ) ·N. (2)
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End of proof

Last slide: ∂ue1 · ∂ve2 − ∂ve1 · ∂ue2 = (Nu ×Nv ) ·N.

Chapter 8 (Lecture 15): Nu ×Nv = KGXu × Xv .

Then (Nu ×Nv ) ·N = KG (Xu × Xv ) ·N = KG (Xu × Xv ) · (Xu×Xv )
‖(Xu×Xv )‖ .

=⇒ (Nu ×Nv ) ·N = KG

√
detFI = KG‖Xu × Xv‖ = KG

√
EG − F 2.

Then we conclude that

∂ue1 · ∂ve2 − ∂ve1 · ∂ue2 = KG

√
EG − F 2 = KG

√
detFI ,

which proves the lemma, and Gauss-Bonnet follows as a corollary.
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A consequence of
∫

int(γ) KGdAX +
∮
γ κgds = 2π.

Lemma

Let S be a surface covered by a single patch and bounded by a closed geodesic γ.
Then S cannot have everywhere nonpositive Gauss curvature.

Proof.

Geodesics have κg = 0, so
∫

int(γ)
KGdAX = 2π, so KG > 0 somewhere on S .

Recall we already had a similar result for compact surfaces without boundary.
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Lecture 22: Gauss-Bonnet for curvilinear polygons
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Curvilinear polygons

A curvilinear polygon is a region in
R2 bounded by edges that meet at
corners.

We denote the boundary curve by
Π(t).

One surface patch X : U → R3, for
simplicity only.

Use X to lift it up to a region in
surface S , bounded by curve
γ = X ◦ Π.
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Curvilinear polygon definition

Definition

A curvilinear polygon is a continuous map Π : R→ R2 such that, for some T ∈ R
and a partition 0 = t0 < t1 < · · · < tn = T , we have the following:

(i) (Boundary curve is closed:) Π(t) = Π(t ′) if and only if t − t ′ is an integer
multiple of T .

(ii) (Boundary curve is smooth between finitely many corners:) Π is smooth at
any t ∈ (ti−1, ti ), i = 1, . . . , n.

(iii) (Corners form well-defined angles:) The one-sided derivatives

Π̇+(ti ) = lim
t↗ti

Π(t)− Π(ti )

t − ti
, Π̇−(ti−1) = lim

t↘ti−1

Π(t)− Π(ti−1)

t − ti−1
,

exist for each i = 1, . . . , n.
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Rounding off corners

γ(t) a unit speed curve.

{e1, e2} an ONB.

γ̇ = cos θe1 + sin θe2.

Plane curves: κg = κS = θ̇.

Curve in diagram smooths out
corner with angle α.

Along the smooth curve:
b∫
a

θ̇ds = θ(b)− θ(a) = π − α.

We will consider when α ∈ [0, 2π)
is an interior angle in polygon.
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Gauss-Bonnet for curvilinear polygons

∫
int(γ)

KGdAX +
n∑

i=1

∫
γi

κgds +
n∑

i=1

(π − αi ) = 2π ,

where

γ is a simple, closed, unit speed curve bounding a curvilinear polygon in a
patch X of surface S ,

γ is a union of n smooth segments γi which meet at n vertices γ(ti ),
i = 1, . . . , n, and

αi ∈ [0, 2π) is the interior angle at the i th vertex.

We can also write this formula as∫
int(γ)

KGdAX +

∫
γ

κgds =
n∑

i=1

αi − (n − 2)π ,

where
∫
γ

means
n∑

i=1

∫
γi

.
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Gauss-Bonnet illustrated

∫
int(γ)

KGdAX +
n∑

i=1

∫
γi

κgds =
n∑

i=1

αi − (n − 2)π .
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∫
int(γ) KGdAX +

n∑
i=1

∫
γi
κgds =

n∑
i=1

αi − (n − 2)π

Special case:

If γ consists of geodesic segments γi then∫
int(γ)

KGdAX =
n∑

i=1

αi − (n − 2)π .

Corollary

The total curvature of a hemisphere of any radius is
∫
KGdA = 2π.

The total curvature of a sphere of any radius is
∫
KGdA = 4π.

Proof.

Hemisphere: Boundary curve γ is the equator, which is a geodesic.

Sphere: Add two hemispheres.
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Triangulations of a surface S

Definition

A triangulation of S is a collection of
curvilinear polygons such that

(i) every point of S is in at least one
polygon,

(ii) any two polygons are either disjoint
or intersect at a common vertex or
along a common edge, and

(iii) each edge is an edge of exactly two
polygons.

Theorem

Every compact surface can be
triangulated by finitely many curvilinear
polygons.
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Euler number (Euler characteristic)

Curvilinear polygons have (i) faces,
(ii) edges, and (iii) vertices.

A triangulation will have (ii) F
faces, (ii) E edges, and (iii) V
vertices.

Definition

The Euler number (or Euler
characteristic) of a triangulation of a
surface S is

χ := F − E + V .

e.g., Sphere triangulated by its octants
has χ = 8− 12 + 6 = 2.
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Gauss-Bonnet theorem for compact surfaces

Theorem

For any compact surface S we have

2πχ =

∫
S

KGdA.

Corollary: χ depends only
on the surface S , not on
the triangulation.

We write χ = χ(S),

For any sphere, we have
χ(S2) = 2.

For any torus, we have
χ(T2) = 0.
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Lecture 23 Gauss-Bonnet for compact surfaces
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Proof of Gauss-Bonnet theorem for compact surfaces

Theorem

For any compact surface S we have 2πχ =
∫
S
KGdA.

Proof:

Consider a triangulation with

faces fi , i = 1, . . . ,F ,
edges ej , j = 1, . . . ,E , and
vertices vk , k = 1, . . . ,V .

Choose the faces fi small enough so each “triangle” (i.e., curvilinear
polygon) fits in one patch Xi : Ui → R.

Say face fi is a polygon with pi edges eim and pi vertices vin,
m, n = 1, . . . , pi . Let αin be the interior angle of vertex vin. Then∫
S

KGdA =
F∑
i=1

∫
fi

KGdAXi =
F∑
i=1

{
−

pi∑
m=1

∫
eim

κgds −
pi∑

n=1

(π − αin) + 2π

}
.
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Proof continued∫
S
KGdA = −

F∑
i=1

pi∑
m=1

∫
eim
κgds −

F∑
i=1

pi∑
n=1

(π − αin) +
F∑
i=1

2π.

Last term:
F∑
i=1

2π = 2πF .

Middle term:
F∑
i=1

pi∑
n=1

αin is the sum over every face of every interior angle in that face.

Same as sum over every vertex of every interior angle at that vertex,
which is therefore 2πV .

Also, −
F∑
i=1

pi∑
n=1

π = −π
F∑
i=1

pi∑
n=1

1, and
F∑
i=1

pi∑
n=1

1 equals twice the number

of edges, since each edge belongs to two faces and so is counted twice.

Then −
F∑
i=1

pi∑
n=1

(π − αin) = −2πE + 2πV .

Collect results:
∫
S
KGdA = −

F∑
i=1

pi∑
m=1

∫
eim
κgds + 2π(−E + V + F ).
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Proof continued

∫
S
KGdA = −

F∑
i=1

pi∑
m=1

∫
eim
κgds + 2π(−E + V + F ).

But
F∑
i=1

pi∑
m=1

∫
eim
κgds = 0 because,

when summing over faces, each
edge eim is counted twice, once for
each face to which is belongs, but
with opposite orientations.

κg = γ̈ · (N× γ̇), so
s 7→ u = −s =⇒ κg 7→ −κg .

Hence
∫
S
KGdA = 2π(−E + V + F ) = 2πχ(S). QED.
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A corollary

Theorem

Any two diffeomorphic compact surfaces have the same Euler number and
(therefore) the same total curvature

∫
KGdA.

Proof:

Diffeomorphisms map curves to curves, intersections of curves to
intersections of curves, etc.

Therefore they map triangulations by curvilinear polygons to triangulations
by curvilinear polygons, preserving the number of faces, edges, and vertices.
QED.

Remark:

FII detects curvature of a surface S .

But KG := detW = det FII

det FI
depends only on FI .

For S compact, then
∫
S
KGdA doesn’t even depend on local geometry

encoded in FI . It depends only on the topology of S .
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A further corollary

Theorem

Define the genus g of an orientable
compact surface S to be the “number of
holes”. Then

χ(S) = 2− 2g .

Proof by induction.

We’ve proved g = 0 and g = 1
cases.

Must prove: If true for g , it’s true
for g + 1.
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The induction hypothesis

Σg triangulated n-gons by V
vertices, E edges, F faces, with
χ(Σg ) = F − E + V = 2− 2g .

T2 triangulated by n-gons V ′

vertices, E ′ edges, F ′ faces, with
χ(T2) = 0.

Select one n-gon from each, and
glue them together.

Get V ′′ = V + V ′ − n vertices,
E ′′ = E + E ′ − n edges,
F ′′ = F + F ′ − 2 faces.

χ(Σg+1) = (F +F ′−2)− (E +E ′−
n) + (V +V ′− n) = (F −E +V ) +
(F ′ − E ′ + V ′)− 2 = χ(Σg )− 2.
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Corollary

Corollary

No surface diffeomorphic to S2 has KG ≤ 0 everywhere.

No surface diffeomorphic to a multi-torus has KG ≥ 0 everywhere.

Note: We already know that no compact surface in R3 has KG ≤ 0 everywhere.

Proof.∫
S2 KGdA = 2πχ(S2) = 4π > 0, so KG > 0 somewhere. This proves part 1.∫
Σg

KGdA = 2πχ(Σg ) = 2− 2g < 0 for g > 1 so KG < 0 somewhere. This

proves part 2.

Remark: Since KG > 0 somewhere on every compact surface embedded in
R3, and

∫
T2 KGdA = 2πχ(T2) = 0, this also proves that KG < 0 somewhere

on T2 ⊂ R3.
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Lecture 24: Combing hair on compact surfaces
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Stationary points of a vector field

Definition

A stationary point of a vector field V is an isolated zero of V. The index (or
multiplicity) of a stationary point p is defined as follows:

Enclose p within a simple closed unit speed curve γ, traversed
counterclockwise.

Choose any smooth vector field ξ which doesn’t vanish on or inside γ.

Let ψ be the angle from ξ to V at each point of γ.

Then the multiplicity µ(p) of V at p is

µ(p) =
1

2π

∫
γ

dψ

ds
ds.

To understand the definition, note that 1
2π

∫
γ

dψ
ds ds = ψ(b)− ψ(a) where

γ : [a, b]→ R2 is a closed curve, and ψ(b) = ψ(a) modulo an integer multiple of
2π.
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Examples

1. V = (x , y) has µ(p) = 1.

2. V = (y ,−x) has µ(p) = 1.

3. V = (x ,−y) has µ = −1.
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Compute µ(p) for V = (x ,−y)

Pick ξ to have no zero: ξ = (1, 0) = e1 will do nicely.

Compute cosψ = V·ξ
‖V‖‖ξ‖ = x√

x2+y2
.

Also, sinψ = − y√
x2+y2

(careful of the sign!).

Encircle p with a simple, closed, unit speed curve traversed counterclockwise,
say γ(s) = (cos s, sin s) (taking coordinates so that p is the origin).

Then cosψ = x√
x2+y2

= cos s√
cos2 s+sin2 s

= cos s,

sinψ = − y√
x2+y2

= − sin s√
cos2 s+sin2 s

= − sin s along γ.

Read off that ψ(s) = 2π − s.

Then dψ
ds = −1 and µ(p) = 1

2π

2π∫
0

(−1)ds = −1.

(N.B. Second-last bullet point also gives ψ(2π)− ψ(0) = −2π so

µ(p) = 1
2π

2π∫
0

(−1)ds = 1
2π (ψ(2π)− ψ(0)) = −1 without finding dψ

ds .)
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Can you comb the hair on a sphere?

Theorem

If V is a smooth vector field on a compact surface S with n stationary points
(i.e., n isolated zeroes) p1, . . . , pn, then

n∑
i=1

µ(pi ) = χ(S).

Corollary:

On a genus g compact surface Σg , we have χ(Σg ) = 2− 2g . From the
theorem any smooth vector field V on Σg must have at least one stationary
point unless Σg is a torus (so g = 1).

To answer the title question, “Not without a bald spot.”

For spheres this generalizes, and is true for all even dimensional spheres S2n

(subsets x2
1 + · · ·+ x2

n+1 = a2, a > 0, in Rn+1 3 (x1, . . . , xn+1)). However,
you can comb the hair on any odd-dimensional sphere smoothly, without any
bald spots (stationary points of the vector field).
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The proof

Surface S , vector field V,
stationary points p1, . . . , pn.

Encircle the pi with (disjoint) unit
speed simple closed curves γi .

Let S ′ be the closure of the region
of S outside the γi (closure means
that the γi are included in S ′).

Triangulate S ′ with curvilinear
polygons Γj . V has no stationary
points in S ′.

2πχ(S) =

∫
S

KGdA =

∫
S′
KGdA +

n∑
i=1

∫
int(γi )

KGdA.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 6 / 11



The exterior region S ′

Pick ONB {e1, e2} in S ′, with e1 = V/‖V‖.

From a previous proof (of the “local” Gauss-Bonnet formula) for a region Σ
bounded by curves βi , we have∫

Σ

KGdA =

∮
βi

e1 · ė2ds,

for ė2 the derivative of e2 along βi .

Now let Σ be S ′ and βi be −γi . The minus sign is because
“counterclockwise about pi ∈ int γi” is clockwise about a point in S ′.
(Notation: −γ is used to indicate reverse orientation, so d

ds 7→ −
d
ds , not the

negative of the components of γ.)

Then ∫
S′
KGdA = −

n∑
i=1

∮
γi

e1 · ė2ds. (1)
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The disks int γi containing stationary points pi

Pick an orthonormal basis {E1,E2}.

As before, get ∫
int γi

KGdA =

∮
γi

E1 · Ė2ds. (2)

Combine (1) and (2):

2πχ(S) =

∫
S

KGdA =

∫
S′
KGdA +

n∑
i=1

∫
int(γi )

KGdA

= −
n∑

i=1

∮
γi

e1 · ė2ds +
n∑

i=1

∮
γi

E1 · Ė2ds

=⇒ 2πχ(S) =
n∑

i=1

∮
γi

(
E1 · Ė2 − e1 · ė2

)
ds. (3)
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Put the pieces together

Use result from “local
Gauss-Bonnet” proof. Let κg be
the geodesic curvature of γi , let θ
be the angle from e1 to γ̇, and let
ϕ be the angle from E1 to γ̇.

Then e1 · ė2 = θ̇ − κg .

Also E1 · Ė2 = ϕ̇− κg

=⇒ E1 · Ė2 − e1 · ė2 = ϕ̇− θ̇.

Equation (3) on the last slide
becomes

2πχ(S) =
n∑

i=1

∮
γi

(
ϕ̇(s)− θ̇(s)

)
ds.

Eric Woolgar (University of Alberta) Online lectures for Math 348: Differential geometry of curves and surfaces 9 / 11



Finish the proof

2πχ(S) =
n∑

i=1

∮
γi

d

ds
(ϕ(s)− θ(s)) ds.

θ is angle from e1 to γ̇.

ϕ is angle from E1 to γ̇.

Then ϕ− θ is angle from E1 to e1.

But e1 = V
‖V‖ so ϕ− θ = ψ = angle from

E1 to V.

But then
∮
γi

d
ds (ϕ(s)− θ(s)) ds =∮

γi

dψ
ds ds = 2πµ(pi ).

We conclude that 2πχ(S) = 2π
n∑

i=1

µ(pi ), so χ(S) =
n∑

i=1

µ(pi ). QED.
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Post-mortem

Theorem

If V is a smooth vector field on a compact surface S with n stationary points
(i.e., n isolated zeroes) p1, . . . , pn, then

n∑
i=1

µ(pi ) = χ(S).

Left-hand side is a statement about vector fields.

Right-hand side is a topological quantity.

No local geometry (1FF, 2FF) at all.

But we needed the tools of local differential geometry to prove this.

The real power of differential geometry, and its modern incarnation in the
form called geometric analysis, is its applicability to related but distinct
fields.
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